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Abstract—Deep learning is greatly successful when used for
pedestrian detection. However, we find that this method is
barely satisfactory for multi-scale detection. Meanwhile, var-
ious solutions such as multi-scale classifiers have been devel-
oped (based on traditional methods) to handle this situation.
Considering this, we propose a scale-discriminative classifier
layer (SDC) that contains numerous classifiers to cope with
different scales. To expand the capacity for small-scale pedes-
trian detection, we construct a full-scale layer that converges
both high-level semantic features and low-level features. From
the analysis above, a scale-discriminative network (SDN) for
pedestrian detection was born. We apply this network to the
Caltech pedestrian dataset, and the experimental results show
that the SDN achieves state-of-the-art performance.

1. Introduction

Pedestrian detection is a major topic in the computer vi-
sion research community. Numerous approaches have been
brought forward over the past few decades. Researchers are
primarily interested in pedestrian detection because of its
usefulness in various applications, such as video surveil-
lance, robotic navigation and driving safety.

Existing pedestrian detection methods fall into two cat-
egories: Models based on handcrafted features and those
based on deep learning.

Models based on handcrafted features have achieved
great success. VJ [1] employed multi-scale Haar wavelets to
describe objects and presented integral images to detect ob-
jects. Afterwards, a framework [2] that combined histogram
of gradients (HOG) with a linear support vector machine
(SVM) was introduced to discriminate objects from back-
ground. This framework marked a breakthrough in pedes-
trian detection. The integral channel feature (ICF) [3] was
proposed to combine various features such as LUV color
channels, normalized gradient magnitude and HOG. The
aggregated channel features (ACF) [4], InformedHaar [5],
and Checkboards [6] adopted the same channel features as
ICF. ACF calculated the pixel sum of each block in channels
and the resulting lower resolution channels were smooth.
InformedHaar was designed specifically for pedestrian de-
tection using the statistical templates of upright pedestrian
bodies. Checkboards used class 6 filters to compute features
from channel images, which was the generalization from the
ICF.
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Figure 1. The framework of the scale-discriminative network (SDN). There
are two key components, full-scale layer and scale-discriminative classi-
fier layer.

In the second category, convolutional neural network
(CNN) methods1 have shown promising results. Task-
assistant CNN (TA-CNN) [7] improved the performance of
pedestrian detection by introducing and optimizing semantic
tasks. DeepParts [8] constructed a wide part pool where
different parts could be selected in a data-driven manner to
handle the occlusion situation. Regions with CNN features
(R-CNN) [9] first combined the region proposal extraction
method with CNN features, achieving a 30% increase in
PASCAL VOC 2012 [10]. Fast R-CNN [11] definitely en-
hanced the accuracy and efficiency of R-CNN. The region of
interest (ROI) pooling process made the convolutional layer
reusable and accelerated the high-level feature extraction of
proposals. Developed from Fast R-CNN, scale-aware Fast R-
CNN (SA-FastRCNN) [12] adopted the divide-and-conquer
structure to solve the scale-variant problem.

A review of the approaches evaluated in the Caltech
pedestrian dataset ( [13], [14]) shows that all top perfor-
mance methods (e.g. [8], [12]) are based on deep learning.
CNN models can learn features directly from the pixels and
two factors play a decisive role in its success: 1) Feature
representation proves to be sophisticated and more dis-
criminative; 2) CNN features possess a good generalization
capability.

After this overview of existing methods, let us get back
to the issue itself: The task of pedestrian detection. It can
be defined as predicting bounding boxes for all pedestri-
ans in images or video sequences, especially those taken
from a monocular camera mounted on a vehicle [15]. The
main challenges of this task are the intra-class variations of
pedestrians in scale, background, lighting and occlusion.

1. In our paper, “models based on deep learning” has the same signifi-
cance with “CNN models”.
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Figure 2. Framework of Fast R-CNN [11]. This structure can be divided
into two parts: feature extractor and classifier.

The pedestrian scale2, for instance, mainly lies in the
distance between the observed pedestrian and the camera.
Pedestrians who are close to the camera show more pixels
than the ones far from the camera in image data. Features,
extracted from the image data, of the large-scale and small-
scale instances are obviously different when the range of
pedestrian scale is large.

