
Deep Reinforcement Learning with Experience

Replay Based on SARSA

Dongbin Zhao, Haitao Wang, Kun Shao and Yuanheng Zhu

Key Laboratory of Management and Control for Complex Systems

Institute of Automation Chinese Academy of Sciences, Beijing 100190, China

dongbin.zhao@ia.ac.cn, wanghaitao8118@163.com, shaokun2014@ia.ac.cn, yuanheng.zhu@ia.ac.cn

Abstract—SARSA, as one kind of on-policy reinforcement

learning methods, is integrated with deep learning to solve the

video games control problems in this paper. We use deep

convolutional neural network to estimate the state-action value,

and SARSA learning to update it. Besides, experience replay is

introduced to make the training process suitable to scalable

machine learning problems. In this way, a new deep

reinforcement learning method, called deep SARSA is proposed

to solve complicated control problems such as imitating human

to play video games. From the experiments results, we can

conclude that the deep SARSA learning shows better

performances in some aspects than deep Q learning.

Keywords—SARSA learning; Q learning; experience replay;

deep reinforcement learning; deep learning

I. INTRODUCTION

With the development of artificial intelligence (AI), more
and more intelligent devices come into use in our daily lives. In
the face of unknown complicated environment, these
intelligent devices should know how to perceive the
environment and make decisions accordingly.

In the last 20 years, deep learning (DL) [1] based on neural
networks has greatly promoted the development of high
dimension information perception problems. With the powerful
generalizing ability, it can retrieve highly abstract structure or
feature from the real environment and then precisely depict the
complicated dependencies between raw data such as image and
video. With excellent ability of feature detection, DL has been
applied to many learning tasks, such as handwritten digit
recognition [2], scenario analysis [3] and so on. Although it has
achieved great breakthrough in information perception
especially in image classifying problem, DL has its natural
drawbacks. It can not directly select policy or deal with
decision-making problems, resulting in limited applications in
intelligent control field.

 Different from DL, reinforcement learning (RL) is one
class of methods which try to find optimal or near-optimal
policy for complicated systems or agents [4-6]. As an effective
decision-making method, it has been introduced into optimal
control [7], model free control [8, 9] and so on. Generally, RL
has two classes – policy iteration and value iteration. On the
other hand, it can also be divided into off-policy and on-policy
method. Common RL methods include Q learning, SARSA
learning, TD() and so on [4]. Though RL is naturally

designed to deal with decision-making problems, it has run into
great difficulties when handling high dimension data. With the
development of feature detection method like DL, such
problems are to be well solved.

A new method, called deep reinforcement learning (DRL),
emerges to lead the direction of advanced AI research. DRL
combines excellent perceiving ability of DL with decision-
making ability of RL. In 2010, Lange [10] proposed a typical
algorithm which applied a deep auto-encoder neural network
(DANN) into a visual control task. Later, Abtahi and Fasel [11]
employed a deep belief network (DBN) as the function
approximation to improve the learning efficiency of traditional
neural fitted-Q method. Then, Rrel [12] gave the complete
definition of deep reinforcement learning in 2012. Most
importantly, the group of DeepMind introduced deep Q
network (DQN) [13, 14] which utilizes convolution neural
network (CNN) instead of traditional Q network. Their method
has been applied to video game platform called Arcade
Learning Environment (ALE) [15] and can even obtain higher
scores than human player in some games, like breakout. Based
on their work, Levine [16] applied recurrent neural network to
the framework proposed by DeepMind. In 2015, DeepMind
puts forward a new framework of DRL based on Monte Carlo
tree search (MCTS) to trained a Go agent called AlphaGo [17],
which beats one of the most excellent human players Lee Sedol
in 2016. This match raises the people’s interest in DRL which
is leading the trends of AI. Though DQN algorithm shows
excellent performance in video games, it also has drawbacks,
such as low efficient data sampling process and defects of off-
policy RL methods.

In this paper, we focus on a brand new DRL based on
SARSA learning, also called deep SARSA for imitating human
players in playing video games. The deep SARSA method
integrated with experience replay process is proposed. To the
best of our knowledge, this is the first attempt to combine
SARSA learning with DL for complicated systems.

