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Abstract—SARSA, as one kind of on-policy reinforcement 

learning methods, is integrated with deep learning to solve the 

video games control problems in this paper. We use deep 

convolutional neural network to estimate the state-action value, 

and SARSA learning to update it. Besides, experience replay is 

introduced to make the training process suitable to scalable 

machine learning problems. In this way, a new deep 

reinforcement learning method, called deep SARSA is proposed 

to solve complicated control problems such as imitating human 

to play video games. From the experiments results, we can 

conclude that the deep SARSA learning shows better 

performances in some aspects than deep Q learning. 

Keywords—SARSA learning; Q learning; experience replay; 

deep reinforcement learning; deep learning 

I. INTRODUCTION  

With the development of artificial intelligence (AI), more 
and more intelligent devices come into use in our daily lives. In 
the face of unknown complicated environment, these 
intelligent devices should know how to perceive the 
environment and make decisions accordingly.  

In the last 20 years, deep learning (DL) [1] based on neural 
networks has greatly promoted the development of high 
dimension information perception problems. With the powerful 
generalizing ability, it can retrieve highly abstract structure or 
feature from the real environment and then precisely depict the 
complicated dependencies between raw data such as image and 
video. With excellent ability of feature detection, DL has been 
applied to many learning tasks, such as handwritten digit 
recognition [2], scenario analysis [3] and so on. Although it has 
achieved great breakthrough in information perception 
especially in image classifying problem, DL has its natural 
drawbacks. It can not directly select policy or deal with 
decision-making problems, resulting in limited applications in 
intelligent control field. 

 Different from DL, reinforcement learning (RL) is one 
class of methods which try to find optimal or near-optimal 
policy for complicated systems or agents [4-6]. As an effective 
decision-making method, it has been introduced into optimal 
control [7], model free control [8, 9] and so on. Generally, RL 
has two classes – policy iteration and value iteration. On the 
other hand, it can also be divided into off-policy and on-policy 
method. Common RL methods include Q learning, SARSA 
learning, TD(  ) and so on [4]. Though RL is naturally 

designed to deal with decision-making problems, it has run into 
great difficulties when handling high dimension data. With the 
development of feature detection method like DL, such 
problems are to be well solved.  

A new method, called deep reinforcement learning (DRL), 
emerges to lead the direction of advanced AI research. DRL 
combines excellent perceiving ability of DL with decision-
making ability of RL. In 2010, Lange [10] proposed a typical 
algorithm which applied a deep auto-encoder  neural network 
(DANN) into a visual control task. Later, Abtahi and Fasel [11] 
employed a deep belief network (DBN) as the function 
approximation to improve the learning efficiency of traditional 
neural fitted-Q method. Then, Rrel [12] gave the complete 
definition of deep reinforcement learning in 2012. Most 
importantly, the group of DeepMind introduced deep Q 
network (DQN) [13, 14] which utilizes convolution neural 
network (CNN) instead of traditional Q network. Their method 
has been applied to video game platform called Arcade 
Learning Environment (ALE) [15] and can even obtain higher 
scores than human player in some games, like breakout. Based 
on their work, Levine [16] applied recurrent neural network to 
the framework proposed by DeepMind. In 2015, DeepMind 
puts forward a new framework of DRL based on Monte Carlo 
tree search (MCTS) to trained a Go agent called AlphaGo [17], 
which beats one of the most excellent human players Lee Sedol 
in 2016. This match raises the people’s interest in DRL which 
is leading the trends of AI. Though DQN algorithm shows 
excellent performance in video games, it also has drawbacks, 
such as low efficient data sampling process and defects of off-
policy RL methods. 

In this paper, we focus on a brand new DRL based on 
SARSA learning, also called deep SARSA for imitating human 
players in playing video games. The deep SARSA method 
integrated with experience replay process is proposed. To the 
best of our knowledge, this is the first attempt to combine 
SARSA learning with DL for complicated systems. 

The paper is organized as follows. In Section II, SARSA 
learning and ALE are introduced as the background and 
preliminary. Then a new deep SARSA is proposed in Section 
III to solve complicate control tasks such as video games. Two 
simulation results are given to validate the effectiveness of the 
proposed deep SARSA in Section IV. In the end we draw a 
conclusion. 

This work was supported in part by National Natural Science Foundation 
of China (Nos. 61273136, 61573353, 61533017 and 61603382).  



