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Abstract— Point-based value iteration algorithms have 
been deeply studied for solving POMDP problems. 
However, most of these algorithms explore the belief 
point set only by single heuristic criterion, thus limit the 
effectiveness. A novel value iteration algorithm (MCVI) 
based on multi-criteria for exploring belief point set is 
presented in the paper. MCVI filters the belief points on 
which the interval between upper and lower bounds of 
value function is less than the threshold, and then 
explores the successor belief point which is farthest away 
from the explored belief point set. MCVI can improve the 
effect and efficiency of convergence by guaranteeing that 
the explored point set is effective and fully distributed in 
the reachable belief space. Experiment results of four 
benchmarks show that MCVI can obtain better global 
optimal solution. 

I. INTRODUCTION  

The Partially Observable Markov Decision Processes 
(POMDPs) provide a rich framework for planning and control 
problems under uncertain environments such as robotic 
application [1], helping disabled people [2], spoken dialogue 
systems [3], and so on. However, because solving POMDPs 
exactly is an NP hard problem, the application of the 
POMDPs has been limited for a long time. Point-based 
POMDP algorithms iteratively apply value updates only to a 
set of representative belief points [4]. These algorithms can 
significantly improve the overall efficiency by reducing the 
search space size, therefore become the current research hot 
spot. 

The key content of point-based POMDP methods is about 
how to explore the reachable belief space. State of the art 
algorithms explore reachable belief points only based on 
single standard, thus hamper their efficiency. Approximate 
solutions based on density standard such as PBVI [4] does not 
consider value function and cannot control the scale of belief 
point set. Approximate solutions based on value function such 
as HSVI [5] and GapMin [6] explore belief point set only 
according to the difference between lower and upper bounds 
of the value function instead of the distribution information of 
the belief points, so they cannot guarantee the efficiency of 
convergence. This paper proposes a new value iteration 
algorithm MCVI (Multi-Criteria Value Iteration) to address 
the need for the convergence efficiency. Firstly, MCVI 

prunes the points from the explored belief point set on which 
the interval between upper and lower bounds of value 
function is less than the threshold after each iteration. 
Secondly, MCVI only considers successor belief points on 
which the interval between upper and lower bounds of value 
function is greater than the threshold to ensure that the value 
update on the successor belief point can reduce the value 
uncertainty of the precursor effectively. Lastly, MCVI only 
explores the belief point which is farthest away from the 
explored belief point set to make the explored belief point set 
fully distributed in reachable belief space. By examining the 
exploration value of reachable belief points during exploring, 
many meaningless explorations and iterations can be avoided, 
thus the efficiency and effectiveness of the algorithm can be 
guaranteed. Experimental results show that comparing with 
HSVI and PBVI, MCVI can achieve better solution quality 
with higher ADR and less cost on some large-scale problems. 

This paper is structured as follows. Section II introduces 
the foundations about POMDPs. We also simply review the 
exploration of PBVI and HSVI algorithm. Section III 
explains the principles and processes of MCVI algorithm. 
Section IV reports experiments with four benchmark 
problems. Section V concludes this paper and lists some 
issues that we will study in the future.  

 

II. BACKGROUND   

A. POMDP Framework 

Formally, a POMDP is a tuple that consists of 8 elements, 
(S, A, Z, T, O, R, b0, ߛ). S is a set of states. A is a set of actions. 
Z is a set of observations. T is a set of conditional transition 
probabilities between states. O is a set of conditional 
observations. R is the reward function. b0 is the initial belief 
distribution. and γ is the discount factor. 
  An agent in POMDP framework cannot directly get its own 
state, but only find the observations from the environments, 
so it has to plan the next action according to the history 
sequence {ܽ଴, ݖଵ, ܽଵ, ݖଶ, ܽଶ, ݖଷ , …, ܽ௧ିଵ, ݖ௧}. So a sufficient 
statistic belief state b is used to maintain the historical 
information [7]: 