The paper is organized as follows. In Section II, SARSA
learning and ALE are introduced as the background and
preliminary. Then a new deep SARSA is proposed in Section
III to solve complicate control tasks such as video games. Two
simulation results are given to validate the effectiveness of the
proposed deep SARSA in Section IV. In the end we draw a
conclusion.

This work was supported in part by National Natural Science Foundation
of China (Nos. 61273136, 61573353, 61533017 and 61603382).

II. SARSA LEARNING AND ARCADE LEARNING

ENVIRONMENT

A. Q learning and SARSA learning

Considering a Markov decision process (MDP), the goal of

learning task is to maximize the future reward when the agent

interacts with environment. Generally, we define the future

reward from the time step t as


1

0

()
T

k

t k

k

R t r  



 , 

where (0,1]  is the discount factor, tr is the reward when

an action is taken at time t and T is often regarded as the time

when the process terminates. In addition, T  and

1  can’t be satisfied simultaneously. Then the state-action

value function can be defined as (,)Q s a which indicates the

agent takes the action a at the state s under the policy  .

Therefore,

1

0

(,) { () | , }

 { | , }

t t

k

t k t t

k

Q s a E R t s s a a

E r s s a a





 


 



  

  
, (2)

where { () | , }t tE R t s s a a   is the expected return, and is

the policy function over actions. Now the learning task aims at

obtaining the optimal state-action function *(,)Q s a which is

usually relevant to Bellman equation. Then two methods called
Q learning and SARSA learning will be compared to get the
optimal state-action value function.

As one of the traditional RL algorithms, Q learning is an
off-policy method. The agent independently interacts with the
environment which often indicates selecting the action a . Then

the reward r is feedback from the environment and the next

state s  is derived. Here (,)Q s a represents the current state-

action value. In order to update the current state-action value
function, we employ the next state-action action value to

estimate it. Although the next state s  has been given, the next

action a is still unknown. So the most important principle in

Q learning is to take a greedy action to maximize the

next (,)Q s a  . The update equation is

(,) (,) [max (,) (,)]aQ s a Q s a r Q s a Q s a  
    

 

where  represents the learning rate.

By contrast, SARSA learning is an on-policy method. It
means when updating the current state-action value, the next

action a will be taken. But in Q learning, the action a is

completely greedy. Given such analysis, the update equation of
state-action value can be defined as

 (,) (,) (,) (,)Q s a Q s a r Q s a Q s a      
 

Actually, the difference between SARSA learning and Q

learning lies in the update equations (3) and (4). In SARSA

learning, the training data is quintuple- (, , , ,)s a r s a  . In every

update process, this quintuple will be derived in sequence.

However, in Q learning a is just for estimation and will not

be taken in fact.

B. Arcade Learning Environment

 Arcade Learning Environment (ALE) is a wrapper or
platform including many video games for Atari 2600. As a
benchmark for new advanced RL algorithms, it presents some
interferences for the agents, including the states and the
rewards [15]. The states are high dimensional visual input
(210 160RGB video at 60 Hz) as what human receives and

the reward can be transferred from the scores given by the
environment when the agent interacts with the platform.
Usually, the agent interacts with ALE through a set of 18
actions, but only 5 of which are basic actions. These 5 actions
contain 4 movement directions, and the remaining one should
be firing or null. To be clear, the reward or score comes from
the system output instead of recognizing from the image.

ALE is designed to be remarkably suitable for testing RL
algorithms. So many groups have applied their algorithms to
this platform including the DQN method proposed by
DeepMind. Though DQN has achieved excellent performance
in video games, it only combines basic Q learning with deep
learning. Many other different reinforcement learning methods
can help improve the performance of deep reinforcement
learning like the on-policy methods. In the next Section, we
will present a DRL method based on SARSA learning to
improve the training process in video games from ALE.

III. DEEP REINFORCEMENT LEARNING METHOD BASED ON

SARSA LEARNING

Before deep reinforcement learning algorithms come out,
many traditional RL methods have been applied to ALE.
Deafzio and Graepel [18] applied some RL methods to those
complicated video games. They compared the advantages and
disadvantages of different RL methods such as Q learning,
SARSA learning, actor-critic, GQ, R learning and so on. The
results are listed in Table 1.

