
A Multi-Criteria Value Iteration Algorithm for POMDP problems

Feng Liu, Tao Zheng, and Xia Hua
National Key Laboratory for Novel Software Technology

Software institute, Nanjing University, Nanjing, China
 Email: fengliu@nju.edu.cn, zt@nju.edu.cn, mf1632024@smail.nju.edu.cn

Abstract— Point-based value iteration algorithms have
been deeply studied for solving POMDP problems.
However, most of these algorithms explore the belief
point set only by single heuristic criterion, thus limit the
effectiveness. A novel value iteration algorithm (MCVI)
based on multi-criteria for exploring belief point set is
presented in the paper. MCVI filters the belief points on
which the interval between upper and lower bounds of
value function is less than the threshold, and then
explores the successor belief point which is farthest away
from the explored belief point set. MCVI can improve the
effect and efficiency of convergence by guaranteeing that
the explored point set is effective and fully distributed in
the reachable belief space. Experiment results of four
benchmarks show that MCVI can obtain better global
optimal solution.

I. INTRODUCTION

The Partially Observable Markov Decision Processes
(POMDPs) provide a rich framework for planning and control
problems under uncertain environments such as robotic
application [1], helping disabled people [2], spoken dialogue
systems [3], and so on. However, because solving POMDPs
exactly is an NP hard problem, the application of the
POMDPs has been limited for a long time. Point-based
POMDP algorithms iteratively apply value updates only to a
set of representative belief points [4]. These algorithms can
significantly improve the overall efficiency by reducing the
search space size, therefore become the current research hot
spot.

The key content of point-based POMDP methods is about
how to explore the reachable belief space. State of the art
algorithms explore reachable belief points only based on
single standard, thus hamper their efficiency. Approximate
solutions based on density standard such as PBVI [4] does not
consider value function and cannot control the scale of belief
point set. Approximate solutions based on value function such
as HSVI [5] and GapMin [6] explore belief point set only
according to the difference between lower and upper bounds
of the value function instead of the distribution information of
the belief points, so they cannot guarantee the efficiency of
convergence. This paper proposes a new value iteration
algorithm MCVI (Multi-Criteria Value Iteration) to address
the need for the convergence efficiency. Firstly, MCVI

prunes the points from the explored belief point set on which
the interval between upper and lower bounds of value
function is less than the threshold after each iteration.
Secondly, MCVI only considers successor belief points on
which the interval between upper and lower bounds of value
function is greater than the threshold to ensure that the value
update on the successor belief point can reduce the value
uncertainty of the precursor effectively. Lastly, MCVI only
explores the belief point which is farthest away from the
explored belief point set to make the explored belief point set
fully distributed in reachable belief space. By examining the
exploration value of reachable belief points during exploring,
many meaningless explorations and iterations can be avoided,
thus the efficiency and effectiveness of the algorithm can be
guaranteed. Experimental results show that comparing with
HSVI and PBVI, MCVI can achieve better solution quality
with higher ADR and less cost on some large-scale problems.

This paper is structured as follows. Section II introduces
the foundations about POMDPs. We also simply review the
exploration of PBVI and HSVI algorithm. Section III
explains the principles and processes of MCVI algorithm.
Section IV reports experiments with four benchmark
problems. Section V concludes this paper and lists some
issues that we will study in the future.

II. BACKGROUND

A. POMDP Framework

Formally, a POMDP is a tuple that consists of 8 elements,
(S, A, Z, T, O, R, b0,). S is a set of states. A is a set of actions.
Z is a set of observations. T is a set of conditional transition
probabilities between states. O is a set of conditional
observations. R is the reward function. b0 is the initial belief
distribution. and γ is the discount factor.
 An agent in POMDP framework cannot directly get its own
state, but only find the observations from the environments,
so it has to plan the next action according to the history
sequence { , , , , , , …, , }. So a sufficient
statistic belief state b is used to maintain the historical
information [7]:

(s)= P(= | , , … , ,).
The probability distribution b can be updated by the Bayes

rule:

b (s) = τ(, ,) =
(, ,) ∑ (, ,) ()∈

 (| ,)
 ,

P(z | ,) = ∑ O(, ,)∈ ∑ T(, ,)∈ b (s).

