
Dendrite Morphological Neural Networks Trained
by Differential Evolution

Fernando Arce1, Erik Zamora2, Humberto Sossa1, Ricardo Barrón1
Instituto Politécnico Nacional

CIC1, UPIITA2

Av. Luis Enrique Erro S/N, Unidad Profesional Adolfo López Mateos, C.P. 07738
Mexico City

Emails: b150689@sagitario.cic.ipn.mx, ezamorag@ipn.mx, hsossa@cic.ipn.mx, rbarron@cic.ipn.mx

Abstract—A new efficient training algorithm for a Dendrite
Morphological Neural Network is proposed. Based on Differential
Evolution, the method optimizes the number of dendrites and
increases classification performance. This technique has two
initialisation ways of learning parameters. The first selects all the
patterns and opens a hyper-box per class with a length such that
all the patterns of each class remain inside. The second generates
clusters for each class by k-means++. After the initialisation,
the algorithm divides each hyper-box and applies Differential
Evolution to the resultant hyper-boxes to place them in the best
position and the best size. Finally, the method selects the set of
hyper-boxes that produced the least error from the least number.
The new training method was tested with three synthetic and
six real databases showing superiority over the state-of-the-art
for Dendrite Morphological Neural Network training algorithms
and a similar performance as well as a Multilayer Perceptron, a
Support Vector Machine and a Radial Basis Network.

I. INTRODUCTION

Linear perceptrons divide the input space into several re-
gions, using hyper-planes as decision boundaries. In a case
where more linear layers are connected, perceptrons divide
the input space by a hyper-surface. In contrast, Morphological
Neural Networks (MNN) divide the same space by several
piecewise lines that together can create complex decision
boundaries, allowing non-linear classification with only one
neuron. This is not viable with a one-layer linear percep-
tron. The morphological processing involves min and max
operations. These operators generate the piecewise boundaries
for classification problems, and have the advantage of being
implemented easily in logic devices.

This paper focuses on a specific type of Morphological
Network which is called a Dendrite Morphological Neural
Network (DMNN). A neuron has dendrites, and each rep-
resents a hyper-box in high dimensional space (and a box
in 2D). These dendrites have played an important role in
the proposal of training methods. The common approach is
to enclose patterns with hyper-boxes and label each to the
correct class. There are many training methods that have been
published based on this approach. Most are heuristics and are
not based on the optimization of learning parameters. In this
paper, we show that a parameter optimization can be computed
and can improve the classification performance of DMNN over
heuristic-based and other popular machine learning methods.

Differential Evolution is distinguished as a powerful opti-
mization technique [1], [2], [3]. This method is especially use-
ful for problems with cost functions that are non-differentiable,
non-continuous, non-linear, multi-dimensional or have many
local minima. The main advantage is that the method does
not require calculating analytic expressions such as gradients.
Futhermore, the method is robust to find the global opti-
mization in comparison with gradient-based methods. In this
paper, we adapt the Differential Evolution to find the number
of dendrites and their dendrite parameters for classification
problems. This is useful because a DMNN has a cost function
that is non-continuous due to the argmax operator at the neuron
output.

The contributions of this paper are: 1) to the best of our
knowledge, a DMNN is trained by an evolutionary algorithm
for the first time; 2) our proposal outperforms the most
effective heuristic-based and other popular machine learning
methods; 3) the code for our approach is available at [4].

The following sections are organized as follows. Section 2
provides the previous work of MNN. Section 3 introduces the
DMNN computational basis. Section 4 presents the proposed
algorithm. Section 5 discusses the experimental results to
assess the effectiveness of our proposal. Finally, in Section
6 we give our conclusions and proposed future work.

II. PREVIOUS WORK

Morphological neurons were proposed by Davidson and
Ritter in their seminal paper [5]; their computing capabilities
were studied by Ritter and Sussner [6], [7]. Taking into ac-
count that information processing occurs also in dendrites, not
only in cell body of neurons [8], the dendrite morphological
neurons were proposed as an extension in [9]. A key issue is
their training; we need to determine automatically the number
of dendrites and the dendrite weight values. Several training
approaches have been proposed [9], [10], [11], [12], [13], [14],
[15], [16], [17]. And some real problems have been solved by
using MNN [18] [19] [20] [21] [22].

