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Abstract—Accurate localization of randomly deployed sensor
nodes is critically important in wireless sensor networks
(WSNs) deployed for monitoring and tracking applications. The
localization challenge has been posed as a multidimensional
global optimization problem in earlier literature. Many swarm
intelligence algorithms have been proposed for accurate
localization. The untapped vast potential of the artificial bee
colony (ABC) algorithm has inspired the research presented
in this paper. The ABC algorithm has been investigated as a
tool for anchor-assisted sensor localization in WSNs. Results of
Matlab simulation of ABC-based multistage localization have
been presented. Further, the results are compared with those of
the localization method based on the particle swarm optimization
(PSO) algorithm. A comparison of the performances of ABC
and PSO algorithms has been presented in terms of the number
of nodes localized, localization accuracy and the computation
time. The results show that the ABC algorithm delivers higher
accuracy of localization than the PSO algorithm does; but, it
takes longer to converge. This results in a trade off between
speed and accuracy of localization in WSNs.

I. INTRODUCTION

Wireless sensor networks (WSNs) are networks of dis-

tributed autonomous devices that are deployed in large

numbers to monitor physical or environmental conditions.

A WSN consists of a collection of smart motes that can

sense, compute, and communicate over wireless medium.

Motes are small, inexpensive and they have limited memory

and computing resources [1]. WSNs are deployed to monitor

outdoor phenomena, such as vehicular traffic, wildlife mi-

gration, seismic seizures, landslides, avalanches and volcanic

eruptions. They are also used to monitor indoor phenomena,

such as structural health, temperature profile, intensity of

radioactivity and noise levels. In many applications, sensor

motes are deployed randomly at locations that are not

pre-determined. They may be deployed in inaccessible or

harsh mission fields for applications, such as disaster-relief [2].

In these applications, sensor location information is critical

for the mission’s objectives and for the efficient operation

of WSNs [3]. Creating location awareness in each deployed

sensor node is referred to as localization. Sensor locations play

an important role in assessing coverage and connectivity and

in location-based WSN routing protocols [4].

Accurate localization of sensor nodes has a strong influence

on the performance of WSNs. The simplest way to obtain

location information is to equip each node with a global

positioning system (GPS) receiver. However, this method is

neither practical in indoor applications, nor feasible because

of size, cost and power constraints on motes. GPS-less

localization is a popular research topic for over a decade. Many

localization algorithms estimate the location of unknown nodes

using special nodes called anchors or beacons which have a

priori knowledge of their locations [3], [5]. Most measurement

techniques used for localization involve the following steps

[6]:

1) Distance or angle estimation: Distances and/or angles

between two nodes are estimated through received signal

strength indication (RSSI), time of arrival (ToA), time

difference of arrival (TDoA), angle of arrival (AoA), and

communication range.

2) Location estimation: This involves computing a node’s

position based on available information concerning

distances/angles and positions of anchor nodes using

methods such as trilateration, triangulation and multi-

lateration.

3) Localization: In this step, the available information

is manipulated in order to allow most or all nodes

to estimate their locations. In multistage localization

algorithms, the nodes that estimate their locations in a

stage are used as anchors to help their neighbor nodes

to localize in the next stage.

Apart from measurement-based localization methods, there

are many conventional approaches as range-free anchor-based

centroid methods that use distance vector algorithms to

propagate the location information among unknown nodes.

Measurement of parameters in these methods may not be exact

due to noise and estimation errors. Therefore, results of such

localization algorithms are likely to be inaccurate [7].

The localization problem has been formulated as a

global optimization problem in [7]. Several deterministic and

heuristic solutions have been proposed. Biologically-inspired

heuristic algorithms have been used because of their simplicity,

resource-efficiency and speed [8]. Swarm intelligence (SI)

techniques, such as particle swarm optimization (PSO) and

bacterial foraging algorithm have been used successfully in

sensor node localization [5], [7]. SI techniques are based on

the behavior of a biological social system, such as a flock of

birds, a school of fish, or colonies of bees or ants. The artificial



bee colony (ABC) algorithm is a relatively newer member of

the SI family of algorithms.

The ABC algorithm has been proposed for multistage node

localization in this paper. ABC is a metaheuristic search

algorithm inspired by intelligent foraging behavior of honey

bees in nature [9]. In this algorithm, a swarm of artificial

bees move randomly in an n-dimensional search space and

interact with each other to search for an optimal solution. In

this research, the ABC algorithm has been used to determine

the locations of sensor nodes using a priori knowledge of

anchor nodes and estimated distances between the former and

the latter. Multiple trials of ABC-based multistage localization

have been simulated and the results have been presented.