To solve the scale-variant problem, we propose a scale-
discriminative network (SDN) that comprises two key com-
ponents: Full-scale layer and scale-discriminative classi-
fier layer. Full-scale layer combines high-level and low-
level features of images to heighten the distinguishability
of small-scale perdestrians. Scale-discriminative classifier
layer contains several classifiers selectively activated ac-
cording to the scale of the input proposals. The experimental
results show that the SDN is robust in scale-variant pedes-
trian detection. Figure 1 shows an overview of the SDN.

Our contributions are multifold. First, we propose a
scale-discriminative classifier layer that is sensitive to pedes-
trian scale, to improve performance in scale-variant pedes-
trian detection. Second, we introduce a full-scale layer that
converges hierarchical features to enhance the capability of
small-scale pedestrian detection. Finally, our method for
multi-scale pedestrian detection demonstrates state-of-the-
art performance in the Caltech pedestrian dataset ( [13],
[14]) and is faster than other close methods.

2. Related Work

Our work closely relates to three aspects: Fast R-CNN
[11], fully convolutional network (FCN) [16] and implemen-
tation of multi-scale detection under the sliding windows
paradigm.

2.1. Fast R-CNN

The main architecture for our method was developed
from Fast R-CNN [11]. Fast R-CNN was derived from
R-CNN [9] that has been a breakthrough in object detec-
tion. By employing a deep CNN model (e.g. VGG16 [17],
AlexNet [18]), R-CNN has achieved a significant increase
in PASCAL VOC 2012 [10]. However, R-CNN is a time-
consuming model because it repeatedly applies the deep

2. The scale means the pixel scale which is shown in image or video
sequences.

(a) 1 model, N image scales 
ICF approach

(b) 1 model, K image scales 
FPDW approach

(c) K models, 1 image scale 
VeryFast approach

Figure 3. Various multi-scale handling approaches.

network to thousands of proposals per image. Fast R-CNN
has enhanced the efficiency and accuracy of R-CNN by
reusing the convolutional feature maps and calculating the
bounding box regression offset for each proposal. Figure 2
shows the framework of Fast R-CNN.

The inputs of the net are a set of proposals and an entire
image. Firstly, the net applies the convolutional layers to
compute feature maps for the input image; Then, the ROI
pooling layer maps each proposal from feature maps to a
fixed-length feature vector; After that, each feature vector
will be fed into a sequence of fully connected layers; Finally,
two sibling output layers are output: One layer outputs
the softmax probability scores and the other outputs the
bounding box position offset.

2.2. Fully Convolutional Network

When applying Fast R-CNN directly to pedestrian de-
tection, it struggles with pedestrians in small-scale. We
believe the issue has the following causes. First, the convo-
lutional feature maps for detecting small-scale objects are
at a low resolution. Second is that the ROI pooling layer
implemented in low solution feature maps can produce blur
feature maps. Those feature maps are not discriminative and
therefore degrade the capability of the subsequent classifier.
It is therefore necessary to find the best method to enhance
the distinguishability of small-scale instances.

Recently, the excellent performance of the fully convo-
lution network (FCN) in computer vision has received wide
attention. In [16], it combined high-level information with
low-level information for semantic segmentation and got
a competitive result. HyperNet ( [19]), which was derived
from FCN, has achieved leading recall and state-of-the-art
object detection accuracy on PASCAL VOC 2007 and 2012.

Inspired by FCN and HyperNet, we constructed a feature
map layer with high resolution that combines high-level
semantics features and low-level features of images. In
this way, we can ensure that small-scale instances retain
a suitable resolution feature maps before the ROI pooling
process and become more distinguishable.

2.3. Multi-scale Handling Approaches

Most of the previous top performing pedestrian detection
models used a sliding window at multi-scale over the input
image. ICF [3] trained a single classifier for pedestrians and
resized the image multiple times. Nevertheless, the feature
computation at each scale was time-consuming. The fastest
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Figure 4. Basic architecture of the scale-discriminative network (SDN). The SDN can be divided into the following parts. 1) Region proposal extraction:
Generating perdestrian proposals; 2) CNN feature extraction: Extracting feature representation by fine-tuning a pre-trained CNN model; 3) Gate function:
The role of this function is computing the scale-index according to the scale of proposal; 4) Full-scale layer: A feature map layer that combines hierarchical
features from different layers. The letter ’D’ means downsampling and the letter ’U’ means upsampling; 5) Scale-discriminative classifier layer: Its
function is to calculate detection results through the classifier as determined by the scale-index for each proposal.

pedestrian detector in the west (FPDW) [20] improved the
speed of ICF without loss of accuracy. FPDW computed
the features only for half scales and approximated the fea-
tures on the intermediate scale. In addition, VeryFast [21]
was proposed by using a single image scale and multiple
classifiers on different scales. Figure 3 shows the different
approaches to detect pedestrians at multi-scale.