Most of these methods use heuristics to determine the
location of the hyper-boxes in the input space. In contrast,
we propose making a search of those that were best classified
based on an evolutionary approach. This is not the first
time that parameters optimization has been proposed in the



context of morphological neurons. Araujo [23] and Pessao et
al. [24] investigated gradient-based optimization for certain
architectures of morphological neurons.

The main advantage of optimization based on evolution is
that we can do without analytically evaluating expressions,
e.g. gradients, and also deal with discontinuities of the cost
function.

III. COMPUTATIONAL BASIS FOR DENDRITE DMNN

MNN base their computations on Lattice algebra. More
detailed information can be found in [25], [26].

For this research paper, we used a total connected DMNN
with a single output neuron. The computation performed τ jk
by kth dendrite for the jth class can be expressed by (1):

τ jk = ∧ni=1(xi + w1
ik) ∧ −(xi + w0

ik), (1)

where xi is an input vector and n is the vector dimensionality,
i ∈ I and I ∈ {1,...,n} represents the set of all input neurons
with terminal fibers that synapse on the kth dendrite. w0

ik

and w1
ik are the synaptic weights that correspond to the set

of terminal fibers of the ith neuron that synapse on the kth
dendrite; w1

ik is the activation terminal fiber and w0
ik is the

inhibition terminal fiber.
On the other hand, the output value of a DMNN with a

single output neuron τj is the maximum argument calculated
with (2):

τj = argmaxk(τ
j
k), (2)

where the argmaxk function selects only one dendrite from
all dendrites of the network, τ jk vector.

Fig. 1 shows the architecture of a DMNN with a single
output neuron and an example of a hyper-box generated by its
dendrite weights in 2D.

IV. THE PROPOSED TRAINING ALGORITHM

This section is dedicated to explain the new training algo-
rithm steps. Before presentation, two definitions are provided:

Definition 1. Let x1, x2, . . . , xm be a finite set of sample
patterns, where each pattern xi = (xi1, xi2, . . . , xin) ∈ Rn for
i = 1, 2, . . . ,m is a n-dimensional vector. Furthermore, each
pattern xi belongs to only one Cj class, for j = 1, 2, . . . , p,
where p > 1 is a finite number.

Definition 2. A hyper-box HBn is a n dimensional box that
contains a finite set of patterns x ∈ Rn. This HBn defines
the weights wl

i, l = {0, 1} where 1 denotes excitation and 0
inhibition.

Equation (3) defines a hyper-box:

HBn
k = {x ∈ Rn : w1

ik ≤ xi ≤ w0
ik, i = 1, . . . , n}, (3)

so the purpose of our training algorithm is to create and place a
set of hyper-boxes HBn

k ∈ Rk×2n for k ∈ {1, 2, . . . ,K} that
establish an optimum decision boundary between the classes
with the least number.

Algorithm 1 Pseudo-Code of DE Applied to DMNN.
Begin
Generate initial population of solutions.
for d = 1 to q

Repeat:
For the entire population, calculate the fitness value.
For each parent, select two solutions at random and the

best parent.
Create one offspring using DE operators.
If the offspring is better than parents:

Parent is replaced by the offspring.
Until a stop condition is satisfied.

End

A. Training Algorithm

This sub-section provides the steps of the proposed algo-
rithm which has two initialisation methods for the hyper-
boxes.

• HBd initialisation:
1) For each Cj class, select all the patterns and open a

hyper-box per class, with a length such that all the
patterns of each class remain inside. Sussner and
Laureano [14] proposed a similar algorithm which
keeps dividing them in order to avoid overlapping.
The suggested algorithm does not care about the
hyper-boxes overlapping.

2) Divide each hyper-box into smaller hyper-boxes
along the first axis on equal terms by a factor d,
for d ∈ Z+ until q divisions.

• K-means++ initialisation:
1) Generates Nq clusters for each Cj class by using

the clustering algorithm k-means++ [27]. These
clusters are transformed to hyper-boxes.

