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Abstract—This paper presents the Energy Aware PSO
(EAPSO) as a search mechanism for aerial micro-robots with
limited energy capacity. The proposed model is an extension of
the search concept of Particle Swarm Optimization (PSO) that
additionally considers the energy levels of the individuals for an
efficient movement. One major contribution of this paper is that
the energy efficiency results from a multi-criteria decision making
process performed by the individuals. The energy consumption
model in EAPSO is adapted from a real hardware scenario and
has been tested on three known landscapes which are very similar
to search terrains by the aerial micro-robots. The results show
that EAPSO can reduce the total energy consumption of the
swarm with negligible degradation of the search results.

I. INTRODUCTION

Swarm Robotics (SR) has been the subject to research
for almost over a decade. The major properties concern a
large number of simple robotic systems and simple rules. The
swarm is supposed to collectively learn a pre-defined given
task [11]. One important challenge in micro-robotic systems
is managing the energy resources, which is a crucial aspect
in accomplishing a task by such autonomous systems [5].
This is notably evident with small aerial robots, which have
severely limited battery of typically 10 to 15 minutes [7], [12].
Different to ground robots, aerial robots have significantly
different energy dynamics, require substantially more energy
to locomote [7], [9], and the small payload entails reduced
sensing and processing capabilities. Dealing with limited en-
ergy levels has been addressed in the literature, for instance,
an algorithm for indoor aerial swarm search that exploits
the ability of flying robots to attach to ceilings and saves
energy was developed by [7] and [10]. A novel strategy was
studied by [9] which controls the density of flying robots.
They illustrate an efficient way of reducing swarm energy costs
while maintaining a rapid search. Other approaches consider
Underwater robots [1] saving energy by staying on the sur-
face. An additional aspect in swarm robotics is controlling
deployment into unknown environments. If robots deploy to
unnecessary locations, energy is wasted. Conversely, if an area
receives insufficient robots the task may be unachievable or the
performance is reduced. Nevertheless, a crucial feature is the
autonomy of robotic systems, i.e., the individual robots need
to be able to make decisions on their own by considering own
and the performance of the other swarm members.

The goal of this paper is to propose a new model for a
search mechanism in a swarm of small flying robots (aerial
micro-robots) which is based on Particle Swarm Optimiza-
tion method. The main research questions are to investigate
whether PSO can be employed as a search mechanism for
aerial micro-robots and how can we consider an efficient
energy consumption for such systems with limited battery
capacity. In this model we aim to additionally involve the
amount of energy in the search mechanism and give the
single individuals the ability to decide about their movements
considering their energy levels. The decision making process
of each single individual must additionally involve information
from other swarm members and the overall progress of the
swarm. We propose to use the concepts from multi-objective
criteria decision making and let the individuals decide about
their individual movements. To our knowledge this concept
has not been studied so far in the literature about the search
mechanisms for aerial autonomous swarm robots.

Decision making in the swarms has been studied in other
contexts presented by [13], [14] in which the authors investi-
gate different robot controllers for collective decision-making
in the context of the speed-versus-accuracy trade-off. The
proposed approach in this paper is different from collective
decision making in swarms as we let the swarm members
decide on their own by considering the local information.

The proposed method introduces a new PSO-based search
mechanism called Energy Aware PSO (EAPSO) which addi-
tionally considers the amount of energy consumption for each
individual. In contrast to the standard PSO, the individuals
estimate the amount of required energy for moving to the next
position, and decide about the movement by considering the
trade-off between profit and energy consumption. The paper
presents various models for multi-criteria decision making and
the experiments and comparisons illustrate that with EAPSO
the individuals are able to save a large amount of energy
without degrading the quality of search. EAPSO is modeled
based on energy consumption of a real hardware scenario.
However, the presented work in this paper only considers the
search mechanism and has met several assumptions.

This paper is structured as follows. We describe the back-
ground in Section II. Afterwards, we introduce our model in
Section III. The leader selection mechanism and multi-criteria



decision making are studied in Section IV. Subsequently,
Section V contains the experiments and the evaluations. The
paper is summarized in Section VI.

II. BACKGROUND

In this section, we briefly describe the background about
Particle Swarm Optimization and Multi-Criteria Decision
Making.