Meanwhile, CNN models usually adopt two approaches
to deal with the scale-variant problem. One is the “brute
force” approach (e.g. [9], [11]), in which images are resized
at a predefined scale. The other is the multi-scale learn-
ing approach (e.g. [11], [22]), which employs the image-
pyramids as a way of data augmentation. However, both
approaches have limitations. The “brute force” approach can
not solve the issue effectively when the range of pedestrian
scale reaches a certain threshold, and the multi-scale learn-
ing approach is time-consuming because it applies the deep
network to images of different scales.

Inspired by [21], we constructed a scale-discriminative
classifier layer containing multiple classifiers to make our
model more robust in scale-variant pedestrian detection.

3. Proposed Scale-Discriminative Network

Figure 4 illustrates the architecture of the proposed
method for pedestrian detection. At the beginning, an in-
tegral image is fed to convolutional layers to get the feature
maps of each layer. And then, the hierarchical features
are integrated from different layers into a unitary layer

called the full-scale layer. Next, region proposals of image
are generated, and we compute the scale-index3 for each
proposal. Finally, these proposals are classified and adjusted
by the classifier based on the scale-index.

3.1. Network Structure

As shown in Figure 4, the scale-discriminative network
(SDN) is composed of five concatenated individual compo-
nents. The region proposal extraction extracts pedestrian
proposals. The CNN feature extraction learns feature
representation directly from the raw data by fine-tuning a
pre-trained CNN model. We have compared several popular
CNN models, such as AlexNet [18], VGG16 and VGG19
[17], and chose the VGG16 for our basic CNN model. The
others are presented in detail in subsequent sections.

3.2. Full-Scale Layer

We find that Fast R-CNN [11] struggles with pedestrians
in a small-scale. In order to solve this issue, we integrated
hierarchical features at different depths into a unitary layer
to enhance the distinguishability of small-scale objects. Fig-
ure 5 shows the construction process of this unitary layer,
which is similar to the production of [19]. The new unitary
layer is called the full-scale layer.

The process is divided into four steps: 1) Feature maps
extraction: Applying the convolutional layers to compute

3. Scale-index means the corresponding classifier will be open or closed.
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Figure 5. Construction process of the full-scale layer. We divide the pro-
cess into four steps: feature maps extraction, resolution normalization,
balance adjustment and concatenation. The green line means that this
resolution meets the requirements.

feature maps for the entire image; 2) Resolution nor-
malization: We adopt different sampling strategies specific
to different layers, downsampling for low-level layers and
upsampling for high-level layers. This normalizes the reso-
lution of feature maps; 3) Balance adjustment: To achieve
balance between the high-level semantics features and the
low-level features, we utilize a convolutional (conv) layer
after sampling processing; 4) Concatenation: We concate-
nate the processed feature maps into our full-scale layer.

3.3. Scale-Discriminative Classifier Layer

Generally, many object detection approaches can be
taken as the combination of the feature extractor and classi-
fier. We divide Fast R-CNN [11] into two parts as shown in
Figure 2. The classifier of Fast R-CNN contains a sequence
of fully connected layers, and ends up with two sibling
output layers: One layer outputs the softmax probability
scores and the other outputs the bounding box position
offset.

Figure 6 illustrates the structure of our scale-
discriminative classifier (SDC) layer which is constructed
based on the Fast R-CNN classifier. The SDC layer contains
N classifiers and each classifier respondeds to a fixed scale.
We calculate the scale-index first before employing the index
classifier to get the results of each proposal. Only one
classifier is activated for each proposal. In this way, we
have improved the performance of scale-variant pedestrian
detection.

3.4. Gate Function

The SDC layer contains many classifiers, each of which
is trained for a fixed scale. The gate function is defined
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Figure 6. Structure of the scale-discriminative classifier layer. The SDC
layer contains N classifiers, each of which is in respect to a fixed scale.

as selecting a suitable classifier for each proposal. The key
factor is scale.