ܾ௧(s)= P(ݏ௧ = ௧ݖ |ݏ , ܽ௧ିଵ, … , ,ଵݖ ܽ଴). 
The probability distribution b can be updated by the Bayes 

rule: 



b୲( sᇱ) = τ(ܾ௧ିଵ, ܽ௧ିଵ , ௧) = ୓ݖ
(௦ᇲ,௔೟షభ,௭೟) ∑ ୘(௦,௔೟షభ,௦ᇲ)ୠ౪షభ(ୱ)౩∈౏

୔ (୸౪|௕೟షభ,௔೟షభ)
  , 

P(z୲|ܾ௧ିଵ, ܽ௧ିଵ) = ∑ O(ݏᇱ, ܽ௧ିଵ , ௧)ୱᇲ∈ୗݖ ∑ T(ݏ, ܽ௧ିଵ, ᇱ)ୱ∈ୗݏ b୲ିଵ(s). 
  

    The policy π for a POMDP is to plan actions for belief states: 
π(ܾ) → ܽ. For a policy π, the expected total reward value of 
π is 

V஠(b) = Eൣ∑ γ୲ି୲బR(ܾ௧ , π(ܾ௧))୘
୲ୀ୲౥

൧. 
The solution for a given POMDP model is to find an optimal 

policy π∗ , which can maximize the expected total reward 
value. The optimal policy can be obtained by Bellman 
iteration:  

V୩ାଵ(b) = max
௔∈஺

ൣ∑ ,s)ܴ(ݏ)ܾ ܽ) + γ ∑ P(ݖ|ܾ, ܽ)V୩൫τ(ܾ, ܽ, ൯୸∈୞௦∈ௌ(ݖ ൧. 

  The corresponding policy is: 
π୩ାଵ(b) = argmax

௔∈஺
[∑ ,ݏ)ܴ(ݏ)ܾ ܽ) + γ ∑ P(z|b, ܽ) ௞ܸ(τ(ܾ, ܽ, ୸∈୞ୱ∈ୗ((ݖ ]. 

Smallwood and Sondik have proved that the optimal reward 
value is a piecewise linear convex function on the belief 
space for any finite horizon [7], which can be expressed as a 
collection of vectors:  

Г௧ = {α଴, αଵ, … α|Г೟|}, ௧ܸ(ܾ) = max
஑∈Г౪

ܾ ∙ α. 

POMDP problems can be solved by Bellman value 
iteration. However, the complexity of the exact update 
operation from the vectors set Г௧  to Г௧ାଵ is approximate 
O(|S|2|A||Г௧ ||Z|), so the curses of dimensionality and history are 
the main problem for POMDP exact value iteration 
algorithms.  
 

B. Point-based Methods for POMDPs 

The computational cost for POMDP exact value iteration 
algorithms is exponential, therefore there has been a lot of 
work on useful approximation algorithms. In the point-based 
techniques, a set of representative belief points R(b0) are 
selected from the belief space (called the simplex △) which 
contains only some useful belief points reachable from b0 [4]. 
Point-based algorithms then only update the vector set to 
those belief points and obtain the approximate value function 
with a certain error bound.  
The difference between point-based algorithms and exact 
algorithms on update operation is shown as Fig. 1. Exact 
algorithms update the vector set on the whole simplex △, so 
they have to cross-sum all vectors in the update operation. 
Point-based algorithms only update the vector set to the 
sampled belief point set, thus the optimal vector for an belief 
point b is determined in the update operation and the reward 
of action a is calculated by |Z| optimal vectors. Point-based 
algorithms generate the optimal vector for belief point set by 
backup (see Alg. 1) operations. 

The computational cost of the backup operation on point 
set B to update Г௧ାଵ from Г௧ is approximate O(|S|2|A||Z||B|2). 
There are two main parts in point-based algorithms: the 
exploration of the sampled belief point set B, and the backup 
operation on the belief point set B. In general, the main 
difference between point-based algorithms is how they 
collect the belief subset B [8]. 