II. SARSA LEARNING AND ARCADE LEARNING 

ENVIRONMENT 

A. Q learning and SARSA learning 

Considering a Markov decision process (MDP), the goal of 

learning task is to maximize the future reward when the agent 

interacts with environment. Generally, we define the future 

reward from the time step t  as  
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where (0,1]   is the discount factor, tr  is the reward when 

an action is taken at time t  and T is often regarded as the time 

when the process terminates. In addition, T  and 

1  can’t be satisfied simultaneously. Then the state-action 

value function can be defined as ( , )Q s a  which indicates the 

agent takes the action a  at the state s  under the policy  . 

Therefore, 

1

0

( , ) { ( ) | , }

            { | , }

t t

k

t k t t

k

Q s a E R t s s a a

E r s s a a





 


 



  

  
,             (2) 

where { ( ) | , }t tE R t s s a a   is the expected return, and  is 

the policy function over actions. Now the learning task aims at 

obtaining the optimal state-action function *( , )Q s a  which is 

usually relevant to Bellman equation. Then two methods called 
Q learning and SARSA learning will be compared to get the 
optimal state-action value function. 

As one of the traditional RL algorithms, Q learning is an 
off-policy method. The agent independently interacts with the 
environment which often indicates selecting the action a . Then 

the reward r is feedback from the environment and the next 

state s  is derived. Here ( , )Q s a  represents the current state-

action value. In order to update the current state-action value 
function, we employ the next state-action action value to 

estimate it. Although the next state s  has been given, the next 

action a  is still unknown. So the most important principle in 

Q learning is to take a greedy action to maximize the 

next ( , )Q s a  . The update equation is 

( , ) ( , ) [ max ( , ) ( , )]aQ s a Q s a r Q s a Q s a  
    

 

where   represents the learning rate. 

By contrast, SARSA learning is an on-policy method. It 
means when updating the current state-action value, the next 

action a will be taken. But in Q learning, the action a is 

completely greedy. Given such analysis, the update equation of 
state-action value can be defined as 

 ( , ) ( , ) ( , ) ( , )Q s a Q s a r Q s a Q s a      
 

Actually, the difference between SARSA learning and Q 

learning lies in the update equations (3) and (4). In SARSA 

learning, the training data is quintuple- ( , , , , )s a r s a  . In every 

update process, this quintuple will be derived in sequence. 

However, in Q learning a is just for estimation and will not 

be taken in fact.  

B. Arcade Learning Environment  

 Arcade Learning Environment (ALE) is a wrapper or 
platform including many video games for Atari 2600. As a 
benchmark for new advanced RL algorithms, it presents some 
interferences for the agents, including the states and the 
rewards [15]. The states are high dimensional visual input 
( 210 160RGB  video at 60 Hz) as what human receives and 

the reward can be transferred from the scores given by the 
environment when the agent interacts with the platform. 
Usually, the agent interacts with ALE through a set of 18 
actions, but only 5 of which are basic actions. These 5 actions 
contain 4 movement directions, and the remaining one should 
be firing or null. To be clear, the reward or score comes from 
the system output instead of recognizing from the image. 

ALE is designed to be remarkably suitable for testing RL 
algorithms. So many groups have applied their algorithms to 
this platform including the DQN method proposed by 
DeepMind. Though DQN has achieved excellent performance 
in video games, it only combines basic Q learning with deep 
learning. Many other different reinforcement learning methods 
can help improve the performance of deep reinforcement 
learning like the on-policy methods. In the next Section, we 
will present  a DRL method based on SARSA learning to 
improve the training process in video games from ALE. 

III. DEEP REINFORCEMENT LEARNING METHOD BASED ON 

SARSA LEARNING 

Before deep reinforcement learning algorithms come out, 
many traditional RL methods have been applied to ALE. 
Deafzio and Graepel [18] applied some RL methods to those 
complicated video games. They compared the advantages and 
disadvantages of different RL methods such as Q learning, 
SARSA learning, actor-critic, GQ, R learning and so on. The 
results are listed in Table 1. 

TABLE I.  THE PERFORMANCE OF DIFFERENT RL METHODS IN ALE [18] 

 SARSA AC GQ Q R 

Relevant 

performance 

1.00 0.99 0.65 0.82 0.96 

From Table 1, the average performance of Q learning is 
only 82% of SARSA learning in video games. Though these 
algorithms only use hand craft features, the results above 
indicate that SARSA learning will achieve better performance 
than Q learning. So given on these facts, a new deep 
reinforcement learning method based on SARSA learning is 
proposed as follows. 