The scale of proposals can be measured by either pixel
height or pixel width. However, for pedestrian detection,
while a pedestrian is standing in front of the camera, the
pixel height of his bounding box may correlate more to the
scale of the pedestrian than the pixel width [14]. We only
trained three classifiers due to the GPU limit.

Classifier L will be selected when pixel height is
more than 80 pixels, Classifier M will be chosen when
pixel height is between 50 pixels and 80 pixels, and
Classifier S will be activated when pixel height is less
than 50 pixels.

H denotes the pixel height of proposals, Scale
L

,
Scale

M

and Scale
S

respectively denote the scale-index
of Classifier L, Classifier M and Classifier S. The
gate function is as follows:

Scale
L

= "(H � 80) (1)

Scale
M

= "(H � 50)⇥ "(80�H) (2)

Scale
S

= "(50�H) (3)

where:

"(x) =

⇢
1 x � 0
0 x < 0

(4)

3.5. Multi-Task Loss

Our SDN has two sibling output layers, one layer out-
puts the softmax probability scores s = (s0, s1), and the
other layer outputs the bounding box position offset of
pedestrians. The offset of the pedestrian can be denoted as
t = (t

x

, t
y

, t
w

, t
h

).



TABLE 1. THE CONSTRUCTION DETAILS OF FULL-SCALE LAYER. IN THE FIRST ROW, THE EXTRACTED FEATURE MAPS ARE DENOTED AS
“CONV(START INDEX - END INDEX)”; IN THE SECOND ROW, THE SAMPLING STRATEGY IS DENOTED AS “DOWN/UP < RECEPTIVE FIELD SIZE > OR
HOLD”; IN THE THIRD ROW, THE CONVOLUTIONAL PARAMETERS ARE DENOTED AS “CON < RECEPTIVE FIELD SIZE > < NUMBER OF CHANNELS

>”; IN THE FOURTH ROW, WE CONCATENATE THE PROCESSED FEATURE MAPS INTO THE FULL-SCALE LAYER.

Feature maps extraction conv(1-2) conv(3-4) conv(5-7) conv(8-10) conv(11-13)
Resolution normalization down 4⇥4 down 2⇥2 hold up 2⇥2 up 4⇥4

Balance adjustment CON 3⇥3 32 CON 3⇥3 32 CON 3⇥3 64 CON 3⇥3 128 CON 3⇥3 256
Concatenation Full-scale layer

TABLE 2. LEARNING RATE IN DIFFERENT STEPS. IN THE THIRD ROW,
THE CONVOLUTIONAL LAYER PARAMETERS ARE DENOTED AS

“CONV(START INDEX - END INDEX) OR NONE”.

Step Step1 Step2 Step3 Step4 Step5
Basic 0.001 0.00005 0.00001 0.00001 0.00001
Zero none conv(1-4) conv(1-13) conv(1-13) conv(1-13)

Each training proposal is labeled by ground truth class
k and the bounding box regression target T . We minimize
a multi-task loss function:

L(s, k, t, T ) = L
cls

(s, k) + L
loc

(t, T ) (5)

Where L
cls

is log loss for classification and L
loc

is
smooth L1 [11] loss for the bounding box regression.

3.6. Joint Training

In practice, a multi-step training process jointly opti-
mizes the SDN. The training process is as follows:

• Step 1: Adopting the VGG16 [17] as a basic CNN
model to initially train a deep CNN model as the
initializing layer in step2.

• Step 2: Training a SDN model 0 that only contains
one classifier, for initializing main layers in step 3,
4 and 5.

• Step 3: Training a SDN model 1 that contains
Classifier L, by using proposals in large scale (
more than 80 pixels).

• Step 4: Training a SDN model 2 that contains
Classifier M , by using proposals in middle scale(
between 50 pixels and 80 pixels).

• Step 5: Training a SDN model 3 that contains
Classifier S, by using proposals in small scale(
less than 50 pixels).

• Step 6: Concatenating the main layer of step 2 and
classifier of step 3, 4 and 5 into a unitary SDN
model. This SDN model is the final model.

The learning rate varies with steps and layers. Table 2
shows the changes of learning rate in different steps. The
second row shows the basic learning rate in each step, and
the third row indicates the layer to be fixed to 0 in each step
during training.