The results have been compared with those of the PSO-based

iterative localization presented in [7]. Since PSO algorithm and

its applications have been very well discussed in literature, it

has not been detailed in this paper.

The following are the primary contributions of this paper :

1) The formulation of sensor localization as an optimiza-

tion problem has been recaptured.

2) The ABC algorithm has been investigated as a tool that

minimizes the errors in estimating sensors’ locations.

3) Details of numerical simulation have been presented.

4) Results of the ABC algorithm have been presented with

accuracy and speed of localization as major figures of

merit.

5) A comparative analysis of ABC- and PSO-based

localization has been performed.

The remainder of this paper has been organized as

follows: Previous research in sensor localization and the ABC

algorithm has been surveyed in Section II. An overview

of the multistage localization process has been presented in

Section III. The ABC algorithm has been outlined in Section

IV. Details of numerical simulation and the results obtained

have been presented in Section V. In addition, a comparison

of ABC- and PSO-based localization has been presented in

Section V. Finally, concluding remarks and suggestions for

future research have been given in Section VI.

II. RELATED WORK

Anchor-assisted sensor localization has evoked significant

research interest in the recent past. Several methods and

algorithms have been proposed and compared on the basis of

localization error, necessary numbers of anchors, numbers of

localized nodes, etc. Typical localization algorithms require

the measurement of distances between anchors and sensors.

Various methods have been proposed to measure these

parameters. An overview of measurement-based techniques

in sensor node localization has been presented in [10].

Most measurement-based approaches rely on some form of

communication between anchors and unknown nodes. In

the approach proposed in [11], RSSI is used to estimate

the distances between immediate neighbors of anchors.

Unknown nodes use propagation methods like distance vector

(DV-hop, DV-distance or Euclidian distance) to share the

location information with their one-hop neighbors. The

second-hop neighbors approximate their distances to anchors.

The exchange of the information among immediate neighbors

is continued until the entire network is localized.

The measurement schemes are prone to noise; and thus,

they result in localization errors. An alternative approach to

the location estimation is to model errors as random variables

as proposed in [12]. When a node receives the location

of an anchor, it is not treated as the exact location. An

unknown node receives the position information from multiple

anchors and then estimates its location. This approach suffers

from high computational cost. In addition, it is not viable to

equip all the unknown nodes with ranging capability when

WSNs are largely populated [13]. A GPS-less localization

in unconstrained outdoor environments is presented in [14].

In this approach, the localization is based on radio model

in which each node connects itself to the centroid of a set

of approximate reference points using a connectivity metric.

This method does not require coordination among anchors and

unknown nodes. Another approach to reduce cost and power

burdens of GPS is to install it on a mobile anchor which

broadcasts its coordinates. This approach helps to localize

the unknown nodes near mobile anchors. A survey on mobile

anchor-based localization has been presented in [15]. Local-

ization is an unconstrained optimization problem; therefore,

many computationally intelligent localization algorithms have

been proposed [8]. These algorithms have been compared

with respect to localization accuracy, computational efforts,

communication overheads and the required anchor density

metrics.

Localization techniques, Gauss-Newton algorithm (GNA)

and PSO have been proposed in [16]. In these techniques, a

person deploys sensor nodes with the help of a pedometer

and an electronic compass. Sensor nodes exchange anchor

information using RSSI and use GNA and PSO algorithms

for localization. Both GNA and PSO search the same optimum

location with the same set of measurements. But GNA, being

a local optimization method, shows poorer result when the

stopping criteria are met or when the pedometer error is

higher. In localization process, PSO shows more accurate

position estimation than GNA and it is more robust. GNA

is occasionally unstable during iterations due to matrix

inversion computation and is only feasible with a pedometer

having good accuracy. Localization algorithms that use genetic

algorithm (GA), fuzzy logic system (FLS) and neural network

(NN) have been developed for indoor and outdoor WSNs

applications in [17]. GA is a numerical optimization algorithm

inspired from genetics that comprises of selection, crossover,

and mutation. GA is simple, yet it provides an adaptive and

robust optimization. FLS produces acceptable but definite

output in response to inaccurate input and NN is used for

mapping all the sensors nodes from anchors.

ABC is a recent multidimensional optimization algorithm.

Its advantages include the ease of implementation and high

quality solutions. The study presented in [9] focuses on the

comparison of ABC, PSO, GA and the differential evolution

algorithm. These algorithms are tested on a large set of



numerical benchmark functions and results show that the

performance of the ABC is better than or similar to those

of other population-based algorithms. The ABC algorithm has

been successfully used for the dynamic deployment of sensor

nodes for optimal coverage in [18].