Fig. 1. The Difference Between Update Operation to 
Single Point b and on the Simplex △  

 

A ：lgorithm 1  backup 
  Input: POMDP, B,Г௧ 
  Output: Г௧ାଵ  
    Г୲ାଵ  ← Г୲  
  for each b ∈ B do 
     ܽ∗ ←  argmax௔(R(ܽ, ܾ) +
                          γ ∑ max஑∈Г೟

∑ T(ݏ, ܽ, ᇱ)ୱᇲݏ  O(ܽ, ,ᇱݏ ୸(ݖ ܾ௔
௭(sᇱ)α  

     αୠ ←   R(ܽ∗, ܾ) +
                     γ ∑ max஑∈Г೟

∑ T(ݏ, ܽ∗, ᇱ)ୱᇲݏ  O(ܽ∗, ,ᇱݏ ୸(ݖ bୟ∗
୸ (sᇱ)α  

     Г௧ାଵ  ←  Г௧ାଵ  ∪   { ௕ߙ }
  end for 
   

 

C. The Exploration of PBVI and HSVI Algorithm 

PBVI algorithm explores the belief point set only based 
on the density standard. For each point in the belief point set, 
PBVI calculates the distances between its successors and the 
belief point set, and explores the farthest successor. After 
expansion PBVI updates the value on the points randomly 
until convergence.  

 

Algorithm 2： PBVIExploration(ܤ) 
   Input: B 
   Output: B 
    for each b ∈  do ܤ

         successor(ܾ) ← { ܾᇱ|ܾᇱ =  ܾ௔
௭ , ∀ܽ}  

         ܾ′ ← argmax௕ᇲ∈ୱ୳ୡୡୣୱୱ୭୰(௕),௕ᇲ∉஻‖bᇱ − B‖ଵ 
← ܤ         ܤ  ∪ { ܾ’ } 

end for 
return B 

     
Algorithm 3： HSVIExploration(ܾ, ,ߝ  (ݐ

Input: B 
Output: B 
if ( ܸ(  ܾ) - ܸ(ܾ)) > ϵγି୲ do 

              ܽ∗ ← argmax௔ Q୚ഥ(ܾ, ܽ)   
         z∗ ← ,ܾ|ݖ)ܲ)௭ݔܽ݉݃ݎܽ ܽ∗) (ܸ(ܾ௔∗,௭) −  ܸ൫ܾ௔∗ ,௭൯ ))   
            ܾᇱ ←  ߬(ܾ, ܽ∗,  (∗ݖ
← ܤ             ܤ  ∪ { ܾᇱ} 
           HSVIExploration( ܾᇱ, ,ߝ ݐ + 1)  

end if 
return B 



HSVI expands belief point set based on value function 
standard. It maintains both upper bound ܸ and lower bound 
 ܸ of value function at the same time. HSVI iterates the value 
function repeatedly until the reward value function is 
convergent at the initial belief point b0. For each round of 
exploration, HSVI selects the optimal action with the greatest 
upper bound of the value function according to the IE–MAX 
principle and then explores the subsequent belief point of the 
greatest uncertainty. HSVI’s exploration recursively follows 
a single path down the search tree until satisfying a 
termination condition based on the width of the bounds 
interval: 

ܸ(ܾ) − ܸ(ܾ) ≤ εγ−t. 
After each exploration, HSVI updates the upper and lower 

bounds on the value function to the explored belief point set 
in reverse order of exploration. 

 

III. A  MULTI-CRITERIA VALUE ITERATION 

ALGORITHM FOR POMDPS  

A. Multi-Criteria for Exploration  

PBVI explores the successor points with the farthest 
distance to expand the explored belief point set. Although the 
successor points found in the space are fully dispersed, they 
cannot guarantee the improvement of value function. HSVI 
explores the belief point set only according to the difference 
between upper and lower bounds of value function, which 
may lead to the problem that the same belief points and paths 
are repeated explored.  