• Apply DE as [28] to the actual hyper-boxes.
• Select the best set of hyper-boxes that produced the least

error. Algorithm 1 shows the pseudo-code of DE applied
to a DMNN.

a) Initialization: The set of hyper-boxes conforms a k × n
matrix called ListH . Each row from ListH has the corners
of a hyper-box and represents a chromosome. The initial
population of parents is formed by multiplying t random
vectors F per ListH , where t is the population size. The
multiplication of one vector F per ListH conforms a parent
of the total population and each multiplication changes the
original size and position of each hyper-box. In this case, DE
has preliminary knowledge about the solution space.

b) Fitness function: Based on the corners of the generated
hyper-boxes that enclose the patterns for the Cj classes,
minimize the classification error which is calculated by (4)
dividing the g number of misclassified patterns by the total
number of the m patterns:

%error =
g

m
× 100, (4)



⋮
⋮

𝜏𝐾
𝑗

𝜏2
𝑗

𝜏1
𝑗

𝑥1

𝑥2

𝑥𝑛

argmax𝑘 𝜏𝑗

𝐰𝑖,𝑘
0

𝐰𝑖,𝑘
1

𝜏𝑘
𝑗
(𝐱) > 0

𝜏𝑘
𝑗
(𝐱) = 0

𝜏𝑘
𝑗
(𝐱) < 0

Fig. 1. Typical DMNN. Left: architecture of a DMNN with a single output neuron. Right: an example of a hyper-box in 2D generated by its dendrite weights.

c) Mutation: Select a parent, from each ten parents, and
permute 30% of the k rows with the purpose of changing the
class order.

d) Crossover: We do not report crossover due to obtaining
similar results with and without it in the experimental section.

e) Offspring creation using DE operators: Create the off-
spring with the actual parents using a DE operator (5):

ListHt = ListHa + F × (ListHb − ListHc), (5)

where a, b and c must be distinct. ListHt is the offspring, F
is a random vector, ListHb and ListHc are randomly chosen
parents and ListHa is the best member of the population.

f) Stop condition: DE stops if satisfying the error criteria or
the q number of iterations.

B. Example of the Proposed Training Algorithm

One of the most important problems in the DMNN training
algorithms is the election of the dendrite number and the
optimization of the synaptic weights for each dendrite.

In order to explain this training algorithm, a straightforward
example of three classes with two features is utilized, with
the HBd initialisation method. Fig. 2 presents the problem to
solve, blue dots belong to C1, green dots belong to C2 and
red dots to C3.

1) Select all the patterns of each class and open a hyper-
box per class. Fig. 3 shows the hyper-boxes that covers all the
patterns.

2) Divide each hyper-box by a factor d and apply DE to the
resultant hyper-boxes in order to set them in the best position
with the best size. Fig. 4 exhibits the divisions of each hyper-
box generated in step 2 when d = 1, d = 2 and d = 3. When
d is equal to 1 there is no division.

3) Select the best set of hyper-boxes. Fig. 5 displays the best
generated after applying the training algorithm, with d = 3.

V. EXPERIMENTAL RESULTS

Validation experimental results are presented in this section.
The experiments were performed with three synthetic datasets
and with six real datasets from the UCI Machine Learning

0 2 4 6 8
X1

1

2

3

4

5

6

7

X
2

class 1
class 2
class 3

Fig. 2. Simple example of three classes with two attributes. Points of C1 are
shown as blue dots, points of C2 as green dots and points of C3 as red dots.

0 2 4 6 8
X1

1

2

3

4

5

6

7

X
2

Fig. 3. Step 1. Enclosed patterns of each Cj class with a hyper-box per class.
Blue HB1 encloses all the patterns from C1, green HB2 encloses all the
patterns from C2 and the red HB3 encloses all the patterns from C3.



0 2 4 6 8
X1

1

2

3

4

5

6

7
X

2

0 2 4 6 8
X1

1

2

3

4

5

6

7

X
2

0 2 4 6 8
X1

1

2

3

4

5

6

7

X
2

Fig. 4. Step 2. Divided each hyper-box by a factor d and apply DE to the resultant hyper-boxes. Left: when d is equal to 1, there is three hyper-boxes.
Middle: when d is equal to 2, there is six hyper-boxes. Right: when d is equal to 3, there is nine hyper-boxes.