A hybrid algorithm of ABC and GA has been proposed

to determine the shortest path of mobile anchor to localize

all sensors has been presented in [19]. The hybrid algorithm

has advantages of strong global search capability, satisfactory

accuracy and quick convergence to optimal location. ABC has

been also applied in clustering in routing protocols in WSNs.

ABC can achieve optimum data grouping process and shows

similar results with PSO-based protocols and routing protocols

as low-energy adaptive clustering hierarchy in WSN [20]. A

combination of ABC with DV routing algorithm (ABCDV)

has been proposed in [21]. ABCDV reduces position error

without increasing the hardware overhead at each node.

ABCDV-hop routing can improve the calculation method of

average distance per hop of anchor nodes and give better

results than traditional DV routing. The sensor deployment

problem is modeled as a data clustering problem and ABC is

applied to get a optimal solution to the deployment in [22].

The ABC has also been used to train radial basis neural

networks for precise traffic flow prediction [23], to provide an

effective local search technique in quality-of-service selection

[24], to find spatial transformation using similarity metrics in

image registration [25] and to optimize power in data centers in

cloud computing [26]. The unexploited abundant application

potential of ABC has inspired the research reported in this

paper. The ABC algorithm has been proposed for multistage

node localization in WSNs.

III. MULTISTAGE LOCALIZATION ALGORITHM

The deployment scenario considered in this study is as

follows: A total of N nodes are deployed in a plane square

mission field. Each node has a communication range of r

units. A small percentage of the nodes are special nodes

called anchors or beacons. Anchors know their locations

because either they have GPS hardware or they are deployed

at known locations. The rest of the nodes are deployed

at random locations; therefore, they do not have location

awareness. They are called dumb, unsettled or unknown

nodes. The numbers of anchors and unknown nodes are

A and U , respectively, so that N = A + U . The

anchors are named as a1, a2, a3, . . . , aA. Their locations

are (a1x, a1y), (a2x, a2y), . . . , (aAx, aAy), respectively, where

x and y are the natural coordinates of the mission

field. The anchor ai broadcasts its coordinates (aix, aiy)
periodically. The dumb nodes are named as u1, u2, u3, . . . , uU .

Their locations are (u1x, u1y), (u2x, u2y), . . . , (uUx, uUy),
respectively. Each dumb node ui aims to estimate its location

(uix, uiy) as accurately as possible. This is the crux of the

localization problem [7].

A dumb node that has at least three non-collinear anchors in

its communication range estimates its distances from them by

measuring parameters, such as RSSI, ToA and TDoA. If the

node does not have three non-collinear anchors in its range, it

cannot be localized. Each localizable node executes the ABC

algorithm to estimate the coordinates of its location. Estimates

of distances from anchors and locations of the anchors are

the input arguments to the ABC algorithm. The goal of the

localization algorithm is to determine the locations of all or

as many dumb nodes as possible. Each node ui estimates

its location (uix, uiy) independently without any help from

a central node. Therefore, the distributed localization problem

translates into a two-dimensional optimization problem.

The number of localized and unlocalized nodes are denoted

by L, and NL, respectively (∴ L+NL = U ). The multistage

localization algorithm presented here progresses in stages

s1, s2, . . . , sT . Initially in stage s1, L1 nodes estimate their

locations. These nodes act as anchors in the second stage s2.

Therefore, the number of anchors in s2 is s2 = A+ L1. Due

to the increased number of anchors, more dumb nodes may

get localized in s2. Thus, the number of anchors in stage s3
increases to A + L1 + L2. This stage-by-stage localization

terminates in stage sT when the number of unlocalized nodes

equals zero or equals the number of unlocalized nodes in the

previous stage s(T−1). The proposed method can be divided

into two phases.

A. Distance Estimation

In this phase, each unknown node uj , j = 1, 2, . . . , U ,

estimates its distances d̂i from anchors ai, i = 1, 2, 3, in

its communication range. Estimation of distances involves the

measurement of the aforementioned parameters. This method

of distance estimation is prone to errors. Therefore, the

distances are estimated as d̂i = di + g, where di is obtained

as in (1) and g is the additive noise.

di =
√

(aix − ujx) + (aiy − ujy) (1)

The additive noise represents environmental uncertainties

associated with erroneous estimation. The additive noise g is

generated using (2).

g = p
( e

100

)

(−1)q (2)

Here, e is the noise percentage (higher e represent more severe

environmental uncertainties). The parameter p is a random

number distributed uniformly between 0 and 1, and q is 0

or 1, chosen randomly.