In order to improve the efficiency and effectiveness of 
exploration, this paper proposes a new value iteration 
algorithm MCVI, which optimizes the expansion process of 
belief point set according to multi-criteria. MCVI evaluates 
the expansion value of each explored points on account of 
value function heuristic criterion and then selects reasonable 
successors by both the density criterion and the value 
function heuristic criterion.  

MCVI prunes belief points from explored belief point 
set on which the interval between upper and lower bounds of 
value function is less than the threshold after each iteration: 

௧݌ܽܩ = ) ݔܽ݉
 

 ܸ௧(ܾ) −  ௧ܸ(ܾ))/3, 

௣௥௨௡௘ܤ = { ܾ|ܾ ∈ ,ܤ ܸ௧(ܾ) −  ௧ܸ(ܾ) ≥
ఌ

ఊ೟షభ ∧  ܸ௧(ܾ) −

 ௧ܸ(ܾ) ≥  .{௧݌ܽܩ
Where t is the number of the iteration. 
    For each belief point in ܤ௣௥௨௡௘ , MCVI only takes into 
account those successor belief points on which the interval  
between upper and lower bounds of value function is also 
greater than threshold:  

(ܾ)ݎ݋ݏݏ݁ܿܿݑݏ = { ܾᇱ|ܾᇱ =  ܾ௔
௭, ܸ௧(ܾᇱ) − ௧ܸ(ܾᇱ) ≥

ఌ

ఊ೟ ∧

 ܸ௧(ܾᇱ) − ௧ܸ(ܾᇱ) ≥  .{௧݌ܽܩ
Then, MCVI only explores the belief points which is 

farthest away from the explored belief point set to ensure the 

explored belief point set fully distributed in reachable belief 
space. 

‖ܾᇱ − ଵ‖ܤ = min௕∈஻‖ܾᇱ − ܾ‖ଵ, 
(ܾ)݁ݎ݋݈݌ݔ݁ = ௕ᇲ∈௦௨௖௖௘௦௦௢௥(௕)\஻‖ܾᇱݔܽ݉݃ݎܽ −  .ଵ‖ܤ

    Compared with PBVI algorithms, MCVI only considers 
quality belief points based on value function heuristic 
criterion. On the one hand, MCVI reduces the size of 
explored belief point set and improves algorithm’s 
adaptability. On the other hand, the value iteration performed 
only on the effective belief points guarantees the efficiency 
of the algorithm.  

Compared with value function based algorithms such as 
HSVI, MCVI ensures the explored belief point set distributed 
as far as possible, so it can avoid the interference of local 
optimum which may lead to meaningless iterations.  

 

B. MCVI Algorithm  

MCVI(see Alg. 4) is a multi-criteria value iteration 
algorithm, and it optimizes the exploration of belief point set 
by MCVIExploration (see Alg. 5). MCVI maintains both 
lower and upper bounds on the value function. The lower 
bound on the value function ܸ is initialized by Blind Policy 
(see Alg. 6) and iterated by backup function (see Alg. 1). The 
upper bound of the value function ܸ is expressed as a set of 
belief/value points (ܾ௜,  ௜). ܸ is initialized according to Fastݒ
Informed Bound algorithm (see Alg. 7) and updated by 
adding explored belief point and its upper value: 

ܸ
ᇱ

= ܸ ∪ ቆܾ, ݔܽ݉
௔∈஺

ܳ (ܾ, ܽ)ቇ, 

ܳ(ܾ, ܽ) = ∑ ,ݏ)ܴ ܽ) ൉ (ݏ)ܾ + ߛ ∑ ,ܾ|ݖ)ܲ ܽ) ܸ(ܾ௔,௭)௭∈௓௦∈ௌ . 
 

