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Abstract—Vector evaluated particle swarm optimization
(VEPSO) extends the particle swarm optimization (PSO) algo-
rithm to deal with multi-objective optimization problems (MOPs).
VEPSO stores the found non-dominated solutions in an archive.
Management of the VEPSO archive is, however, not described
in detail. In this paper, a Pareto optimal front (POF) diversity
sensitivity analysis on the choice of the VEPSO’s archive size
and deletion approach is presented. The results indicate that the
well-known spread, solution distribution, maximum spread, and
spacing metrics are all sensitive to the choice of the archive size
and deletion approach. It is concluded that care must be taken
when selecting the archive size and deletion approach as the
impact on the diversity of the POF is notable.

I. INTRODUCTION

Particle swarm optimization (PSO) is a well-known stochas-
tic optimization technique for single objective optimization
with its roots in the simulation of the social behavior of birds
within a flock. PSO was first introduced by Kennedy and
Eberhart [1] in 1995. For a variety of complex problems, the
PSO algorithm has been shown to outperform traditional evo-
lutionary computation (EC) algorithms [2]. PSO has since been
extended to deal with multi-objective optimization problems
(MOPs) [3]–[7]. Vector evaluated particle swarm optimization
(VEPSO) is one such extension that extends the PSO algorithm
to deal with MOPs. VEPSO was first introduced by Parsopou-
los and Vrahatis [3]–[5] in 2002, inspired by and based on
the vector evaluated genetic algorithm (VEGA) developed by
Schaffer in 1985 [8].

Various studies have been conducted to analyze the perfor-
mance of the VEPSO algorithm [9], [10]. These studies use
quantitative performance metrics to compare the performance
of the VEPSO algorithm against other well-known multi-
objective optimization (MOO) algorithms. Helbig and Engel-
brecht [11] investigated the effect archive management has on
performance in the context of dynamic environments using
the Dynamic VEPSO (DVEPSO) algorithm. While studying
the performance of a newly introduced knowledge transfer
strategy (KTS), Harrison et al. [10] compared the VEPSO
algorithm against the optimized multi-objective particle swarm
optimization (OMOPSO) [6] and speed-constrained multi-

objective particle swarm optimization (SMPSO) [7] algo-
rithms. Similar to OMOPSO and SMPSO, VEPSO makes
use of an archive to store the non-dominated solutions found
during the search process. Unlike OMOPSO and SMPSO,
VEPSO does not have a well-described archive management
algorithm. Parsopoulos and Vrahatis did not define the number
of solutions that should be kept in, or how solutions should
be removed from the archive when the archive size limit is
reached.

This paper presents an analysis of the effect the chosen
archive deletion approach and archive size have on the distri-
bution of solutions along the Pareto optimal front (POF). The
well-known spread, solution distribution, maximum spread,
and spacing metrics are analyzed with respect to various
archive deletion approaches and archive sizes.

The remainder of this paper is organized as follows. Section
II discusses the VEPSO algorithm along with the knowledge
transfer strategies and archive management. Section III de-
scribes the POF diversity metrics used throughout this paper.
Section IV describes the experimental procedure and test sets.
Section V presents an analysis and discussion of the results
obtained from the experimental work. Finally, section VI
presents the findings and conclusions.

II. VECTOR EVALUATED PARTICLE SWARM OPTIMIZATION

This section describes the VEPSO algorithm, knowledge
transfer strategies, and archive management used throughout
this paper.

A. VEPSO Algorithm

VEPSO is a PSO based cooperative MOO algorithm. Each
objective of the multi-objective optimization problem (MOP)
is represented and optimized by a separate swarm. Information
is passed between the swarms through the use of a KTS.
The KTS is implemented by replacing the neighborhood best
particle in the standard PSO velocity update equation with the
global guide particle selected using the KTS. At the end of
each iteration, the non-dominated solutions are stored in an
archive if they are not dominated by any solution already in



the archive. The VEPSO velocity update equation is formally
defined as follows:

~vi(t + 1) =w~vi(t− 1) + c1~r1(t)(~yi(t)− ~xi(t))