B. ABC Optimization

In this phase, each unknown node uj that has three

non-collinear anchors in its range obtains (ûjx, ûjy), the

estimates of the coordinates of its location, using the ABC

optimization algorithm. A node that has more than three

anchors in its range chooses the nearest three anchors. The

ABC algorithm computes the estimated location (ûjx, ûjy) in

such a way that the mean localization error Ejl expressed in

(3) is minimum.

Ejl =
1

3

3
∑

i=1

(

√

(ûjx − aix)2 + (ûjy − aiy)2 − d̂i
2
)

(3)



The localization error E is used as the measure of the

effectiveness of the algorithm. E is determined when the

multistage localization terminates. It represents the mean of

the distances between actual node locations (ujx, ujy) and the

estimated node locations (ûjx, ûjy), as expressed in (4).

E =
1

L

L
∑

j=1

(

√

(ujx − ûjx)2 + (ujy − ûjy)2
)

(4)

Here, L represents the number of localized nodes. The

remaining U −L nodes are not localized because they do not

have three non-collinear anchors nodes in their communication

range.

IV. THE ABC ALGORITHM

The ABC algorithm is based on natural colonies of honey

bees that have self-organization and co-ordination skills in

their foraging behavior. Honey bees in nature use a mechanism

of waggle dance to optimally locate food sources and search

for new ones. This natural behavior inspired the development

of the intelligent search algorithm ABC [9]. The ABC

algorithm aims at finding the optimal solution to a continuous

optimization problem in an iterative manner. The objective

of an optimization algorithm is to minimize or maximize a

real-valued fitness function f(x) by systematically choosing

the values of variables from an allowed D-dimensional set A.

Given f(x) : A ⊆ R
D → R, an optimization algorithm seeks

to determine an element x∗ in A such that f(x∗) ≥ f(x) ∀ x ∈
A and f(x∗) 6= ∞. In the localization problem, each sensor

node estimates two coordinates of its location in the plane of

deployment such that the localization error defined in (3) is

minimum. Therefore, D = 2, and the objective function is

f(x) = Ejl as expressed in (3).

The ABC algorithm consists of a swarm of S bees created

in the D- dimensional space. Bees are assigned to food sources

which represent the possible solutions. The amount of the

nectar at a food source represents the fitness or quality of the

solution. The colony of artificial bees consists of the three

groups of bees: Employed bees, Onlooker bees and Scout

bees. The ABC algorithm uses following steps for all the three

categories of bees in one cycle. Details of these steps are given

below: [27]

A. Initialization Step

In this step, values as maximum population S, dimension

D, maximum cycles kmax, and lower limit and upper limit

xmin, xmax are initialized. Food source is a D dimensional

vector represented as x1D, x2D . . . xSD. B is a constant value

representing a maximum limit to search for food positions.

T is initialized to 0 for keeping count of number of trials

a bee searches for xi in a given kmax. Bees evaluate the

given objective function with initial random food positions to

determine the fitness fx of each xiD where i = 1, 2, 3 . . . , S.

Each employed bee explores its neighboring food sources and

apply a greedy selection strategy between its food source and

food sources of its neighbors. If the fitness of the new position

is higher, then the employed bee updates its xiD . Otherwise,

it remains unchanged.

B. Onlooker Step

A probability value is pi is associated with each onlooker

bee. Onlooker bee chooses a food source with the probability

which is proportional to its quality. Different schemes can be

used to calculate probability values as roulette wheel selection

method or the expression given in (5).

pi =
fi

N
∑

i=1

fi

(5)

New candidate positions from the existing memory are

generated using (6).

vij = xij + φij(xij − xoj) (6)

Here i, o ∈ 1, 2, 3, . . . , N and j = 1, 2, . . . , D. Index o is

randomly chosen such that o 6= i and −1 ≤ φi ≤ 1. If the

new solution is outside the boundary of the search space, then

it is set to the boundary, xmin or xmax.

C. Scout Step

A control parameter B is used to abandon the food source.

The position of food sources cannot be improved when a count

of predetermined trials (T ) exceeds B. This is where scout

bees are generated. Scout bees discover new food position and

randomly replace existing food position as given in equation

(7), where q is a random number, in the range [0, 1].

xij = x
j
min + q(xj

max − x
j
min) (7)

These steps are repeated until the desired solution is found

or a predefined maximum number of cycles is reached. Each

employed bee is associated with only one food source. Thus

the number of employed bees is equal to the number of food

sources which correspond to solutions of a given problem.