0 2 4 6 8 10
X1

1

2

3

4

5

6

7

X
2

DE training algorithm for DMNN

Fig. 5. Step 3. Selection of the best set of hyper-boxes generated by the
training algorithm.

Repository [29]. On the basis of these results, this new train-
ing algorithm demonstrates a superior learning performance
over the state-of-the-art for DMNN training algorithms and a
considerable reduction of the dendrite number. Moreover, our
training achieves similar performances to the most common
classifers.

For the DE algorithm, and for all the datasets, the population
size was set to 10 individuals with 50 generations (these
parameters were chosen based on preliminary experiments).

A. Experimental Results Using Synthetic Data

In order to test the proposed training algorithm, it was
first applied to two synthetic datasets with a high percent
of overlapping where the overfitting problem can be more
appreciable. It was compared with the algorithms SLMP-P
[17] and SLMP-R [25] but mainly with the SLMP-P because
it actually represents the state-of-the-art for DMNN training
algorithms.

The first synthetic dataset was “A”, composed of two classes
and two features, generated by two Gaussian distributions with
a standard deviation equal to 0.9. The first class was centered

2 1 0 1 2 3
X1

3

2

1

0

1

2

3

4

X
2

A

class 1
class 2

Fig. 6. Dataset “A” composed of two classes and two features, generated by
two Gaussian distributions with a standard deviation equal to 0.9.

around the point (0,0) and the second class around the point
(1,1). Fig. 6 shows the dataset “A”.

Fig. 7 presents the generation and placement of the hyper-
boxes to solve the classification problem “A” with the DE for
DMNN and SLMP-P training algorithms.

“B” was the second synthetic dataset and was formed by
three Gaussian distributions with a standard deviation equal to
1.0. The classes were placed around the points (-1,-1), (1,1)
and (-1,2). Fig. 8 exhibits the dataset “B”.

Fig. 9 shows the generations and the placement of the hyper-
boxes to solve the classification problem “B” with the DE for
DMNN and SLMP-P training algorithms.

The third synthetic dataset was “Spiral 2” which is a double
spiral with two laps. Fig. 10 displays “Spiral 2” solved by the
proposed algorithm; this dataset was the only one which used
the K-means++ initialisation.

In these three synthetic datasets, 20% of data was used for
testing and 80% for training. Table I presents the classification
errors and the number of dendrites obtained with the new
training algorithm and with the actual best DMNN training
algorithms (the SLMP-P and SLMP-R algorithms). The reduc-



2 1 0 1 2 3
X1

3

2

1

0

1

2

3

4

X
2

DE training algorithm for DMNN

3 2 1 0 1 2 3 4
X1

3

2

1

0

1

2

3

4

5

X
2

SLMP-P training algorithm

Fig. 7. Hyper-boxes generated by the DE for DMNN and SLMP-P training algorithms for problem “A”. Left: 2 hyper-boxes generated with DE training
algorithm for DMNN. Right: 419 hyper-boxes generated with SLMP-P training algorithm.

4 2 0 2 4
X1

4

2

0

2

4

6

X
2

B

class 1
class 2
class 3

Fig. 8. Dataset “B” composed of three classes and two features, generated
by three Gaussian distributions with a standard deviation equal to 1.0.

tion of the number of dendrites can be appreciated, and the
classification error improvement obtained with the proposed
algorithm.

B. Experimental Results Using Real Data

In this sub-section, the DE for DMNN was applied to real
data (with p classes and n features) from the UCI Machine
Learning Repository [29].

For the three synthetic and for the real datasets, the proposed
algorithm was compared with the most common algorithms for
classification: MLP [30], SVM [31] and RBN [32]. These final
algorithms were applied using the software WEKA 3.6 and 3.8
[33] and the DMNN training algorithms were programed in
Python 2.7.

In all the datasets, duplicated patterns were removed and
the data was normalized; and all the classifiers were tuned-up.
Table II shows the hyper-parameters used; where hL is the

number of hidden layers, nu is the number of nerons in the
hidden layers, LR is the learning rate, mo is the momentum,
PD is the polynomial degree and nC is the number of clusters.