The upper value ܸ(ܾ) at point b is the projection of b onto 
the convex hull formed by ܸ. The exact upper value of a new 
belief point can be calculated by dynamic programming 
techniques. However, the computational cost for the dynamic 
programming is relatively high. So in MCVI algorithm we 
calculate the projection approximately by sawtooth algorithm 
(see Alg. 8).  

 
Algorithm 4： MCVI 

Input: POMDP 
Output: ߨ∗, തܸ , ܸ 

    ܸ  ←  (POMDP)ݕ݈ܿ݅݋݈ܲ݀݊݅ܤ 
      ܸ   ←   (POMDP)ܤܫܨ 
← ܤ        { ܾ଴ } 
     while ( V( ܾ଴) - V( ܾ଴) ) > Ɛ  do 

           B ←  MCVIExploration (B) 
           V ←  backup(B, V)  
           V ←  sawtooth(B, V)     

 end while 
 
 
 



Algorithm 5： MCVIExploration (B) 
Input: B 
Output: B 
ܲܣܩ = ) ݔܽ݉

 
ܸ(ܾ) − ܸ(ܾ))/3 

௣௥௨௡௘ܤ   ← { ܾ|ܾ ∈ ,ܤ ܸ(ܾ)  −  ܸ(ܾ) ≥
ఌ

ఊ೟షభ  ∧  ܸ(ܾ) −

 ܸ(ܾ) ≥  { ܲܣܩ
for (ܾ ∈ B୮୰୳୬ୣ ) 
     ܽ∗ =  (ܽ)݉݋݀݊ܽݎ

       successor(ܾ) ← { ܾᇱ|ܾᇱ =  ܾ௔∗
௭ , V(ܾᇱ) −  V(ܾᇱ) ≥

க

ஓ౪  ∧  ܸ(ܾᇱ) − ܸ(ܾᇱ) ≥ ,ܲܣܩ   {ݖ∀

      ܾ′ ← argmax௕ᇲ∈ୱ୳ୡୡୣୱୱ୭୰(௕),௕ᇲ∉஻‖ܾᇱ −  ଵ‖ܤ
= ܤ       ܤ  ∪ { ܾ’ } 

end for  
return ܤ 

 
Algorithm 6： Blind Policy 

Input: POMDP 
Output: ܸ 

   ௔ܸ(s) ←  ݉݅݊௔,௦ ܴ௔(sᇱ)  (1 − γ)⁄ ,ݏ∀   ܽ 
    repeat  

  ௔ܸ(s)  ←  ܴ௔(s)  +  γ ∑ T(ݏ, ܽ, ᇱ)ୱᇲݏ  ௔ܸ(sᇱ)  ∀ܽ, ݏ
  

until convergence 
return ܸ 

 
Algorithm 7： Fast Informed Bound 

Input: POMDP 
Output: തܸ  

   ܸ௔(s)  ← ௔,௦ܴ௔(s)/(1ݔܽ݉  − γ) ∀ݏ, ܽ 
     repeat  
              ܸ௔(s)  ←  ܴ௔(s)  +
                      γ ∑ ௔ᇲݔܽ݉ ∑ T(ݏ, ܽ, ᇱ)ୱᇲݏ  O(ܽ, ,ᇱݏ ୸(ݖ ܸ௔ᇲ (sᇱ)  ∀ܽ,  ݏ

 until convergence 
return തܸ  

 
：Algorithm 8 sawtooth 

Input: POMDP 
Output: V 

    for each b ∈ B do 
       Vୡ୭୬  ← { b | b(s) = 1, ∃s ∈ S })  
       vୠ

଴  ←  ∑ v(b)ୠ∈୚ౙ౥౤ ∙ b  
         for each <b୧ , v୧ >∈ V- Vୡ୭୬ do 

             c(b୧) ←  minୱ:ୠ౟(ୱ)ஷ଴ b(s) b୧(s)⁄  
             f(b୧) ← v୧  - ∑ v(b)ୠ∈୚ౙ౥౤ ∙ b୧(s) 

 end for 
        v ← vୠ

଴ +  min୧ c(b୧) f(b୧) 
        Vᇱ ← Vᇱ ∪<b, v> 

 end for 
 return V 

 

C. Algorithm Analysis 

The computational complexity of measuring the 
expansion value of each belief point in set B for further 
extending is similar to O(|ܤ|) . The computational 
complexity of estimating the value of each subsequent points 
for exploring is about O(|B||A||Z|).  