Pseudocode for the ABC algorithm has been presented in

Algorithm 1.

Division of labor is an important feature of ABC that serves

as a basis to allocate tasks in any artificial system [28]. The

ABC algorithm is adaptable, stable and does not commit its

activities along excessively narrow channels [29].

V. NUMERICAL SIMULATIONS AND RESULTS

ABC-based multistage localization proposed here has been

validated through MATLAB simulations on a Windows–7
computer having Intel R© CoreTM i5 processor @ 3.20 GHz

and 8 gigabytes of RAM. The sensor field parameters used in

the ABC-based multistage localization are as below:

1) Communication radius r = 30 units;

2) Area of the deployment field is 100× 100 square units;

3) Number of Anchors A = 10;

4) Number of unknown nodes U = 50;

5) Percentage of error e = 2;

6) It is ensured that no three anchors are collinear.



Algorithm 1 The pseudocode of the ABC algorithm

1: Initialize xij randomly such that xmin ≤ xij ≤ xmax and

i : 1, 2, 3, . . . , S and j : 1, 2, 3, . . . , D;

2: Evaluate cost of the objective function Hx and calculate

fitness fx;

3: fx = 1
(1+fx)

if Hx ≥ 0

4: fx = 1 + |(fx| if Hx < 0
5: Iteration k = 1, T = 0, B = 100;

6: while (k ≤ kmax) do

7: Select o;

8: Select random food source xij and generate a new food

vij using (6);

9: Calculate fitness fv;

10: if fv > fx then

11: vij = xij ;

12: fx = fv;

13: Hx = Hv;

14: T = 0;

15: end if

16: if fv < fx then

17: T = T + 1;

18: end if

19: Calculate probabilities pi for a new solution using (5)

or roulette wheel selection strategy;

20: Produce new solutions vij for onlookers using the value

of pi and the existing solutions xij ;

21: Store global optimal solution (g) and its position (xij);

22: Repeat steps 9 through 18 for onlookers vij ;

23: if T ≥ B then

24: Determine the scout bees’ position using (7);

25: end if

26: k = k + 1;

27: end while

28: Global optimum = g

Each target node runs the ABC algorithm to localize itself.

The parameter used in ABC are:

1) Population of bees S = 30;

2) Dimensionality D = 2;

3) Limit for elimination of bees B = S ×D;

4) Maximum iterations (kmax) = 100;

These parameters are finalized through several trials. The

results of 6 trial runs conducted have been presented in Table

I. Here, Lsi refers to the number of localized nodes in stages

i = 1, 2, 3, 4. Similarly, Esi and Tsi refer to the average error

and localization time in stage si, respectively. The number of

localized nodes Lsi increase with every stage, as the localized

nodes act as anchor nodes for the next stage. However, the

process of localization can terminate prematurely when certain

nodes do not get three anchor in their communication radius.

This scenario is shown in the sixth trial run in Table I. The

table shows that ABC produces acceptably good localization.

The initial deployment of sensor nodes and anchors in a trial

has been depicted in Figure 1(a). An intermediate stage of

TABLE I
RESULTS OF SIX TRIAL RUNS OF ABC-BASED MULTISTAGE

LOCALIZATION

Trial Parameters Stage 1 Stage 2 Stage 3 Stage 4

1
Lsi 18 41 49 50
Esi 0.1601 0.0908 0.0599 0.0569
Tsi 1.6147 4.9511 8.4829 10.8954

2
Lsi 18 41 48 50
Esi 0.1351 0.101 0.0478 0.0505
Tsi 1.567 5.3218 9.404 12.7638

3
Lsi 26 48 50
Esi 0.2344 0.0957 0.0633
Tsi 2.0999 6.0415 9.5343

4
Lsi 20 50
Esi 0.3648 0.1936
Tsi 1.7372 5.5655

5
Lsi 23 48 50
Esi 0.5063 0.1114 0.0542
Tsi 1.8653 5.9459 9.3619

6
Lsi 25 46 † 46
Esi 0.1982 0.0623 0.0620
Tsi 8.8919 15.7753 26.2821

† Four nodes remained unlocalized.

localization, where some of the nodes are localized has been

illustrated in Figure 1(b). The final stage of the localization

has been presented in Figure 1(c).

The results of ABC-based multistage localization have been

compared with PSO-based localization algorithm presented in

[7]. The PSO-based iterative localization algorithm has been

implemented on the same computer mentioned above. The

sensor-field parameters are identical. The parameters used in

PSO are:

1) Population of particles = 30;

2) Maximum number of iterations = 100;

3) Limits of search space, xmin = 0 and xmax = 100;

4) Acceleration constants C1 = C2 = 2;

5) Inertia weight ω is decreased linearly from 0.9 in the

first iteration to 0.4 in the 100th iteration.