The well-known Iris dataset was the first considered prob-
lem which has 4 features (the length and the width of the
sepal petals in centimeters), 3 classes (Iris setosa, Iris virginica
and Iris versicolor) and 50 samples per class. For this dataset,
the data was divided into 25% for testing and the rest for
training. The others five datasets were Mammographic Mass,
Liver Disorders, Glass Identification, Wine Quality and Mice
Protein Expression.

The Mammographic Mass dataset has 5 attributes (BI-
RADS assessment, age, shape, margin and density) and 2
classes (benign and malignant); 20% testing, and 80% training.
The third dataset was Liver Disorders which has 2 classes and
6 features. In this dataset, 15% of the data was used for testing
and the rest for training.

Dataset Glass Identification has 10 features and 6 classes,
25% testing, and 75% training. The final two datasets were
Wine Quality and Mice Protein Expression. Wine Quality
consists of 11 features and 6 classes (25% testing, and 75%
training) and for Mice Protein Expression 77 features and 8
classes were taken (20% testing and the rest for training).

Table III presents the results with DMNN training algo-
rithms for the six UCI datasets. In all cases, the proposed
algorithm achieves the smallest classification error and the
number of dendrites is much less than the others. This allows
us to implement this classifier in embedded devices to obtain
real time responses.

Analyzing the results of the actual best training algorithm
for DMNN (the SLMP-P [17]) with the proposed algorithm,
it can be appreciated that the SLMP-P has the problem of
overfitting. This is because the SLMP-P fits very well in the
training set but fails to generalize in the testing set due to this
technique being a heuristic and not an optimization method.
For this reason, DE for DMNN overcomes the SLMP-P.

Table IV makes a comparison between the DE for DMNN



4 2 0 2 4
X1

4

2

0

2

4

6

X
2

DE training algorithm for DMNN

6 4 2 0 2 4 6 8
X1

8

6

4

2

0

2

4

6

8

X
2

SLMP-P training algorithm

Fig. 9. Hyper-boxes generated by the DE for DMNN and SLMP-P training algorithms for problem “B”. Left: 3 hyper-boxes generated with DE training
algorithm for DMNN. Right: 505 hyper-boxes generated with SLMP-P training algorithm.

TABLE I
COMPARISON TABLE OF THE SLMP-R, SLMP-P AND DE FOR DMNN TRAINING ALGORITHMS FOR THE THREE SYNTHETIC DATASETS.

SLMP-R SLMP-P DE for DMNN

Dataset #Dendrites Etest #Dendrites Etrain Etest #Dendrites Etrain Etest

A 194 28.0 419 0.0 25.0 2 21.7 20.5
B 161 50.3 505 0.0 20.3 3 16.6 15.2
Spiral 2 160 8.6 356 0.0 7.2 60 7.3 6.4

15 10 5 0 5 10 15
X1

15

10

5

0

5

10

15

X
2

DE training algorithm for DMNN

Fig. 10. “Spiral 2”. Spiral of two laps solved by DE for DMNN with 60
hyper-boxes.

and the rest of the classifiers and shows that the DE training
algorithm for DMNN not always achieved the least classifica-
tion error, but was one of the best classifiers with the actual
datasets.

In order to compare statistically the performance of the
proposed algorithm with the previously mentioned classifiers
(with a significance level α = 0.05), Table V exhibits the
obtained p-values in a paired t-test with the other methods.

TABLE II
HYPER-PARAMETERS USED FOR THE MLP, FOR THE SVM AND FOR THE

RBN.

MLP SVM RBN
Dataset hL nu LR mo PD nC
A 1 2 0.3 0.2 3 3
B 1 10 0.3 0.2 2 4
Spiral 2 1 22 0.3 0.7 3 6
Iris 1 5 0.3 0.2 1 2
Mammographic Mass 1 3 0.4 0.2 2 6
Liver Disorders 1 25 0.7 0.2 5 1
Glass Identification 2 2 0.2 0.1 1 4
Wine Quality 1 8 0.3 0.1 2 2
Mice Protein Expression 1 10 0.1 0.2 2 1

Based on these results, we can say that the DE for DMNN
has a similar performance to the MLP, the SVM and the RBN,
for the used datasets.