+ c2~r2(t)(~̂yi(t)− ~xi(t)) (1)

where ~vi(t) is the velocity of particle i at iteration t, w is the
inertia weight, c1 and c2 are acceleration constants, ~r1(t) and
~r2(t) are random vectors with components sampled uniformly
from (0, 1) at iteration t, ~xi(t) is the position of particle i at
iteration t, ~yi(t) is the local (also referred to as the personal
best position) guide of particle i at iteration t, and ~̂yi(t) is the
global guide of particle i at iteration t. The VEPSO algorithm
selects ~̂yi(t) using the KTS.

B. Knowledge Transfer Strategies

Two KTSs were used throughout the work presented in this
paper.

Random Personal Best KTS: The global guide, ~̂yi(t), is
selected randomly from the personal best positions from a
randomly selected sub-swarm [12]. Grobler [12] found that
the random personal best KTS outperformed other KTSs for
at least two performance measures.

Parent Centric Crossover Archive (PCXA) KTS: The global
guide, ~̂yi(t), is calculated as the offspring of the parent centric
crossover (PCX) operator [13] applied to three randomly se-
lected non-dominated solutions from the archive [14]. Harrison
et al. [14] compared six different KTSs and found that PCXA
achieved the best solution diversity.

C. Archive Management

The original VEPSO algorithm does not specify how the
archive should be managed. While several different archive
management techniques have been developed [6], [7], [10],
[15], it is well known that more research in archive manage-
ment is needed to further the performance of multi-objective
optimization algorithms [15], [16].

Archives store non-dominated solutions found during the
search process. When a new solution is admitted into the
archive, all the solutions dominated by the new solution are
removed. Archives can be bounded or unbounded.

Bounded archives limit the number of solutions that can be
kept in the archive. The archive limit can be preset or dynamic
[17]. Once the archive size limit is reached, new solutions
can only be admitted if existing solutions in the archive are
removed. If no solutions in the archive are dominated by the
new solution, the solution can either not be admitted [18]
or a deletion approach (also known as a removal function
or pruning method) can be used to remove a solution from
the archive [15], [19]. The experimental work presented in
this paper made use of the following four different deletion
approaches:

Crowding Distance: Crowding distance was introduced by
Deb et al. [20] to estimate the density of solutions surrounding
a particular solution. The crowding distance of a point is
calculated as the average distance of the two points on either
side of the specified point along each of the objectives. The

solution with the lowest crowding distance is removed from
the archive. OMOPSO [6] and SMPSO [7] both use archives
with a crowding distance based deletion approach. It should
also be noted that various enhancements to crowding distance
have been proposed to improve calculation performance and
stability when more than two objectives are used [21]–[23].

Distance Metric: Bart-Beielstein et al. [15] proposed a
distance metric deletion approach based on relative distances
in the archive. The relative distance is calculated as follows:

fdel,i =
∑
∀j 6=i

(√√√√ K∑
k=1

( xi,k − xj,k

maxk −mink

)2)−1
(2)

where fdel,i is the relative distance for solution i in the archive,
K is the number of objectives, xi,k and xj,k is the k’th
objective function value for the i’th and j’th solutions in the
archive respectively, maxk and mink are the maximum and
minimum values reached by an archive member for the k’th
objective.

Nearest Neighbor: Harrison et al. [10] used a nearest
neightbor deletion approach. The nearest neighbor is calcu-
lated similarly to the distance metric. However, instead of
computing the distance between each pair of solutions in the
archive, only the n-closest neighboring solutions are used in
the calculation.

Random: The random deletion approach removes a ran-
domly selected solution from the archive.

III. PARETO OPTIMAL FRONT DIVERSITY METRICS

This section presents a summary of the popular diversity
metrics that are used throughout the literature.