A. Particle Swarm Optimization (PSO)

PSO is a search mechanism based on the movement of a
population of N individuals in a n-dimensional search space
defined by S [3]. Each individual i has a position ~xi(t) ∈ S
and a velocity ~vi(t) at time step t. The individuals move in the
search space by considering three factors: their own velocity
vector at t− 1, their own best obtained position ~Pbest and the
position of the globally (or locally) best individual from the
population ~xg:

~vi(t+ 1) = w~vi(t) + C1φ1(~Pbest − ~xi(t)) + (1)
+ C2φ2(~xg − ~xi(t))

~xi(t+ 1) = ~xi(t) + ~vi(t+ 1) (2)

where φ1 and φ2 are two random vectors ∈ [0, 1]n. C1

and C2 are constants and determine the attraction rates. The
globally best individual ~xg can be defined using different
communication topologies which is known to have a large
impact on the convergence rate of PSO [2]. As selecting the
globally best solution (leader) defines the amount of distance
an individual might fly (depending on the random value φ1),
the topology can implicitly influence the energy consumption
of the individuals. Ideally, the closer the globally best solution
is located, the less energy is required to reach that point. In
the following we take the k-Nearest-Neighbor neighborhood
topology, where k = N − 1 refers to the fully connected
network. In the experiments, the size k will be analyzed.

B. Multi-criteria Decision Making

Multi-criteria decision making methods usually involve sev-
eral conflicting objective functions fi(~x) for i = 1, · · · ,m and
~x ∈ S which have to be optimized at the same time. The
solution of multi-objective optimization problems is usually a
set of so called Pareto-optimal solutions from which the user
has to select one. A solution ~x∗ is called Pareto-optimal for
minimization problems, if there is no other solution ~x′ in the
search space S so that:
∀i : fi(~x′) ≤ fi(~x∗) and ∃j : fj(~x′) < fj(~x

∗).
Accordingly we can use the same definition to compare
the solutions. In this case, a solution ~x1 dominates another
solution ~x2 (denoted by ~x1 ≺ ~x2), if:
∀i : fi(~x1) ≤ fi(~x2) and ∃j : fj(~x1) < fj(~x2).

The solutions which do not mutually dominate each other
are called non-dominated solutions. Selecting one of the
Pareto-optimal (or non-dominated) solutions depends on the
preferences of the user and can vary accordingly [4], [6].
Weighted sum approach is known to be the most straight
forward mechanism to incorporate the preferences of the user

in a weight vector (w1, · · · , wm) where
∑m

i=1 wi = 1. Each
wi indicates the relative preference towards the objective
function i. Different vector values lead to different selection
preferences.

III. PROPOSED MODEL

Our proposed approach models a population of N au-
tonomous aerial robots which move (fly) in a search space
S ⊂ R2. The search mechanism involves the concept of PSO.
Nevertheless, in order to employ PSO as a search mechanism
for aerial micro-robots, we need to extend the PSO by a
new energy model and additionally address the discrete time
movements (as shown in Equations (1) and (2)).

A. Modeling the movement

In order to better capture the main concept, we model the
flight behavior of the individuals using a simple finite state
machine, as shown in Figure 1.

ground air

ei > etakeoff

ei < etakeoff

ei < eland

ei > etakeoff

Fig. 1. Transition graph depicting the flight model for an individual i
depending on its energy level ei

The individuals operate in two states: Ground or Air. In the
Ground state the individuals can decide between two different
actions. If an individual i has enough energy ei (i.e., ei >
etakeoff ), it can start and switch to the Air state. In case of
low energy level (ei <= etakeoff ), the individual stays in the
Ground state. For simplicity, we assume that staying in Ground
state is coupled with charging. This is a very strong assumption
which cannot be easily implemented in real-scenarios.

In the Air state the individuals either change state and go to
Ground state if ei < eland or they move (fly) towards a certain
direction. In fact the direction towards which the individuals
move has a great impact on the energy consumption of the
individuals. In this case, the individuals need to decide on the
distance they will move in the next iteration.