TABLE I. THE PERFORMANCE OF DIFFERENT RL METHODS IN ALE [18]

 SARSA AC GQ Q R

Relevant

performance

1.00 0.99 0.65 0.82 0.96

From Table 1, the average performance of Q learning is
only 82% of SARSA learning in video games. Though these
algorithms only use hand craft features, the results above
indicate that SARSA learning will achieve better performance
than Q learning. So given on these facts, a new deep
reinforcement learning method based on SARSA learning is
proposed as follows.

A. SARSA network

Games from Atari 2600 can be regarded as a MDP which

will be solved by RL algorithms. Here SARSA learning will

be integrated to DRL framework. Similar to DQN in [14],

given the current state s , the action a is selected by  -greedy

method. Then the next state s  and the reward r will be

observed. The current state-action value is (,)Q s a . So in DRL

based on SARSA, the current optimal state-action can be

estimated by

 *(,) (,) |Q s a E r Q s a s,a   
 

where a is the next action selected by  -greedy. Similarly, in

deep SARSA learning, the value function approximation is still
with the convolution neural network (CNN) whose structure is
shown in Fig. 1.

The input of the CNN is the raw images from video games
and the output is the Q values of all actions. is defined as

parameters of the CNN. At the thi iteration of training, the loss

function of the network can be defined as

2() ((;))i i i iL y Q s,a  
 

where 1(, ;)i iy r Q s a  
   . Then the main objective is to

optimize the loss function ()i iL  . From the view of supervised

learning, iy is regarded as the label in training though iy is

also a variable. By differentiating (6), we get the gradient of

the loss function

1() ((, ;) (;)) (;)i i i i iL r Q s a Q s,a Q s,a    
     

 

where (;)iQ s,a  is the gradient of the current state-action

value. Then according to (7), we can optimize the loss

function by stochastic gradient descent (SGD), Adadelta and

so on [19]. Besides, the reinforcement learning process should

also be taken into consideration. The last layer of the network

outputs the Q value of each action. So we can select the action

and update it by the SARSA method. Fig. 2 depicts the

forward data flow of SARSA network in the training process.

input conv pool targetconv pool

Feature dectetion

Fig. 1 The convolution neural network in DRL

Fig. 2 The forward data flow in DRL

 The “Feature Extraction” in Fig. 2 can be seen as the image
preprocess and CNN network. After state-action is obtained,
proper action is selected to make decision by the SARSA
learning method. Later we introduce “experience replay”
technique [20] to improve the training process of DRL and
adapt reinforcement learning to scalable machine learning
process.

B. Experience replay

 In traditional reinforcement learning method, the learning
and updating should continue in sequence. That is to say, every
sample can stimulate one update, thus making the learning
process rather slow. In order to adapt to the scalable machine
learning process, the historical data is stored in memory and
will be retrained later continuously. In Fig. 2, a quadruple

()te s,a,r,s is kept in historical data 1, , ND e e , where

N indicates the size of historical stack. Then in the training

process, we sample the training data from this stack D . There
are some methods in which samples can be obtained, such as
consecutive sampling, uniform sampling, and weighted
sampling method by rewards. Here we follow the method of
uniform sampling method in DQN, which has two advantages.
Firstly, the efficiency of data usage is improved. Then
consecutive samples might be greatly relevant to each other.

Uniform method () ~ ()s,a,r,s U D can reduce the correlations

between input data [14].

Before raw images from video games are sampled, some
preprocess must be dealt with. We can obtain every frame from
the video. However, it would be less efficient if one frame is
regarded as the state s . Additionally, consecutive frames might

contain important feature in images as the speed or geometrical
relationship which can contribute more to the performance of
agents. Once a single frame is trained, all those vital features
are abandoned. So, in this paper one action is taken with every
4 frames, the same as [14]. The 4 frames are concatenated as
the state s . The concatenation is defined as function. After

being processed, the states are stored in stack D . The next
section will introduce the whole process of DRL based on
SARSA learning.

C. Deep SARSA learning

 Given the number of video game n , the SARSA network

should contain n outputs which represent n discrete state-

action values, to interact with ALE. The current state s is

processed by CNN to get the current state-action value 1Q ,

which is a n -dimension vector. Then the current action a is

selected with  -greedy algorithm. The reward r and the next

state s  is observed. In order to estimate the current (,)Q s a , the

next state-action value (,)Q s a  is obtained according to (4).