Finally, Table VI displays the results of applying 10-fold
cross-validation to the nine datasets with DE for DMNN;
where best is the best result, mean is the mean and std is the
standard deviation of the folds for each dataset. DE for DMNN
has a small standard deviation for most of the datasets (except
for Mammographic, Liver Disorders and Glass Identification)
which shows the method robustness.

VI. CONCLUSIONS AND FUTURE WORK

The research presented in this paper is an efficient and
novel training algorithm for DMNN. Comparisons of the be-
sought algorithm with the state-of-the-art for DMNN training
algorithms demonstrated that DE for DMNN achieved the



TABLE III
COMPARISON TABLE OF THE SLMP-R, SLMP-P AND DE FOR DMNN TRAINING ALGORITHMS FOR THE SIX UCI DATASETS.

SLMP-R SLMP-P DE for DMNN
Dataset #Dendrites Etest #Dendrites Etrain Etest #Dendrites Etrain Etest

Iris 5 6.7 28 0.0 3.3 3 3.3 0.0
Mammographic Mass 51 14.4 26 0.0 19.2 8 15.8 10.4
Liver Disorders 41 42.0 183 0.0 35.5 12 37.6 31.1
Glass Identification 60 36.7 82 0.0 31.8 12 4.7 13.6
Wine Quality 120 51.0 841 0.0 42.1 60 42.1 40.0
Mice Protein Expression 77 18.9 809 0.0 5.0 32 6.6 4.5

TABLE IV
COMPARISON TABLE OF THE MLP, SVM, RBN AND DE FOR DMNN FOR ALL THE DATASETS.

MLP SVM RBN DE for DMNN
Dataset Etrain Etest Etrain Etest Etrain Etest Etrain Etest

A 20.7 24.0 20.8 22.0 21.8 23.5 21.7 20.5
B 15.5 16.7 15.7 16.7 15.5 17.0 16.6 15.2
Spiral 2 6.6 7.4 45.1 44.4 47.4 45.2 7.3 6.4
Iris 1.7 0.0 4.2 0.0 4.2 0.0 3.3 0.0
Mammographic Mass 15.7 11.2 18.4 11.2 17.9 16.0 15.8 10.4
Liver Disorders 40.3 40.6 40.0 40.2 29.0 37.8 37.6 31.1
Glass Identification 14.1 20.4 12.3 18.2 0.0 20.4 4.7 13.6
Wine Quality 34.3 39.0 40.6 43.0 41.5 44.3 42.1 40.0
Mice Protein Expression 0.0 0.6 0.1 0.5 11.4 13.9 6.6 4.5

TABLE V
P-VALUES OF A PAIRED T-TEST TO COMPARE THE PERFORMANCE OF THE

PROPOSED ALGORITHM WITH THE MLP, THE SVM AND THE RBN.

Classifiers p-values
MLP 0.1713
SVM 0.1842
RBN 0.0618

TABLE VI
RESULTS OF APPLYING 10-FOLD CROSS-VALIDATION TO THE NINE

DATASETS WITH DE FOR DMNN.

Dataset best mean std
A 15.8 19.2 2.0
B 12.8 15.6 2.3
Spiral 2 3.6 7.7 2.5
Iris 0.0 1.3 2.7
Mammographic Mass 0.0 3.0 6.2
Liver Disorders 8.8 27.5 9.9
Glass Identification 0.0 6.4 6.5
Wine Quality 42.3 44.8 1.5
Mice Protein Expression 2.8 5.4 1.1

smallest classification error and the number of dendrites was
much less than the other DMNN training algorithms for all
the used datasets. Additionally, the DE for DMNN showed a
competitive performance compared with the MLP, the SVM
and the RBN classifiers especially in the datasets with low
dimensionality.

Experimental results demonstrated that the proposed train-
ing algorithm helped to resolve real problems. Nevertheless,
for a same classification problem, the algorithm not always
achieved the same solution, and for datasets with big dimen-
sionality the algorithm was time consuming. For this reason,
future work will be the implementation of the algorithm on a
Graphic Processing Unit (GPU) focusing on applications that

require real time responses such as object classification and
segmentation.