B. Discrete time flight

Even though the real-world is continuous in time, robotic
systems work in a time-discrete way. They follow a strict
input, compute, output scheme with a fixed time interval. In
the case of the real aerial micro-robots (quadcopters) different
functional blocks have different time intervals. Our reference
copters [8] for example stabilize their attitude approximately
100 times per second, but they only decide about the next
movement command approximately 10 times per second. Con-
sequently, our simulation follows the time-discrete approach
and models the micro-robots to only take decisions in certain
time intervals. Each time interval is a snapshot of the system
on which the next decisions will be taken. To generalize the
simulation we abstracted away the time interval and simply



count the amount of decisions taken, which also yields a
monotonic increasing time measurement. This allows for an
easier comparison with PSO Equations (1) and (2), since the
equations are measured regarding the number of iterations
passed. Therefore we call our time interval count iterations.

C. Energy Computations

In the following we introduce a simplified model of energy
consumption for the individuals which is modeled based on a
real scenario from [8]. The energy of an individual is defined
in units per iteration. In each iteration each individual can
use at most one energy unit. Based on this energy unit several
constants are defined, which represent the energy consumption
of different actions the aerial robot can execute, such as: take
off, hover, control, move and land. Each constant is defined
as a fraction of an energy unit. The resulting constants are
etakeoff , ehover, econtrol, emove and eland.
etakeoff and eland require a relatively fixed amount of

energy and can be calculated by considering the required
energy related to the potential energy:

Epot = m · g · h (3)

where the mass (m), the gravitation (g) and the target height h
are considered to be constant as we let the aerial robots move
at the same height (either the target height while flying or zero
when landed). Therefore, we can conclude that etakeoff =
Epot and eland = −Epot.
econtrol indicates the amount of energy which is required

for computations and communication and can be estimated to
be a constant value per iteration for computation.

The main sources of energy consumption which can be
additionally influenced by the individual itself, are the ehover
and emove. The more time an individual spends in the hovering
state, it will consume more energy. This also holds for the
flight distance and its corresponding energy consumption
denoted by emove.

In order to keep the model as simple as possible, we
have met the following assumptions. In our model, we set
a maximum distance that each individual can move in one
iteration. All robots fly at the same height, have identical
weight and move in constant time steps. To calculate a
simplified movement cost, the flight has an acceleration and
a deceleration phase. With this assumptions the cost for move
depends on the flight distance which is calculated using the
Euclidean distance values. The individuals can recharge their
batteries while in Ground state. The charging rate is defined
in percentage of the energy unit.

D. Energy Aware PSO

Algorithm 1 illustrates the main building blocks of our pro-
posed approach called Energy Aware PSO. In this algorithm,
we consider the flight physics in the PSO computations. The
goal is to define a population of individuals, which search for
an optimal solution in a defined search space. The individuals
have physical constraints in terms of their energy values. In
this algorithm, the individuals can decide about the amount of

their movement in the search space based on both their current
energy level and the performance of the other individuals in
their neighborhood. The algorithm starts with initialization

Algorithm 1: Energy-aware PSO

Input : N Individuals
t = 0
Initialize the individuals
for i = 1 to N do

~xi(t) = StartPosition(S)
~vi(t) = 0
ei(t) = Random(emin, emax)

end
while Stopping Criterion not fulfilled do

for i = 1 to N do
statei(t) = DecideState(~xi(t), ei(t))
if statei(t) == Ground then

charge: ei(t) = ei(t) + c
end
else

~xg(t) = LeaderSelection(statei(t), ei(t))
~vi(t+ 1) = ComputeVelocity (~xi(t), ~xg(t))
~xi(t+ 1) = UpdatePosition(~vi(t), ~xi(t))
ei(t+ 1) = ComputeEnergy(~vi(t+ 1))

end
end
t = t+ 1

end

of the individuals at t = 0 using certain start positions ~xi(t),
initial velocity values ~vi(t) and certain energy level ei(t) for
individual i.

After the initialization, the individuals make a decision
about their functionality and select a state either as Air or
Ground. The function DecideState considers the amount of
the energy ei(t) available to individual i and in case there
is a certain minimum value of emin, the individual takes off.
Otherwise, the individual’s state (statei(t)) remains in Ground
and gets charged. Here we take a simple additive recharging
mechanism with a constant value c.