The density ߜ஻  of a set of belief points B is the 
maximum distance from any legal belief to B, ஻ߜ  =
maxୠᇲ∈∆‖ܾᇱ − B‖ଵ . Then, the error introduced by MCVI’s 

each iteration is at most 
(ோ೘ೌೣିோ೘೔೙)ఋಳ

ଵିఊ
 [4]. Let ܾᇱϵ∆ be the 

point where MCVI makes its worst iteration error, and ܾ ϵܤ 
be the closest sampled belief point to ܾᇱ. Let ߙᇱ be the vector 
which is the exact value function at ܾᇱ, and α be maximal at 
b. 

Then: 
          ߮୧୲ୣ୰ୟ୲୧୭୬  ≤ ᇱߙ  ∙ ܾᇱ − ߙ  ∙ ܾᇱ 

= ᇱߙ  ∙ ܾᇱ − ߙ  ∙ ܾᇱ + ᇱߙ ) ∙ ܾ − ᇱߙ ∙ ܾ)  
    ≤ ᇱߙ ∙ ܾᇱ − ߙ  ∙ ܾᇱ + ߙ ∙ ܾ ᇱߙ − ∙ ܾ        
    = ᇱߙ) − (ߙ  ∙ (ܾᇱ − ܾ)                             

≤ ᇱߙ‖ − ஶ‖ܾᇱ‖ߙ  − ܾ‖ଵ                        
≤ ᇱߙ‖ −                                      ஻ߜஶ‖ߙ 

     ≤  
(ோ೘ೌೣିோ೘೔೙)

ଵିఊ
 ஻ߜ

For any belief set B and any horizon n, the error of MCVI 
is ฮV୲

୆ − V∗ฮ
ஶ

. The overall error is bounded by ‖V୲
∗ −

V∗‖ஶ + ฮV୲
୆ − V୲

∗ฮ
ஶ

.The first term is bounded by ߛ௧‖ ଴ܸ
∗ −

ܸ∗‖ஶ, the second is bounded by the theorem below. 
    ‖ ௧ܸ

஻ − ௧ܸ
∗‖ஶ = ுு௏ூܬ‖ ௧ܸିଵ

஻ − ܬ ௧ܸିଵ
∗ ‖ஶ 

     ≤ ுு௏ூܬ‖  ௧ܸିଵ
஻ − ܬ ௧ܸିଵ

஻ ‖ஶ + ܬ‖  ௧ܸିଵ
஻ − ܬ ௧ܸିଵ

∗ ‖ஶ   
     ≤  ߮୧୲ୣ୰ୟ୲୧୭୬ + ܬ‖  ௧ܸିଵ

஻ − ܬ ௧ܸିଵ
∗ ‖ஶ                          

     ≤  ߮୧୲ୣ୰ୟ୲୧୭୬ + ‖ߛ  ௧ܸିଵ
஻ − ௧ܸିଵ

∗ ‖ஶ                           
     =  ߮୧୲ୣ୰ୟ୲୧୭୬ +                                                ୲ିଵ߮ߛ 

     ≤  
(ோ೘ೌೣିோ೘೔೙)

ଵିఊ
஻ߜ +                              ୲ିଵ߮ߛ 

     ≤
(ோ೘ೌೣିோ೘೔೙)

(ଵିఊ)మ   ஻ߜ 

So the maximal error between value function ௧ܸ  and 

exact value function in simplex Δ is 
(ோ೘ೌೣିோ೘೔೙)