A. SARSA network 

Games from Atari 2600 can be regarded as a MDP which 

will be solved by RL algorithms. Here SARSA learning will 

be integrated to DRL framework. Similar to DQN in [14], 

given the current state s , the action a  is selected by  -greedy 

method. Then the next state s  and the reward r will be 

observed. The current state-action value is ( , )Q s a . So in DRL 

based on SARSA, the current optimal state-action can be 

estimated by 

 *( , ) ( , ) |Q s a E r Q s a s,a   
 

where a is the next action selected by  -greedy. Similarly, in 

deep SARSA learning, the value function approximation is still 
with the convolution neural network (CNN) whose structure is 
shown in Fig. 1. 

The input of the CNN is the raw images from video games 
and the output is the Q values of all actions.  is defined as 

parameters of the CNN. At the thi iteration of training, the loss 

function of the network can be defined as 

2( ) ( ( ; ))i i i iL y Q s,a  
 

where 1( , ; )i iy r Q s a  
   . Then the main objective is to 

optimize the loss function ( )i iL  . From the view of supervised 

learning, iy is regarded as the label in training though iy is 

also a variable. By differentiating (6), we get the gradient of 

the loss function 

1( ) ( ( , ; ) ( ; )) ( ; )i i i i iL r Q s a Q s,a Q s,a    
     

 

where ( ; )iQ s,a  is the gradient of the current state-action 

value. Then according to (7), we can optimize the loss 

function by stochastic gradient descent (SGD), Adadelta and 

so on [19]. Besides, the reinforcement learning process should 

also be taken into consideration. The last layer of the network 

outputs the Q value of each action. So we can select the action 

and update it by the SARSA method. Fig. 2 depicts the 

forward data flow of SARSA network in the training process.  

 

input conv pool targetconv pool

Feature dectetion

Fig. 1 The convolution neural network in DRL 

 

Fig. 2 The forward data flow in DRL 

 The “Feature Extraction” in Fig. 2 can be seen as the image 
preprocess and CNN network. After state-action is obtained, 
proper action is selected to make decision by the SARSA 
learning method. Later we introduce “experience replay” 
technique [20] to improve the training process of DRL and 
adapt reinforcement learning to scalable machine learning 
process. 

B. Experience replay 

 In traditional reinforcement learning method, the learning 
and updating should continue in sequence. That is to say, every 
sample can stimulate one update, thus making the learning 
process rather slow. In order to adapt to the scalable machine 
learning process, the historical data is stored in memory and 
will be retrained later continuously. In Fig. 2, a quadruple 

( )te s,a,r,s is kept in historical data 1, , ND e e , where 

N indicates the size of historical stack. Then in the training 

process, we sample the training data from this stack D . There 
are some methods in which samples can be obtained, such as 
consecutive sampling, uniform sampling, and weighted 
sampling method by rewards. Here we follow the method of 
uniform sampling method in DQN, which has two advantages. 
Firstly, the efficiency of data usage is improved. Then 
consecutive samples might be greatly relevant to each other. 

Uniform method ( ) ~ ( )s,a,r,s U D  can reduce the correlations 

between input data [14]. 

Before raw images from video games are sampled, some 
preprocess must be dealt with. We can obtain every frame from 
the video. However, it would be less efficient if one frame is 
regarded as the state s . Additionally, consecutive frames might 

contain important feature in images as the speed or geometrical 
relationship which can contribute more to the performance of 
agents. Once a single frame is trained, all those vital features 
are abandoned. So, in this paper one action is taken with every 
4 frames, the same as [14]. The 4 frames are concatenated as 
the state s . The concatenation is defined as function. After 

being processed, the states are stored in stack D . The next 
section will introduce the whole process of DRL based on 
SARSA learning. 

C. Deep SARSA learning 

 Given the number of video game n , the SARSA network 

should contain n  outputs which represent n  discrete state-

action values, to interact with ALE. The current state s  is 

processed by CNN to get the current state-action value 1Q , 

which is a n -dimension vector. Then the current action a  is 

selected with  -greedy algorithm. The reward r  and the next 

state s  is observed. In order to estimate the current ( , )Q s a , the 

next state-action value ( , )Q s a  is obtained according to (4). 



 Here, when the next state s  is input into CNN, ( , )Q s a   

can be obtained. Then we define a label vector related to 1Q  

being 2Q  which represents the target vector. The two vectors 

only have one different component. That is 

( , ) ( )r Q s a Q s,a    . Now the whole scheme of DRL based 

on SARSA learning is presented in Algorithm 1. It should be 

noted that during training, the next action a  for estimating the 

current state-action value is never greedy. On the contrary, 
there is a tiny probability that a random action is chosen. 