These parameter are chosen as per the recommendation in

[7]. A comparison of the results of ABC- and PSO-based

localization are presented in Table II. Results show that

the ABC algorithm achieves higher quality of localization.

However PSO takes less computation time.

Localization error in each stage is related to the noise

associated with distance measurement. The dependence of

localization error on the percentage noise has been depicted in

Figure 2. Percentage of noise depends upon the environmental

uncertainties, such as electrical interferences, number of

obstacles and varying channel characteristics. It is difficult to

predict the noise in the receiver’s hardware by a mathematical

method. The plot presented in Figure 2 shows that the

localization error increases with the noise.

ABC and PSO are the heuristic optimization algorithms.

It would be interesting to compare their performances using

statistical analysis of their results in several trial runs. In

another case study, ABC and PSO algorithms are experimented
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Fig. 1. Stages of ABC-based multistage localization in a trial run
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Fig. 2. Dependance of the localization error on the severity of environmental
noise

TABLE II
COMPARISON OF RESULTS OF ABC- AND PSO-BASED LOCALIZATION IN

SIX TRIAL RUNS EACH

Trial # si Lsi Esi Tsi

ABC PSO ABC PSO ABC PSO

1 1 12 12 5.326 62.9468 0.9131 0.4641
2 29 29 0.1603 0.1788 3.0549 1.5938

3 45 45 0.1096 0.1112 6.5221 3.3756

4 50 50 0.0671 0.1067 9.7095 5.0519

2 1 10 10 0.2557 1.5730 0.7638 0.3779

2 37 36 0.1674 0.2576 3.3657 1.675
3 46 49 0.0707 0.0797 7.4869 3.9655

4 50 † 49 0.0514 0.0764 10.2082 5.6251

3 1 14 14 0.1593 0.1637 1.0555 0.5196

2 48 48 0.1701 0.1756 4.7589 2.4302
3 50 50 0.0442 0.0578 8.566 4.4870

4 1 13 13 0.1281 0.2320 1.082 0.5299
2 37 37 0.0896 0.1065 3.9348 1.9922

3 50 50 0.0427 0.0526 8.2801 4.3295

5 1 19 19 4.9617 83.4785 1.3716 0.6882

2 49 48 0.0844 0.0946 4.9280 2.4739

3 50 50 0.0641 0.0690 8.3987 4.2766

6 1 10 10 0.3136 0.3602 0.7427 0.3751
2 33 33 0.1096 0.1309 3.2258 1.6279

3 48 48 0.0607 0.0699 6.8351 3.5330

4 50 50 0.0363 0.0864 10.4016 5.3985

† One node remained unlocalized in PSO-based localization.

on with the same number of unknown nodes and anchors. To

determine average and standard deviation in localization error

and computing time of ABC and PSO-based localization, it is

necessary that all the nodes are localized in a single stage. In

order to ensure this, the communication radius r is set to a

large value, 300 units. The summary of the results of 30 trials

is given in Table III.

It can be observed that the ABC algorithm estimates sensor

locations more accurately than PSO. But, its computing time

is significantly more than PSO’s. There is a trade off between



TABLE III
STATISTICAL SUMMARY OF 30 TRIAL RUNS OF ABC- AND PSO-BASED

WSN NODE LOCALIZATION.

Localization Error Computing Time

Mean Standard Deviation Mean Standard Deviation

ABC 0.0112 0.1635 15.8392 0.2764

PSO 0.0222 0.1865 6.8494 0.0409

For all trials, e = 2, A = 10 and U = 50.

the accuracy and the speed of localization. The choice between

these algorithm depends on the type of WSN application.

VI. CONCLUSION

Reports of successful application of bio-inspired heuristic

search algorithms, such as PSO and bacterial foraging

algorithm, and the untapped potential of ABC for sensor

localization have inspired the research presented in this paper.

WSN localization, a problem that has been formulated as

an optimization problem, has been approached through the

nature-inspired ABC algorithm here. A brief introduction to

the localization problem has been provided. The ABC algo-

rithm has been outlined. ABC-based approach to multistage

localization of sensor nodes in a WSN has been detailed.

Results of multistage localization have been presented and

discussed briefly. The results have been compared with

those of PSO-based iterative localization presented in earlier

literature.