(ଵିఊ)మ  .஻ߜ 

IV. EXPERIMENTS  AND ANALYSIS  

A. Experimental Setup 

We run MCVI, PBVI and HSVI with four well-known 
benchmarks: Hallway2, Tiger-grid, TagAvoid and 
UnderwaterNav. Hallway2 and Tiger-grid are classic maze 
problems. Tag Avoid simulates the chase of robotics. 
Underwater Navigation is an instance of coastal navigation. 
The characteristics of POMDP benchmarks are described in 
Table I, where |S| is the number of states, |A| is the number 
of actions and |Z| is the number of observations. 

We implement MCVI, PBVI and HSVI by the package 
MCVI. In all experiments the discount factor γ is set to 0.95 
and the threshold ε is set to 0.001. We log the iteration time, 
|B|, |Γ| when a new value function is obtained, then execute 
actions from ܾ଴ for 100 horizons to simulate the discounted 



reward, and repeat this simulation 500 times to calculate the 
average discounted reward (ADR) of the value function. 
Experiment will be terminated when presupposed ADR or 
time is reached. We report the highest ADR, the number of 
vectors and belief states, and the iteration time of each 
algorithm on each benchmark.  

B. Experimental Results 

The experimental results of MCVI, PBVI and HSVI are 
compared in Table II and Table III. In Table II, column 2 lists 
the ADR for each algorithm and column 3 lists the iteration 
time it costs. Table III shows the number of vectors and belief 
points when each algorithm is convergent. 

Experimental results show that the convergence speed of 
MCVI is faster than PBVI and HSVI algorithm, and MCVI 
algorithm can achieve higher ADR in relatively shorter time 
as the scale of POMDP problems goes up. 

 
Table I 

CHARACTERISTICS OF POMDP BENCHMARKS 

 
 

Table II 
THE COMPARISON FOR MCVI, PBVI AND HSVI ON 

ADR AND TIME 

 
Table III  

THE COMPARISON FOR MCVI, PBVI AND HSVI ON 
|Γ| AND |B| 

 

C. Experimental Analysis 

Fig.2 to 5 show the comparison for MCVI, PBVI and 
HSVI on four problems. The X-axis denotes the iteration time 
(s) of algorithms and the Y-axis denotes ADR. In all figures, 
MCVI is denoted by the solid line, PBVI is denoted by the 
dashed line, and HSVI is denoted by the dot line. The dotted 
line perpendicular to the X axis indicates the time when 
MCVI is convergent. 

 

  
Fig.2. The comparison of ADR for MCVI, PBVI and HSVI 
on Tiger-grid 

 

  
Fig.3. The comparison of ADR for MCVI, PBVI and HSVI 
on Hallway2 

  
 
Fig.4. The comparison of ADR for MCVI, PBVI and HSVI 
on TagAvoid 

problems |S| |A| |Z| 
Tiger-grid 36 5 17 
Hallway2 92 5 17 
TagAvoid 870 5 30 

UnderwaterNav 2650 6 103 

problems ADR Time(s) 

PBVI HSVI MCVI PBVI HSVI MCVI 
Tiger-
grid 

2.278 2.231 2.353 375 385 365 

Hallway2 0.478 0.481 0.500 115 95 65 
tagAvoid -6.361 -6.205 -5.966 265 125 100 
Underwa

terNav 
731.5

03 
737.8

35 
743.6

31 
150 105 55 

problems |Γ| |B| 

PBVI HSVI MCVI PBV
I 

HSVI MC
VI 

Tiger-
grid 

2861 1762 1302 828 963 728 

Hallway
2 

395 933 162 226 282 128 

tagAvoid 2198 1233 906 633 1865 426 

Underwa
terNav 

1036 501 432 415 812 238 



 
 

  
 
Fig.5. The comparison of ADR for MCVI, PBVI and HSVI 
on UnderwaterNav 
 

  