Algorithm1 Deep Reinforcement Learning based on SARSA 

1:   initialize data stack D  with size of N  

      and parameters of CNN    

2:   for episode=1, M  do 

3:   initialize state 1 1{ }s x and preprocess state 1 1( )s   

4:       select 1a with  -greedy method 

5:       for 1,t T  do 

6:             take action ta , observe next state 1tx   and tr ,  

1 1( )t ts    

7:             store data 1( , , )t t t ta ,r   into stack D  

8:             sample data from stack D  

                select a with  -greedy method 

9:             
1

1

( , ; )

j

j

j j

r if episode teminates at step j
y

r Q a otherwise  


 


  

10:           according to (7), optimize the loss function 

( )i iL   

ta a  

11:        end for 

12:   end for 

 

IV.  EXPERIMENTS AND RESULTS 

In this section, two simulation experiments will be 
presented to verify our algorithm. The two video games are 
from Atari 2600, called breakout and seaquest. Fig. 3 shows 
the images of the two games. The CNN contains 3 convolution 
layers and two full connected layers. All the settings in these 
two experiments are the same as DQN [14], except for the RL 
method. The discount factor is 0.99. Every 250 thousand steps, 
the agent is tested. Every testing episode are 125 thousand 
steps. 

A. Breakout 

In breakout, 5 basic actions including up, down, left, right 

and null are given. The operation image is like the left of Fig. 3. 

This game expects the agent to obtain as many scores as 

possible. The agent controls dam-board which can reflect the 

bullet. Once the bullet hits bricks in the top area, the agent gets 

1 point. If the bullet falls down, the number of lives is 

subtracted 1 until the game is over. 

 

  
Fig. 3 Two video games: breakout and seaquest. 

Fig. 4 and Fig. 5 present the average score with deep 
SARSA learning and deep Q learning. We can see that at the 
end of the 20th epoch, deep SARSA learning reaches an 
average reward of about 100. By contrast, deep Q learning can 
reach about 170. We can conclude that in the early stage of 
training, deep SARSA learning converges slower than deep Q 
learning. However, after 30 epochs, deep SARSA learning 
gains higher average scores. In addition, deep SARSA learning 
converges more stably than deep Q learning.  

 

Fig. 4 Average score with deep SARSA learning in Breakout 

 

Fig. 5 Average score with deep Q learning in Breakout 



The number of games during test with two algorithms is 
displayed in Figs. 6 and 7. It reflects the convergent trends of 
these algorithms. After training 20 epochs, deep SARSA 
learning can also converge to the equilibrium point at about 75. 
In deep Q learning, the equilibrium point is about 80.  

 

Fig. 6 Number of games during test with deep SARSA learning in Breakout 

 

Fig. 7 Number of games during test with deep Q learning in Breakout 

B. Seaquest  

In seaquest, 5 basic actions are given including up, down, 
left, right and firing. The operation image is shown in the right 
of Fig. 3. This game expects that the agent should obtain as 
many scores as possible by saving divers and killing fish. The 
agent can control the submarine with five basic actions as 
mentioned above. Once the submarine saves the diver or kills 
fish, the agent gets 20 and 40 points. If the submarine runs into 
fish or the oxygen in the submarine is 0, the number of life 
drops 1 until the game is over. So if human play this game, the 
quantity of oxygen should also be taken into consideration. 

Fig. 8 and Fig. 9 show the average score of deep SARSA 
learning and deep Q learning. We can see that the score of deep 
SARSA learning increases a little slower before the 10th epoch 
than deep Q learning. However, it will converge much faster 
after the 30th epoch. At last deep SARSA learning can gain 
about 5000 points while deep Q learning only gets 3700 points.  

 

Fig. 8 Average score with deep SARSA learning in Seaquest 

 

Fig. 9 Average score with deep Q learning in Seaquest 

The number of games during test with two algorithms is 
shown in Fig. 10 and Fig. 11. It can also reflect the trend of 
DRL process. Deep SARSA learning even shows a smother 
process in this video game than deep Q learning. 

 

Fig. 10 Number of games during test with deep SARSA learning in Seaquest 



 

Fig. 11 Number of games during test with deep Q learning in Seaquest 

V. CONCLUSION 

In this paper, we introduce an on-policy method SARSA 
learning to DRL. SARSA learning has some advantages when 
being applied to decision making problems. It makes learning 
process more stable and is more suitable to some complicated 
systems. Given these facts, a new DRL algorithm based on 
SARSA, called deep SARSA learning, is proposed to solve the 
control problems of video games. Two simulation experiments 
are given to compare the performance of deep SARSA learning 
and deep Q learning. In Section 4, the results reveal that deep 
SARSA learning gains higher scores and faster convergence in 
breakout and seaquest than deep Q learning. 
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