 Here, when the next state s  is input into CNN, (,)Q s a 

can be obtained. Then we define a label vector related to 1Q

being 2Q which represents the target vector. The two vectors

only have one different component. That is

(,) ()r Q s a Q s,a    . Now the whole scheme of DRL based

on SARSA learning is presented in Algorithm 1. It should be

noted that during training, the next action a for estimating the

current state-action value is never greedy. On the contrary,
there is a tiny probability that a random action is chosen.

Algorithm1 Deep Reinforcement Learning based on SARSA

1: initialize data stack D with size of N

 and parameters of CNN 

2: for episode=1, M do

3: initialize state 1 1{ }s x and preprocess state 1 1()s 

4: select 1a with  -greedy method

5: for 1,t T do

6: take action ta , observe next state 1tx  and tr ,

1 1()t ts  

7: store data 1(, ,)t t t ta ,r   into stack D

8: sample data from stack D

 select a with  -greedy method

9:
1

1

(, ;)

j

j

j j

r if episode teminates at step j
y

r Q a otherwise  


 



10: according to (7), optimize the loss function

()i iL 

ta a

11: end for

12: end for

IV. EXPERIMENTS AND RESULTS

In this section, two simulation experiments will be
presented to verify our algorithm. The two video games are
from Atari 2600, called breakout and seaquest. Fig. 3 shows
the images of the two games. The CNN contains 3 convolution
layers and two full connected layers. All the settings in these
two experiments are the same as DQN [14], except for the RL
method. The discount factor is 0.99. Every 250 thousand steps,
the agent is tested. Every testing episode are 125 thousand
steps.

A. Breakout

In breakout, 5 basic actions including up, down, left, right

and null are given. The operation image is like the left of Fig. 3.

This game expects the agent to obtain as many scores as

possible. The agent controls dam-board which can reflect the

bullet. Once the bullet hits bricks in the top area, the agent gets

1 point. If the bullet falls down, the number of lives is

subtracted 1 until the game is over.

Fig. 3 Two video games: breakout and seaquest.

Fig. 4 and Fig. 5 present the average score with deep
SARSA learning and deep Q learning. We can see that at the
end of the 20th epoch, deep SARSA learning reaches an
average reward of about 100. By contrast, deep Q learning can
reach about 170. We can conclude that in the early stage of
training, deep SARSA learning converges slower than deep Q
learning. However, after 30 epochs, deep SARSA learning
gains higher average scores. In addition, deep SARSA learning
converges more stably than deep Q learning.

Fig. 4 Average score with deep SARSA learning in Breakout

Fig. 5 Average score with deep Q learning in Breakout

The number of games during test with two algorithms is
displayed in Figs. 6 and 7. It reflects the convergent trends of
these algorithms. After training 20 epochs, deep SARSA
learning can also converge to the equilibrium point at about 75.
In deep Q learning, the equilibrium point is about 80.

Fig. 6 Number of games during test with deep SARSA learning in Breakout

Fig. 7 Number of games during test with deep Q learning in Breakout

B. Seaquest

In seaquest, 5 basic actions are given including up, down,
left, right and firing. The operation image is shown in the right
of Fig. 3. This game expects that the agent should obtain as
many scores as possible by saving divers and killing fish. The
agent can control the submarine with five basic actions as
mentioned above. Once the submarine saves the diver or kills
fish, the agent gets 20 and 40 points. If the submarine runs into
fish or the oxygen in the submarine is 0, the number of life
drops 1 until the game is over. So if human play this game, the
quantity of oxygen should also be taken into consideration.

Fig. 8 and Fig. 9 show the average score of deep SARSA
learning and deep Q learning. We can see that the score of deep
SARSA learning increases a little slower before the 10th epoch
than deep Q learning. However, it will converge much faster
after the 30th epoch. At last deep SARSA learning can gain
about 5000 points while deep Q learning only gets 3700 points.

Fig. 8 Average score with deep SARSA learning in Seaquest

Fig. 9 Average score with deep Q learning in Seaquest

The number of games during test with two algorithms is
shown in Fig. 10 and Fig. 11. It can also reflect the trend of
DRL process. Deep SARSA learning even shows a smother
process in this video game than deep Q learning.