Statistical summary of the results shows that the ABC

algorithm results in more accurate localization than PSO

does. The results also show that PSO converges faster. This

is a trade-off issue. It may be noted that localization is a

one-time exercise in WSNs having stationary sensor nodes. In

applications, such as surveillance and target tracking, accurate

localization is desired. In such applications, the ABC is a

suitable approach to sensor localization. On the contrary,

in time-sensitive WSN applications, quick localization is

crucial to the sensing mission. PSO is more suitable approach

to localization in such applications. WSN size is another

important factor to consider in making a choice between PSO

and ABC. In the case of a WSN having thousands of nodes,

multistage localization based on the ABC algorithm results

in cascaded delays. On the other hand, PSO does the job

quicker. Lastly, in WSNs having mobile nodes, localization

is a repetitive exercise. The ABC is not an attractive approach

in such WSNS due to its slower convergence. In summary,

though the ABC algorithm can result in accurate localization,

it comes with its own undesirable properties. Thus, it suits

only certain limited class of WSNs.

The research presented here can be extended in many

possible directions. There have been many reports on

localization using a single mobile anchor. Finding an optimal

path for the mobile anchor is an optimization problem as

well. Algorithms, such as PSO and ABC can be used

to accomplish localization through a single mobile anchor.

Another direction for future research can be the hybridization

of ABC in localization of sensor nodes for higher resource

efficiency. This research may also be extended in the direction

of developing quicker variants of the ABC algorithm, and

applying the canonical or modified ABC algorithm for

localization and other open optimization problems in WSNs

or other domains. A comparative investigation of analytical

methods and stochastic methods for localization is another

possible direction for the extension of this study.

ACKNOWLEDGMENT

Authors gratefully acknowledge the support received from

KLS Gogte Institute of Technology, Belagavi, India, and M.

S. Ramaiah University of Applied Sciences, Bengaluru, India.

They also express sincere thanks to the anonymous reviewers

of this paper for their constructive criticism.

REFERENCES

[1] J. Yick, B. Mukherjee, and D. Ghosal, “Wireless sensor network survey,”
Computer Networks, vol. 52, no. 12, pp. 2292–2330, Aug. 2008.

[2] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “Wireless
sensor networks: A survey,” Computer Networks, vol. 38, no. 4, pp.
393–422, Mar. 2002.

[3] W. Jing, G. R. K., and D. S. K., “A survey on sensor localization,”
Journal of Control Theory and Applications, vol. 8, no. 1, pp. 2–11,
Feb. 2010.

[4] J. N. Al-Karaki and A. E. Kamal, “Routing techniques in wireless sensor
networks: A survey,” IEEE Wireless Communications, vol. 11, pp. 6–28,
Dec. 2004.

[5] A. Gopakumar and L. Jacob, “Localization in wireless sensor networks
using particle swarm optimization,” in Proceedings of the IET

International Conference on Wireless, Mobile and Multimedia Networks,
Jan. 2008, pp. 227–230.

[6] N. Patwari, J. N. Ash, S. Kyperountas, A. O. Hero, R. L. Moses, and
N. S. Correal, “Locating the nodes: Cooperative localization in wireless
sensor networks,” IEEE Signal Processing Magazine, vol. 22, no. 4, pp.
54–69, Jul. 2005.

[7] R. V. Kulkarni and G. K. Venayagamoorthy, “Bio-inspired algorithms
for autonomous deployment and localization of sensor nodes,” IEEE

Transactions on Systems, Man, and Cybernetics, Part C: Applications

and Reviews, vol. 40, no. 6, pp. 663–675, Nov. 2010.

[8] R. V. Kulkarni, A. Förster, and G. K. Venayagamoorthy, “Computational
intelligence in wireless sensor networks: A survey,” IEEE Communica-

tions Surveys and Tutorials, vol. 13, no. 1, Jan. 2011.

[9] D. Karaboga and B. Basturk, “A powerful and efficient algorithm
for numerical function optimization: Artificial bee colony (ABC)
algorithm,” Journal of Global Optimization, vol. 39, no. 3, pp. 459–471,
Nov. 2007.

[10] G. Mao, B. Fidan, and B. D. O. Anderson, “Wireless sensor network
localization techniques,” Computer Network, vol. 51, no. 10.

[11] D. Niculescu and B. Nath, “Ad hoc positioning system (APS),”
in Proceedings of the IEEE Global Telecommunications Conference

(GLOBECOM), vol. 5, Nov. 2001, pp. 2926–2931.

[12] V. Ramadurai and M. L. Sichitiu, “Localization in wireless sensor
networks: A probabilistic approach,” in Proceedings of the International

Conference on Wireless Networks (ICWN), Jun. 2003, pp. 275–281.