ACKNOWLEDGMENT

E. Zamora and H. Sossa would like to acknowledge the sup-
port provided by UPIITA-IPN and CIC-IPN to carry out this
research. This work was economically supported by SIP-IPN
(grants numbers 20160945 and 20161116), and CONACYT
[grant number 155014 (Basic Research) and grant number 65
(Frontiers of Science)]. F. Arce acknowledges CONACYT for
the scholarship granted to pursue his Ph.D. studies.

REFERENCES

[1] R. Storn and K. Price, “Differential evolution – a simple and efficient
heuristic for global optimization over continuous spaces,” Journal of
Global Optimization, vol. 11, no. 4, pp. 341–359, 1997. [Online].
Available: http://dx.doi.org/10.1023/A:1008202821328

[2] K. V. Price, R. M. Storn, and J. A. Lampinen, Differential Evolution -
A Practical Approach to Global Optimization, ser. Natural Computing.
Springer-Verlag, January 2005, iSBN 540209506.

[3] V. Feoktistov, Differential Evolution: In Search of Solutions (Springer
Optimization and Its Applications). Secaucus, NJ, USA: Springer-
Verlag New York, Inc., 2006.

[4] F. Arce, “Dendrite morphological neural networks trained by differential
evolution - code,” https://github.com/FernandoArce/, 2016.

[5] J. L. Davidson and G. X. Ritter, “Theory of morphological
neural networks,” pp. 378–388, 1990. [Online]. Available:
http://dx.doi.org/10.1117/12.18085

[6] G. X. Ritter and P. Sussner, “An introduction to morphological neural
networks,” in Pattern Recognition, 1996., Proceedings of the 13th
International Conference on, vol. 4, Aug 1996, pp. 709–717 vol.4.

[7] P. Sussner, “Morphological perceptron learning,” in Intelligent Control
(ISIC), 1998. Held jointly with IEEE International Symposium on Com-
putational Intelligence in Robotics and Automation (CIRA), Intelligent
Systems and Semiotics (ISAS), Proceedings, Sep 1998, pp. 477–482.

[8] I. Segev, “The handbook of brain theory and neural networks,” M. A.
Arbib, Ed. Cambridge, MA, USA: MIT Press, 1998, ch. Dendritic
Processing, pp. 282–289.

[9] G. X. Ritter and G. Urcid, “Lattice algebra approach to single-neuron
computation,” IEEE Transactions on Neural Networks, vol. 14, no. 2,
pp. 282–295, Mar 2003.



[10] A. Barmpoutis and G. X. Ritter, “Orthonormal basis lattice neural
networks,” in Fuzzy Systems, 2006 IEEE International Conference on,
2006, pp. 331–336.

[11] R. Barrón, H. Sossa, and H. Cortés, Morphological neural networks with
dendrite computation: A geometrical approach. LNCS 2905, Springer-
Verlag, 2003, pp. 588–595.

[12] G. X. Ritter and G. Urcid, Computational Intelligence Based on Lattice
Theory. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007, ch.
Learning in Lattice Neural Networks that Employ Dendritic Computing,
pp. 25–44.

[13] D. Chyzhyk and M. Graña, Optimal Hyperbox Shrinking in Dendritic
Computing Applied to Alzheimer’s Disease Detection in MRI. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2011, pp. 543–550.

[14] P. Sussner and E. L. Esmi, “Morphological perceptrons with
competitive learning: Lattice-theoretical framework and constructive
learning algorithm,” Information Sciences, vol. 181, no. 10,
pp. 1929 – 1950, 2011, special Issue on Information
Engineering Applications Based on Lattices. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0020025510001283

[15] H. Sossa and E. Guevara, Modified Dendrite Morphological Neural
Network Applied to 3D Object Recognition. LNCS 7914, Springer-
Verlag, 2013, pp. 314–324.