Fig. 10 Number of games during test with deep SARSA learning in Seaquest

Fig. 11 Number of games during test with deep Q learning in Seaquest

V. CONCLUSION

In this paper, we introduce an on-policy method SARSA
learning to DRL. SARSA learning has some advantages when
being applied to decision making problems. It makes learning
process more stable and is more suitable to some complicated
systems. Given these facts, a new DRL algorithm based on
SARSA, called deep SARSA learning, is proposed to solve the
control problems of video games. Two simulation experiments
are given to compare the performance of deep SARSA learning
and deep Q learning. In Section 4, the results reveal that deep
SARSA learning gains higher scores and faster convergence in
breakout and seaquest than deep Q learning.

REFERENCES

[1] LeCun, Y., Y. Bengio, and G. Hinton, Deep learning. Nature,

2015, 521(7553): p. 436-444.

[2] LeCun, Y., Bottou L. and Bengio Y, Gradient-based learning

applied to document recognition. Proceedings of the IEEE,

1998, 86(11): p. 2278-2324.

[3] Farabet, C., Couprie C, Najman L and LeCun Y, Scene parsing

with multiscale feature learning, purity trees, and optimal

covers. arXiv preprint arXiv:1202.2160, 2012.

[4] Sutton, R.S. and A.G. Barto, Introduction to reinforcement

learning. 1998: MIT Press.

[5] Wang, F.Y., H. Zhang, and D. Liu, Adaptive dynamic

programming: an introduction. IEEE Computational Intelligence

Magazine, 2009, 4(2): p. 39-47.

[6] Zhao, D. and Y. Zhu, MEC--a near-optimal online

reinforcement learning algorithm for continuous deterministic

systems. IEEE Transactions on Neural Networks and Learning

Systems, 2015, 26(2): 346-356.

[7] Zhu, Y., D. Zhao, and X. Li, Using reinforcement learning

techniques to solve continuous-time non-linear optimal tracking

problem without system dynamics. IET Control Theory &

Applications, 2016, 10(12), 1339-1347.

[8] Zhu, Y. and D. Zhao, A data-based online reinforcement

learning algorithm satisfying probably approximately correct

principle. Neural Computing and Applications, 2015,26(4): p.

775-787.

[9] Xia, Z. and D. Zhao, Online bayesian reinforcement learning by

gaussian processes. IET Control Theory & Applications,

2016.10(12), 1331-1338.

[10] Lange, S. and M. Riedmiller. Deep auto-encoder neural

networks in reinforcement learning. in The 2010 International

Joint Conference on Neural Networks (IJCNN). 2010.

[11] Abtahi, F. and I. Fasel, Deep belief nets as function

approximators for reinforcement learning, in Proceedings of

IEEE ICDL-EPIROB. 2011.

[12] Arel, I., Deep Reinforcement Learning as Foundation for

Artificial General Intelligence, in Theoretical Foundations of

Artificial General Intelligence. 2012, Springer. p. 89-102.

[13] Mnih V, Kavukcuoglu K, Silver D, et al. Playing atari with deep

reinforcement learning. arXiv preprint arXiv:1312.5602, 2013.

[14] Mnih V, Kavukcuoglu K, Silver D, et al. Human-level control

through deep reinforcement learning. Nature, 2015, 518(7540):

529-533.

[15] Bellemare M G, Naddaf Y, Veness J, et al. The arcade learning

environment: an evaluation platform for general agents. Journal

of Artificial Intelligence Research, 2012, 47:253-279.

[16] Levine, S., Exploring deep and recurrent architectures for

optimal control. arXiv preprint arXiv:1311.1761, 2013.

[17] Silver D, Huang A, Maddison C J, et al. Mastering the game of

Go with deep neural networks and tree search. Nature, 2016,

529(7587): 484-489.

 [18] Defazio, A. and T. Graepel, A comparison of learning

algorithms on the Arcade Learning Environment. arXiv preprint

arXiv:1410.8620, 2014.

[19] Zeiler, M.D., ADADELTA: an adaptive learning rate method.

arXiv preprint arXiv:1212.5701, 2012.

[20] Lin, L.J., Reinforcement learning for robots using neural

networks. 1993, Technical report: DTIC Document.