[13] A. Chatterjee, “A Fletcher-Reeves conjugate gradient
neural-network-based localization algorithm for wireless sensor
networks,” IEEE Transactions on Vehicular Technology, vol. 59, no. 2,
pp. 823–830, Feb. 2010.

[14] N. Bulusu, J. Heidemann, and D. Estrin, “GPS-less low-cost outdoor
localization for very small devices,” IEEE Personal Communications,
vol. 7, no. 5, pp. 28–34, Oct. 2000.

[15] G. Han, J. Jiang, C. Zhang, T. Q. Duong, M. Guizani, and G. K.
Karagiannidis, “A survey on mobile anchor node assisted localization
in wireless sensor networks,” IEEE Communications Surveys Tutorials,
vol. 18, no. 3, pp. 2220–2243, 3rd quarter 2016.



[16] H. Guo, K. S. Low, and H. A. Nguyen, “Optimizing the localization
of a wireless sensor network in real time based on a low-cost
microcontroller,” IEEE Transactions on Industrial Electronics, vol. 58,
no. 3, pp. 741–749, Mar. 2011.

[17] S. Yun, J. Lee, W. Chung, E. Kim, and S. Kim, “A soft computing
approach to localization in wireless sensor networks,” Expert System

Application, vol. 36, no. 4, pp. 7552–7561, May 2009.
[18] C. Öztürk, D. Karaboğa, and B. Görkemli, “Artificial bee colony

algorithm for dynamic deployment of wireless sensor networks,” Turkish

Journal of Electrical Engineering & Computer Sciences, vol. 20, no. 2,
pp. 255–262, Jan. 2012.

[19] R. Qi, S. Li, T. Ma, and F. Qian, “Localization with a mobile anchor
using ABC-GA hybrid algorithm in wireless sensor networks,” Journal

of Advanced Computational Intelligence and Intelligent Informatics,
vol. 16, no. 6, pp. 741–747, Sept. 2012.

[20] D. Karaboga, S. Okdem, and C. Ozturk, “Cluster based wireless
sensor network routing using artificial bee colony algorithm,” Wireless

Networks, vol. 18, no. 7, pp. 847–860, Oct. 2012.
[21] W. Zhang, X. Yang, and Q. Song, “Improved DV-Hop algorithm

based on artificial bee colony,” International Journal of Control and

Automation, vol. 8, no. 11, pp. 135–144, 2011.
[22] S. K. Udgata, S. L. Sabat, and S. Mini, “Sensor deployment in irregular

terrain using artificial bee colony algorithm,” in Proceedings of the

World Congress on Nature Biologically Inspired Computing (NaBIC),
Dec. 2009, pp. 1309–1314.

[23] W. Yu, L. Liu, and W. Zhang, “Traffic prediction method based on
RBF neural network with improved artificial bee colony algorithm,” in
Proceedings of the 8th International Conference on Intelligent Networks

and Intelligent Systems (ICINIS), Nov. 2015, pp. 141–144.
[24] X. Wang, X. Xu, Q. Z. Sheng, Z. Wang, and L. Yao, “Novel artificial bee

colony algorithms for QoS-aware service selection,” IEEE Transactions

on Services Computing, vol. PP, no. 99, pp. 1–1, 2016.
[25] Y. Qin, H. Hu, Y. Shi, Y. Liu, and H. Gao, “An artificial bee colony

algorithm hybrid with differential evolution for multi-temporal image
registration,” in Proceedings of the 35th Chinese Control Conference

(CCC), Jul. 2016, pp. 2734–2739.
[26] K. Agrawal and P. Tripathi, “Power aware artificial bee colony

virtual machine allocation for private cloud systems,” in Proceedings

of the International Conference on Computational Intelligence and

Communication Networks (CICN), Dec. 2015, pp. 947–950.
[27] D. Karaboga, B. Gorkemli, C. Ozturk, and N. Karaboga, “A

comprehensive survey: Artificial bee colony (ABC) algorithm and
applications,” Artificial Intellegence Reviews, vol. 42, no. 1, pp. 21–57,
Jun. 2014.

[28] E. Bonabeau, A. Sobkowski, G. Theraulaz, and J.-L. Deneubourg,
“Adaptive task allocation inspired by a model of division of labor
in social insects,” in Proceedings of Biocomputing and Emergent

Computation. World Scientific Press, Sep. 1997, pp. 36–45.
[29] M. M. Millonas, “Swarms, phase transitions, and collective intelligence,”

in Artificial Life III, C. G. Langton, Ed. Reading, MA: Addison-Wesley,
1994.