As Tiger-grid is a small-scale problem, in the experiments 
MCVI converges faster than PBVI and HSVI and achieves 
slightly higher ADR. In the solution of Hallway2, MCVI 
converges faster than HSVI by 1.46 times and PBVI by 1.77 
times. As shown in Fig. 2 and Fig. 3, due to the less sampling 
of HSVI than MCVI in each iteration, the convergence rate 
of HSVI is relatively higher during the early stage of 
iterations. However, MCVI keeps on exploring distributed 
belief points which are helpful to the convergence of value 
function while HSVI spends time in meaningless iteration in 
the later period, so MCVI can gain better convergence 
efficiency and effect at last. 

In the experiments of TagAvoid, MCVI gains higher ADR 
than HSVI when the algorithm converges, and the 
convergence efficiency of the MCVI is 1.25 times faster than 
that of HSVI. MCVI’s ADR is much higher than PBVI, and 
converges faster than PBVI by 2.65 times. In UnderwaterNav, 
MCVI also achieves better ADR than HSVI and PBVI. 
MCVI converges faster than HSVI by 1.91 times and PBVI 
by 2.73 times. 
 Fig.6 to 9 show the comparison of the number of vectors 
in value function |Γ| for MCVI, PBVI and HSVI on four 
problems. The X-axis represents the iteration time (s) of 
algorithms and the Y-axis represents the number of vectors.  
 

 
 
Fig.6. The comparison of |Γ| for MCVI, PBVI and HSVI on 
Tiger-Grid 
 

 
 
Fig.7. The comparison of |Γ| for MCVI, PBVI and HSVI on 
Hallway2 

 

 
 
Fig.8. The comparison of |Γ| for MCVI, PBVI and HSVI on 
TagAvoid 

 



 
 
Fig.9. The comparison of |Γ| for MCVI, PBVI and HSVI on 
UnderwaterNav 

  

These figures show that the vectors number of PBVI and 
HSVI in each iteration is obviously more than that of MCVI 
algorithm. So MCVI can achieve better convergence with 
less value function vectors during the iteration on all 
benchmark problems, which means that MCVI can obtain 
more reasonable belief point set through the exploration 
based on hybrid heuristic criterion.  

Although both MCVI and PBVI use density criterion to 
explore reachable belief point set, MCVI maintains the upper 
bound of the function value and filters the belief points which 
do not have exploration value according to the value function 
criterion, thus guarantees the effectiveness of the sampled 
belief points. Compared with HSVI, MCVI breadth-first 
explores belief points by density criterion, thus can avoid the 
interference of local optimization. 

As shown in experimental results, MCVI is not only able 
to obtain a better ADR value, but also improve the 
convergence efficiency, especially in the large-scale problem 
UnderwaterNav. So it is convinced that MCVI is more 
capable of dealing with large-scale problems. Furthermore, it 
is also obvious that MCVI can avoid the limitations of single 
exploration standard, enhance the adaptability to different 
POMDP problems, and improve the efficiency and 
effectiveness of value iteration. 
 

V. CONCLUSION 

This paper proposes a new algorithm MCVI which makes 
up the defects of the single exploration standard by using both 
the density standard and the value function heuristic criterion 
for exploring reachable belief points. MCVI integrates PBVI 
and HSVI, and maintains the upper and lower bounds of the 
value function at the same time. The larger the difference 

between the upper and lower bounds, the greater the 
uncertainty of value function at the belief point. So MCVI 
filters points on which the interval between the upper and 
lower bounds of value function is less than a given threshold 
to ensure the sampling effect during exploring the belief point 
set. On the other hand, MCVI only explore belief point with 
the most distance from the explored point set, which 
guarantees that the explored point set is fully distributed in 
reachable belief space.  

In next step, we will try to explore a number of effective 
successor belief points every time for each belief point in 
௣௥௨௡௘ܤ  to further improve the efficiency of the exploration of 
the reachable belief space according to GapMin algorithm. 
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