A. Maximum Spread

Zitzler [24] introduced the maximum spread metric to
measure the length of the diagonal of a hyper-box formed
by the extreme function values. Tan et al. [25] modified the
maximum spread metric to normalize the objective function
values. The maximum spread metric is calculated as follows:

D̄ =

√√√√ 1

K

K∑
k=1

(
max∗k −min∗k

maxtrue,k −mintrue,k

)2

(3)

with max∗k = min
{
max

|Q|
i=1{xi,k},maxtrue,k

}
and min∗k =

max
{
min

|Q|
i=1{xi,k},mintrue,k

}
where Q is the set of so-

lutions in the archive, |Q| is the cardinality of the set Q,
maxtrue,k and mintrue,k are the maximum and minimum
values reached by the true POF for the k’th objective.

B. Distribution

Goh and Tan [26] defined the distribution metric, based on
the spacing metric [27], to give an indication of the distribution
of the solutions along the discovered POF. The distribution
metric is calculated as follows:

D =
1

|Q|

√√√√ 1

|Q|

|Q|∑
i=1

(
di − d̄

)2
(4)



with d̄ = 1
|Q|
∑|Q|

j=1 dj where di is the Euclidean distance
in objective space between i and its nearest neighbor in |Q|.
Smaller values for D indicate a more uniformly distributed
POF.

C. Spacing

Schott [27] introduced the spacing metric to calculate the
relative distance between consecutive solutions. The spacing
metric is calculated as follows:

S =

√√√√ 1

|Q| − 1

|Q|∑
i=1

(
d̄− di

)2
(5)

with di = minj∈Q∧j 6=i

∑K
k=1 |xi,k−xj,k| and d̄ =

∑|Q|
i=1

di

|Q| .
The spacing metric measures the standard deviations of differ-
ent di values. When the solutions are near uniformly spread,
the resulting spacing metric will be small.

D. Spread

Deb et al. [20] introduced the spread metric to measure
the distance between solutions while also taking the extreme
solutions into account. The spread metric is calculated as
follows:

∆ =

∑K
k=1 d

e
k +

∑|Q|
i=1 |di − d̄|∑K

k=1 d
e
k + |Q|d̄

(6)

where di can be any distance measure between neighboring
solutions, d̄ is the mean of the di values and dek is the
distance between the extreme solutions of |Q| and the true
POF corresponding to the k’th objective.

An ideal distribution will have ∆ = 0 if the distances
between solutions are equal and |Q| contains the extreme
solutions of the true POF, otherwise ∆ > 0.

IV. EXPERIMENTAL SETUP

This section describes the parameterization and benchmark
functions used throughout this paper.

A. Parameterization

All algorithm implementations were done and executed
using the CIlib framework [28]. The results presented in this
study were taken over 30 independent runs of 2000 iterations
of each algorithm for each problem. Each run had 50 particles
per swarm, increasing the swarm size had no notable effect on
the analysis presented in this study. Known well-performing
values were used for the inertia weight, w = 0.729844, and
the acceleration constants, c1 = c2 = 1.49618 [29]. n was set
to 2 for the nearest neighbor deletion approach.

B. Benchmark Functions

The experimental work presented in this paper made use of
the Zitzler, Deb and Thiele (ZDT) [30] test set. The test set
provides a mix of challenges to test MOO algorithms against.
Table I present a summary of the properties of each of the
problems in the aforementioned test set.

TABLE I
PROPERTIES OF THE ZDT PROBLEMS

Name Separability Modality Geometry

ZDT1 separable unimodal convex
ZDT2 separable unimodal concave
ZDT3 separable unimodal/multimodal disconnected
ZDT4 separable unimodal/multimodal convex
ZDT6 separable multimodal concave

V. ANALYSIS

Figs. 1–8 depict the measurement values for the four metrics
for ZDT1 through ZDT6 over 2000 iterations for archive sizes
50, 150, and 500. The next four subsections present an analysis
for each of the metrics.