TABLE 3. COMPARISION OF THE MISS RATE IN THE DISTANT-SET AND
TESTING TIME WITH OTHER CLOSE METHODS, INCLUDING

SA-FASTRCNN [12] AND COMPACT-DEEP [23].

Method SA-FastRCNN CompACT-Deep Ours
Miss rate (%) 86% 86% 83%

Test time (S/im) 0.37 1 0.1

4. Experiments

The proposed scale-discriminative network (SDN) was
evaluated in the Caltech pedestrian dataset ( [13], [14]). In
order to evaluate the performance of detectors, we plotted
miss rate against false positives per image (FPPI) by chang-
ing the threshold on probability score (using log-log plots).
We used the log-average miss rate to sum detector capability,
computed by averaging FPPI in log-space in the range 10�2

to 100, as proposed in [14].

4.1. Datasets

The Caltech pedestrian dataset is currently the most
popular and largest for pedestrian detection. It consists of
about 10 hours of 640 ⇥ 480, 30 Hz video taken from a
moving vehicle in regular traffic. About 250,000 frames with
350,000 bounding boxes and 2,300 specific pedestrians are
labeled. It also contains detailed occlusion labels, enabling
researchers to analyze the performance of detectors at dif-
ferent occlusion levels.

The first six sets are defined as a training set, and the
remaining five sets are defined as testing data. In order to
evaluate our method practicability in a wide range of scales,
we choose the following evaluation settings:

• All: Performance evaluated on pedestrians whose
pixel height is over 20 pixels tall and showing at
least 20 percent of visible body parts.

• Distant: Performance evaluated on pedestrians
whose pixel height was between 20 and 50 and
showing at least 20 percent of visible body parts.

• Close: Performance evaluated on pedestrians whose
pixel height is over 50 pixels tall and showing at
least 20 percent of visible body parts.

4.2. Implementation Details

To save the computational cost and make a fair com-
parison with state-of-the-art methods, we utilized the ACF
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Figure 7. Comparison of pedestrian detection results with other state-of-the-art Methods. The red bounding box denotes the ground truth and the green
bounding box denotes the detection result.

[4] detector to generate proposals. We used the VGG16 [17]
model as the pre-trained model to initialize the main CNN
of the SDN. Table 1 shows the construction details of full-
scale layer.

Our method involves the weight decay of 0.0005 and
Stochastic Gradient Descent (SGD) with a momentum of
0.9. Each mini-batch consists of 64 pedestrian proposals in
one image. We maintained the ratio of positive proposals to
negative proposals at one to three. Negative object proposals
have intersection over union (IOU) with the ground truth box
less than 0.1. Positive ones have an IOU with a ground truth
bounding box larger than 0.5. During training and testing,
the 640⇥ 480 scale of input images remained unchanged.

The SDN is trained and tested on the publicly available
Caffe platform [24]. We adopt a multi-step training process
(as presented in the previous section) to jointly optimize the
SDN.

4.3. Comparison with State-of-the-art Methods

Figs. 7, 8, 9, 10 show the overall experimental results.
We compared the results with those top performance meth-
ods, including TA-CNN [7], DeepParts [8], CompAct-Deep
[23] and SA-FastRCNN [12].

The proposed method achieves top performance in the
all-set with a miss rate of 63% and gets a competitive result
in the close-set with a miss rate of 27%. Beyond that, our
method has achieved a new state-of-the-art performance in
the distant-set with a miss rate of 83%. This is significantly
superior (by 3%) compared to the previous state-of-the-art
approach SA-FastRCNN [12].

We also compared SDN with other close deep models of
detection speed. As shown in table 3, the proposed method
is significantly faster than the close methods ( [12], [23]).
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Figure 8. Results in the all Set.
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5. Conclusion

In this paper, we proposed a novel scale-discriminative
network that is robust in scale-variant pedestrian detection.
The proposed method improves pedestrian detection perfor-
mance in two aspects:

• The full-scale layer is the convergence of high-level
semantic features and low-level features of CNN.
In this way we can ensure that small-scale objects
retain a suitable resolution feature maps before ROI
pooling process. The distinguishability of small-
scale pedestrians has been enhanced.

• The scale-discriminative classifier layer contains N
classifiers while each classifier is respect to a fixed
scale, which realizes the robustness of multi-scale
pedestrians.

In the future, we will take into account the structural
information of pedestrian physiques to solve the occlusion
situation in pedestrian detection.
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