In the case that the individual takes off, it needs to find the
globally best individual (denoted at the LeaderSelection) to be
able to perform the PSO movement. However, this depends
on the amount of available energy ei(t). The individuals with
enough energy values can perform as in the standard PSO,
while the others with low energy values can only perform
a local search. This decision has a large impact on the
convergence of the approach and will be studied in Section
IV. The next steps after the leader selection mechanism are
straight forward. Each individual computes its velocity vector
and moves accordingly using the PSO equations. In addition to
this, if the calculated velocity is less than a certain minimum
threshold, e.g. if the individual is stuck in a local optima, we
use the so called turbulence factor: those individuals take a
randomly generated velocity vector. Additionally, we assign



a maximal velocity value Vmax as a threshold and in case
the velocity vector is larger than Vmax, it will set to Vmax.
After each movement, the individuals compute their energy
consumption in ComputeEnergy. This process is performed
iteratively until a stopping criterion is fulfilled. We set the
maximum number of iterations (time) as the stopping criterion.

IV. LEADER SELECTION AND MULTI-CRITERIA DECISION
MAKING

Leader selection mechanism (cf. Algorithm 1) contains the
multi-criteria decision making process for each individual in
the population. An individual i must select a leader according
to several factors such as its energy level ei, the amount of
overall work to be done and the status of the other individuals
in the neighborhood. The main steps for selecting the leaders
are shown in Algorithm 2.

Algorithm 2: Leader Selection for individual i

Input : statei(t) and ei(t)
Output : Globally best position ~xg(t)
if statei(t) = Air then

for k = 1 to N-1 do
~xkg(t) = FindBest(k)
Cost(k) := ComputeCost(~xkg(t))
Profit(k) := ComputeProfit(~xkg(t))

end
xg(t) = MCDM(Profit, Cost, ei(t))

end

The individual i goes through the multi-criteria decision
making for leader selection mechanism only when it is in the
Air state. The first step is to find the globally best solutions
for several neighborhood topologies with k = 1, · · · , N − 1
using the k-Nearest-Neighbor. In this case we can have N −1
different possible globally best solutions: x1g(t) to xN−1g (t).
The individual computes (simulates) cf. IV-A its next position
~xi(t+ 1) by considering each of the possible N − 1 globally
best solutions. In order to select one of them, it computes the
cost and profit in terms of energy consumption for each of the
possible next positions. Cost simply captures the amount of
required energy to reach ~xi(t+ 1).

Profit means the difference between the quality of the
current position f(~xi(t)) and the next one f(~xi(t+ 1)). This
value must be approximated as the PSO equations involve
several random values such as φ1 and φ2 and the quality of
the position for t + 1 is not known. Section IV-A describes
the approximation.

The values related to cost and profit are in conflict with each
other; the solutions with high profit can cause a large energy
consumption. In this case, the individual must select one of
the N − 1, xkg(t), k = 1, · · · , N − 1, using concepts from
multi-criteria decision making (denoted as MCDM (profit,
cost, ei(t)) in the Algorithm 2).

In this paper we take the weighted sum approach from
Section II. Each individual i is assigned a weight vector for

the two criteria profit and cost: wi = (ri, 1 − ri), where ri
indicates the amount of risk in terms of energy consumption an
individual would spend to achieve a large profit. For instance,
wi = (1, 0) depicts the preference to select new possible
position which delivers a large amount of profit and requires
a large amount of energy. The values for ri can be selected
using different mechanisms:

1) Randomly: Each of the individuals in the population has
a random preference.

2) Constant: All the individuals have the same value such
as (0.5, 0.5), (1, 0) and (0, 1).

3) Adaptive: The individuals select their preferences based
on the amount of available energy.

After setting the preferences for the individuals, each individ-
ual ranks each of the possible N − 1 new positions at t + 1
according to its weight vector as follows:

Rank(k) = ri · profit(k) + (1− ri) · cost(k)

Where k = 1, · · · , N − 1. The position with the lowest rank
will be selected as the ~xg(t) by the the individual.

The above multi-criteria decision making approach for each
single individual implicitly implies that the individuals with
low values of risk (e.g., ri = 0) will perform small movements
in the search space and hence a local search. On the other
hand the individuals with ri = 1 select the leaders which are
far away from them and require a large amount of energy.
Considering the amount of profit in the decision making
process implicitly involve the status of the other individuals in
the neighborhood. If all of the individuals in a neighborhood
have more or less the same function value, the amount of profit
will degrade.