A. Spread – ∆

Figs. 1 and 2 depict the ∆ (spread) values for both the
VEPSO (Random) and VEPSO (PCXA) algorithms. Results
for each of the four archive deletion approaches are shown.
From Figs. 1(a) – 1(c) the effect of the archive size is clearly
visible. The four archive deletion approaches for VEPSO
(Random) had similar ∆ values up to the point where the
archive size was reached. Figs. 9(a) – 9(c) depict the number
of solutions in the archive corresponding to the ∆ values in
Figs. 1(a), 1(f) and 1(k). Once the archive size was reached,
the ∆ decreased only in the cases where the crowding distance
and nearest neighbor deletion approaches were used. For each
of the problems the distance metric deletion approach led to
worse spread than the random deletion approach once the
archive size was reached.

In contrast to VEPSO (Random), the resulting ∆ values for
VEPSO (PCXA) are much more consistent for the different
archive sizes. This can be attributed to the VEPSO (PCXA)
algorithm reaching the archive size much faster than the
VEPSO (Random) algorithm, as can be noted in Figs. 9(d)
– 9(f). The speed at which the archive size is reached reduces
the number of iterations where the ∆ values are similar for
the four archive deletion approaches. Once the archive size
is reached, the crowding distance deletion approach performs
best, followed by the nearest neighbor deletion approach.
Again, the distance metric deletion approach performed worse
than the random deletion approach in terms of the ∆.

For ZDT4 the ∆ was erratic for both VEPSO (Random)
and VEPSO (PCXA) for all the deletion approaches over all
three archive sizes. The ∆ did not converge to any value.

For ZDT6 the archive size was reached much faster than in
the case of ZDT1, ZDT2, and ZDT3. Similar behavior for the
∆ can be noted once the archive size was reached.

Overall it is shown that ∆ is extremely sensitive to the
choice of the archive deletion approach in cases where the
archive size is reached. For smaller archives, the archive size
is reached faster and the effect on the ∆ is thus larger in these
cases. The crowding distance deletion approach achieved the
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Fig. 1. VEPSO (Random) Spread, ∆, over archive sizes 50, 150 and 500 for ZDT1 through ZDT6
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Fig. 2. VEPSO (PCXA) Spread, ∆, over archive sizes 50, 150 and 500 for ZDT1 through ZDT6
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Fig. 3. VEPSO (Random) Maximum Spread, D̄, over archive sizes 50, 150 and 500 for ZDT1 through ZDT6
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Fig. 4. VEPSO (PCXA) Maximum Spread, D̄, over archive sizes 50, 150 and 500 for ZDT1 through ZDT6
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Fig. 5. VEPSO (Random) Spacing, S, over archive sizes 50, 150 and 500 for ZDT1 through ZDT6
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Fig. 6. VEPSO (PCXA) Spacing, S, over archive sizes 50, 150 and 500 for ZDT1 through ZDT6
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Fig. 7. VEPSO (Random) Distribution, D, over archive sizes 50, 150 and 500 for ZDT1 through ZDT6
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Fig. 8. VEPSO (PCXA) Distribution, D, over archive sizes 50, 150 and 500 for ZDT1 through ZDT6
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Fig. 9. VEPSO (Random) and VEPSO (PCXA) ZDT1 number of solutions over archive sizes 50, 150 and 500

best ∆ when compared to the nearest neighbor, distance metric
and random deletion approaches.

B. Maximum Spread – D̄

D̄ proved to be a much more stable measurement than
∆ when comparing different archive sizes and deletion ap-
proaches. For VEPSO (Random) ZDT1 there was no notable
difference in the D̄ value after around 100 iterations, with only
the nearest neighbor and distance metric deletion approaches
showing a slightly improved D̄ with an archive size of 50.
The distance metric and nearest neighbor deletion approaches
showed the most notable variance in the D̄ value for ZDT3
over the archive sizes. Figs. 3(c), 3(h) and 3(m) depict the
D̄ for ZDT3 with archive sizes 50, 150 and 500. For smaller
archive sizes the distance metric and nearest neighbor deletion
approaches achieved slightly lower D̄ values. For ZDT4, the
D̄ value is somewhat erratic, a general decrease up to around
iteration 1000 can be noted.