[16] G. X. Ritter, G. Urcid, and V. N. Juan-Carlos, “Two lattice metrics
dendritic computing for pattern recognition,” in Fuzzy Systems (FUZZ-
IEEE), 2014 IEEE International Conference on, July 2014, pp. 45–52.

[17] H. Sossa and E. Guevara, “Efficient training for
dendrite morphological neural networks,” Neurocomputing,
vol. 131, pp. 132 – 142, 2014. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0925231213010916

[18] ——, Modified Dendrite Morphological Neural Network Applied to 3D
Object Recognition on RGB-D Data. LNAI 8073, Springer-Verlag,
2013, pp. 304–313.

[19] R. Vega, E. Guevara, L. E. Falcon, G. Sanchez-Ante, and H. Sossa, Blood
Vessel Segmentation in Retinal Images Using Lattice Neural Networks.
LNAI 8265, Springer-Verlag, 2013, pp. 529–540.

[20] L. Ojeda, R. Vega, L. E. Falcon, G. Sanchez-Ante, H. Sossa, and
J. M. Antelis, Classification of hand movements from non-invasive brain
signals using lattice neural networks with dendritic processing. LNCS
9116, Springer-Verlag, 2015, pp. 23–32.

[21] B. Gudiño, H. Sossa, G. Sanchez, and J. M. Antelis, Classification
of Motor States from Brain Rhythms Using Lattice Neural Networks.
LNCS 9703, Springer-Verlag, 2016, pp. 303–312.

[22] R. Vega, G. Sanchez, L. E. Falcon, H. Sossa, and E. Guevara, “Retinal
vessel extraction using lattice neural networks with dendritic pro-
cessing,” Computers in Biology and Medicine 2015, 58:20-30. DOI:
10.1016/j.compbiomed.2014.12.016.

[23] R. de A. Araujo, “A morphological perceptron with gradient-
based learning for brazilian stock market forecasting,” Neural
Networks, vol. 28, pp. 61 – 81, 2012. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0893608011003200

[24] L. F. Pessoa and P. Maragos, “Neural networks with hybrid
morphological/rank/linear nodes: a unifying framework with
applications to handwritten character recognition,” Pattern Recognition,
vol. 33, no. 6, pp. 945 – 960, 2000. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0031320399001570

[25] G. X. Ritter, L. Iancu, and G. Urcid, “Morphological perceptrons with
dendritic structure,” in Fuzzy Systems, 2003. FUZZ ’03. The 12th IEEE
International Conference on, vol. 2, May 2003, pp. 1296–1301 vol.2.

[26] G. X. Ritter and M. S. Schmalz, “Learning in lattice neural networks
that employ dendritic computing,” in Fuzzy Systems, 2006 IEEE Inter-
national Conference on, 2006, pp. 7–13.

[27] D. Arthur and S. Vassilvitskii, “K-means++: The advantages of careful
seeding,” in Proceedings of the Eighteenth Annual ACM-SIAM Sympo-
sium on Discrete Algorithms, ser. SODA ’07. Philadelphia, PA, USA:
Society for Industrial and Applied Mathematics, 2007, pp. 1027–1035.

[28] D. Ardia, K. Boudt, P. Carl, K. M. Mullen, and B. G. Peterson,
“Differential Evolution with DEoptim: An application to non-convex
portfolio optimization,” The R Journal, vol. 3, no. 1, pp. 27–34, 2011.

[29] D. N. A. Asuncion, “UCI machine learning repository,” 2007.
[30] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Parallel distributed

processing: Explorations in the microstructure of cognition, vol. 1,”
D. E. Rumelhart, J. L. McClelland, and C. PDP Research Group,
Eds. Cambridge, MA, USA: MIT Press, 1986, ch. Learning Internal
Representations by Error Propagation, pp. 318–362.

[31] C. Cortes and V. Vapnik, “Support-vector networks,” Machine
Learning, vol. 20, no. 3, pp. 273–297, 1995. [Online]. Available:
http://dx.doi.org/10.1023/A:1022627411411

[32] D. S. Broomhead and D. Lowe, “Multivariable Functional Interpolation
and Adaptive Networks,” Complex Systems 2, pp. 321–355, 1988.

[33] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H.
Witten, “The weka data mining software: An update,” 2009.