A. Profit approximation

In this section we describe the approximation of the profit
by the individuals. As described in the last section, each
individual simulates the next N − 1 possible steps in order
to make a decision. The output of this process is a set of
parameters. This set contains the next state of the individual,
the action performed by the individual, the cost for moving, the
velocity vector and the profit of the movement. Since we deal
with an unknown environment, the function value of a none
visited position is not known. Therefore, the function value
of the possible next positions must be approximated. Here,
we use the information given by the neighborhood around
each individual who is able to access the previous visited
points and corresponding function values of all individuals in
its neighborhood. With this information the individual is able
to approximate the unknown landscape and can calculate the
function value of the simulated goal. For the approximation,
we use ordinary least-squares regression to fit a quadratic
model with constant, linear, interaction, and squared terms. In
order to save memory and improve the approximation, each
individual collects points with distance greater than a certain
threshold (here 0.1) in the neighborhood.



V. EXPERIMENTS

The main idea of this paper is motivated by a real case
scenario of an aerial micro-robotic swarm. The proposed
model and the corresponding features are meant to provide
an algorithmic design for the energy consumption and search
of the aerial swarm. Therefore the goal of the experiments is to
provide a baseline for further realistic tests. The parameters are
selected based on a model of the FINken-III micro aerial robot
[8] as follows: etakeoff = 10 , ehover = 28, econtrol = 20,
emove = 22 and eland = −10.

The flight of the aerial robots are modeled in a n = 2
dimensional search space. The goal is to analyze if a swarm
with limited energy can find an optimal solution in the search
space. We take the standard PSO [3] as the baseline algorithm
and denote it as default PSO. As the search space only contains
two parameters, the default PSO is easily able to solve the
problem. We take C1 = C2 = 1, w = 0.5 and population size
of 30.

Three test problems such as Sphere, Ackley and Rosenbrock
from the literature are being used for the experiments. These
test problems can very well simulate the terrain in which
aerial swarms can fly and search, while Sphere is only for
simple tests, Ackely and Rosenbrock respectively capture
search terrains with lots of local optima and a flat plateau. The
main focus of our experiments is on the different multi-criteria
decision making approaches and the total energy consumption.
All the experiments are run for 30 times and the median values
and the corresponding standard errors are reported.

The experimental area (arena) is defined as x1, x2 ∈
[−10, 10]. All individuals start in a defined area with x1 ∈
[−10, 10] and x2 ∈ [−10,−8] at a random position (this is
a realistic assumption for aerial robotic systems). the initial
state is set to be the Ground state. The initial velocity is set
to v0 = 0. The optimization stops after 500 iterations.

In all the experiments the best function values (denoted as
fitness), the total amount of movement in the swarm (denoted
as distance) and the total amount of available energy in the
swarm (denoted as energy) are measured. The total amount
of movement is meant to capture the amount of energy
consumption, while the total amount of energy can be used
to estimate the charging behavior and its frequency during
the 500 iterations. In the experiments, we compare default
PSO with EAPSO with different values for ri as 1.0, 0.5
and 0.0. Additionally, we perform a random leader selection
mechanism as a baseline for a random decision making and the
adaptive variant denoted as adaptive in which the individuals
select a leader according to their available energy level ei(t).

A. Results

Table I shows the results after 500 iterations. In all of the
experiments the ri = 0 delivers the worst fitness value as
expected. In this case, the individuals always select the closest
better individual as their global best and therefore they save
lots of energy and distance. Considering the Sphere function,
we observe that all of the other EAPSO variants can find the
optimal solution where the particles in default PSO move the

TABLE I
RESULTS FOR THE THREE TEST PROBLEMS (MEDIAN VALUES AND

STANDARD ERRORS (STD)). ”FITNESS” REFERS TO THE BEST FUNCTION
VALUE OBTAINED BY THE SWARM, ”ENERGY” AND ”DISTANCE” INDICATE

THE TOTAL AMOUNT OF ENERGY AND THE DISTANCE MOVED BY THE
SWARM

risk ri fitness ± std energy ± std distance ± std
Sphere

default 0.000 0.000 4924.679 11.950 2274.928 38.020
0.00 5.598 0.485 4375.483 1.499 415.959 5.337
0.50 0.000 0.000 4430.815 1.157 729.013 2.684
1.00 0.000 0.000 4449.644 1.203 799.311 3.406

random 0.000 0.000 4425.916 2.541 684.370 8.266
adaptive 0.000 0.000 4404.301 1.315 568.176 6.851