For VEPSO (PCXA) the D̄ value behavior was similar
to VEPSO (Random) with the random deletion approach D̄
values being slightly erratic. The performance in the case
of ZDT4 was notably less erratic. ZDT3 showed a similar
pattern with the distance metric and nearest neighbor deletion
approaches showing a slight improvement in D̄ for smaller
archive sizes.

Overall, the D̄ metric provided more stable results over
the four deletion approaches and varying archive sizes. The
D̄ metric showed sensitivity on ZDT3 to the archive size
when using the distance metric or nearest neighbor deletion
approaches. No discernible pattern could be seen between the
D̄ value and when the archive size was reached.

C. Spacing – S

For VEPSO (Random) on ZDT1, ZDT2, and ZDT3, the
S metric showed little to no sensitivity towards the choice
of crowding distance, distance metric, and nearest neighbor
deletion approaches over the different archive sizes. Only a

slight sensitivity for the distance metric deletion approach can
be noted on ZDT3 where a higher S value is obtained. Again,
somewhat unstable S values can be noted for ZDT4.

For VEPSO (PCXA) on ZDT1 and ZDT2 the S metric
showed extreme sensitivity when using the random deletion
approach with an archive size of 50. Fig. 6(a) depicts the
S value for ZDT1. Note the high variation in S values. In
contrast to the ∆ metric shown earlier, the S metric achieved
lower values for the larger archive sizes. Similarly, for both
VEPSO (Random) and VEPSO (PCXA), smaller S values
were achieved for larger archive sizes on ZDT6. For VEPSO
(PCXA) on ZDT1 through ZDT3, the S metric did not show
sensitivity towards the choice of crowding distance, distance
metric and nearest neighbor deletion approaches for a fixed
archive size.

Overall it can be noted that S showed sensitivity towards
the random deletion approach over all archive sizes but more
so for smaller archive sizes.

D. Distribution – D

The D values for both VEPSO (Random) and VEPSO
(PCXA) exhibited similar behavior. No notable sensitivity
towards the deletion approach can be noted, except in the case
of VEPSO (PCXA) on ZDT1 where sensitivity towards the
random deletion approach can be noted when using an archive
size of 50. For ZDT3 and ZDT6 smaller archive sizes led to
higher D values for all the deletion approaches. D values for
ZDT4 were, similar to the other metrics, erratic.

E. Summary

Overall it can be noted that D had the least sensitivity to
the archive size and choice of deletion approach between all
the tested metrics.

VI. FINDINGS AND CONCLUSIONS

This paper presented an analysis of the effect the choice
of VEPSO archive size and deletion approach has on popular
solution diversity metrics. VEPSO was used to evaluate four



archive deletion approaches, namely crowding distance, dis-
tance metric, nearest neighbor, and random with three different
archive sizes. Each of the archive sizes and deletion approach
combinations was tested with both the random and PCXA
knowledge transfer strategies. The algorithms’ POF diversity
was measured using four popular metrics, namely maximum
spread D̄, distribution D, spacing S and spread ∆.

The experimental results showed that all the tested metrics
exhibited sensitivity towards the choice of deletion approach
and archive size in at least some cases. The results indicate
that ∆ had the highest resolution of all the metrics but also had
the highest sensitivity towards the choice of deletion approach
and archive size. D was the least sensitive and can also be
reasoned to have had the lowest resolution of all the metrics.
S had the highest sensitivity towards the random deletion
approach. D̄ proved to be the most stable measurement as
it only measures the extent of the POF and not the diversity
of the solutions that make up the POF. Due to the usage of
solutions from the archive, VEPSO (PCXA) was influenced
more than VEPSO (Random) by the choice of archive deletion
approach. Overall, the crowding distance and nearest neighbor
deletion approaches generally yielded good results for the POF
diversity metrics.

From the experimental results, it can be concluded that care
must be taken when choosing the archive size and deletion
approach as the impact of the POF diversity can be notable.
Comparing diversity metrics between algorithms should not
be done without taking the archive size into account.

A more in-depth analysis of the spacing, S, and solution
distribution, D, metrics are currently underway. Future work
will include an investigation into why the S and D metrics
displayed less sensitivity to changes in the archive size and
archive deletion approach.
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