Ackeley
default 0.001 0.120 4942.563 4.235 2317.692 13.242

0.00 11.61 0.162 4505.048 3.383 935.639 9.089
0.50 0.000 0.554 4531.115 8.800 1008.798 22.184
1.00 0.001 0.171 4993.991 6.649 2491.168 25.109

random 0.001 0.203 4773.944 12.115 1766.415 37.688
adaptive 0.002 0.852 4449.128 5.755 775.828 19.086

Rosenbrock
default 0.000 0.000 4929.129 9.580 2291.180 31.136

0.00 1095 76.57 4391.300 2.108 491.280 8.549
0.50 1.483 68.10 4432.276 7.299 714.238 28.774
1.00 0.102 0.296 4899.941 17.155 2179.118 58.146

random 0.018 0.174 4549.582 12.328 1029.446 41.034
adaptive 0.067 0.014 4387.826 0.774 433.425 2.552

largest distance and consume more energy than the others.
Among the EAPSO approaches, the adaptive method saves
the most amount of energy, while ri = 1.0 has the highest
energy consumption. Considering the Ackeley function with
lots of local optima, the default PSO obtains the best result
in term of the fitness value (and the corresponding std. error
values). The adaptive variant is not as good as the other
variants, nevertheless its distance and the energy values are
the best among the others. The same results can be observed
in Rosenbrock function with a large flat plateau. Due to the
small amount of profit which can be obtained in a local
neighborhood, the individuals reduce the amount of movement
and save energy while not making the effort of moving. This
leads to a degradation in the function value. In order to better
analyze the results, we investigate the convergence plots, the
energy and distance measures over the iterations. Figures 2 to
4 illustrate the fitness, distance and energy values over 500
iterations. For better analysis and comparison of the of the
results we only show the results of default PSO and adaptive.
As expected the standard PSO is able to converge much faster
than the EAPSO variants for all the three test problems.

The results get very interesting once we look at the distance
plots i.e., the total amount of movement by the swarm, as
shown in Figure 3. We observe that the movement of the
individuals in default PSO never stops, even if the PSO has
already obtained the optimal solution. In contrast to this, in
the adaptive EAPSO the individuals reduce their movements
(and therefore the energy consumption) to a large extent. Both



Fig. 2. Convergence plots (Average of the best function value over iterations)

of the approaches have a cyclic behavior in the distances due
to the recharging effect in the model. Since the individuals all
start with a certain high battery level, many of them require a
recharging at the same time steps.

Figure 4 illustrates the total amount of available energy
in the entire swarm. We observe that both of the methods
have a cyclic energy level. Starting with a large amount of
energy, the individuals get synchronized over the iterations,
i.e., they all recharge at the same time steps (at the lower

Fig. 3. Average movement of the entire swarm over iterations

peaks). This effect is more visible in EAPSO than the default
PSO. This interesting side effect can be explained by the fact
that in the adaptive EAPSO the individuals only move if the
trade-off between profit and cost is large enough. In case
of Ackley function the synchronized behavior is less visible
than the other two test problems as the individuals can be
trapped in several local optima and build clusters with different
properties. By careful observations, we can conclude that the



Fig. 4. Average total amount of energy in the swarm over iterations.

EAPSO individuals require less re-charging cycles than the
individuals in default PSO.

VI. CONCLUSION AND FUTURE WORK

In this paper we presented EAPSO (Energy Aware PSO)
method as a search mechanism for swarm of aerial micro-
robots. The paper is the first attempt which contains several
assumptions. Nevertheless we have captured several important
features from a real hardware scenario. In particular we
have addressed the energy consumption and the discrete time
flight (from PSO) in the search mechanism. The proposed

model is built upon the default PSO with an additional multi-
criteria decision making aspect for the individuals which
make a decision before starting a movement. The decision
is made based on two objectives, profit in terms of the
overall gain in search process and cost in terms of the energy
consumption. We have used weighted sum approach and an
adaptive version for the decision making. The experiments on
three test problems show that PSO can be used as a search
mechanism for swarm of aerial microrobots and integrating the
decision making process in the optimization can extensively
reduce the energy consumption, while the quality of search
will be influenced. This work has opened a large number of
research questions for future work. The next step is to work
on the assumptions and implement the search mechanism on
Hardware platform (FINken-III). Addressing several tasks in
the swarm, adaptation of the parameters and analyzing the
fitness landscapes are among the next steps.
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