 The policy π for a POMDP is to plan actions for belief states:
π() → . For a policy π, the expected total reward value of
π is

V (b) = E ∑ γ R(, π()) .
The solution for a given POMDP model is to find an optimal

policy π∗ , which can maximize the expected total reward
value. The optimal policy can be obtained by Bellman
iteration:

V (b) = max
∈

∑ () (s,) + γ ∑ P(| ,)V τ(, ,)∈∈ .

 The corresponding policy is:
π (b) = argmax

∈
[∑ () (,) + γ ∑ P(z|b,) (τ(, ,))∈∈].

Smallwood and Sondik have proved that the optimal reward
value is a piecewise linear convex function on the belief
space for any finite horizon [7], which can be expressed as a
collection of vectors:

Г = {α , α , … α|Г |}, () = max
∈Г

∙ α.

POMDP problems can be solved by Bellman value
iteration. However, the complexity of the exact update
operation from the vectors set Г to Г is approximate
O(|S|2|A||Г ||Z|), so the curses of dimensionality and history are
the main problem for POMDP exact value iteration
algorithms.

B. Point-based Methods for POMDPs

The computational cost for POMDP exact value iteration
algorithms is exponential, therefore there has been a lot of
work on useful approximation algorithms. In the point-based
techniques, a set of representative belief points R(b0) are
selected from the belief space (called the simplex △) which
contains only some useful belief points reachable from b0 [4].
Point-based algorithms then only update the vector set to
those belief points and obtain the approximate value function
with a certain error bound.
The difference between point-based algorithms and exact
algorithms on update operation is shown as Fig. 1. Exact
algorithms update the vector set on the whole simplex △, so
they have to cross-sum all vectors in the update operation.
Point-based algorithms only update the vector set to the
sampled belief point set, thus the optimal vector for an belief
point b is determined in the update operation and the reward
of action a is calculated by |Z| optimal vectors. Point-based
algorithms generate the optimal vector for belief point set by
backup (see Alg. 1) operations.

The computational cost of the backup operation on point
set B to update Г from Г is approximate O(|S|2|A||Z||B|2).
There are two main parts in point-based algorithms: the
exploration of the sampled belief point set B, and the backup
operation on the belief point set B. In general, the main
difference between point-based algorithms is how they
collect the belief subset B [8].

Fig. 1. The Difference Between Update Operation to
Single Point b and on the Simplex △

A ：lgorithm 1 backup
 Input: POMDP, B,Г
 Output: Г
 Г ← Г
 for each b ∈ B do
 ∗ ← argmax (R(,) +
 γ ∑ max ∈Г ∑ T(, ,) O(, ,) (s)α
 α ← R(∗,) +
 γ ∑ max ∈Г ∑ T(, ∗,) O(∗, ,) b ∗(s)α
 Г ← Г ∪ { }
 end for

C. The Exploration of PBVI and HSVI Algorithm

PBVI algorithm explores the belief point set only based
on the density standard. For each point in the belief point set,
PBVI calculates the distances between its successors and the
belief point set, and explores the farthest successor. After
expansion PBVI updates the value on the points randomly
until convergence.

Algorithm 2： PBVIExploration()
 Input: B
 Output: B
 for each b ∈ do

 successor() ← { | = , ∀ }
 ′ ← argmax ∈ (), ∉ ‖b − B‖
 ← ∪ { ’ }

end for
return B

Algorithm 3： HSVIExploration(, ,)

Input: B
Output: B
if (() - ()) > ϵγ do

 ∗ ← argmax Q (,)
 z∗ ← ((| , ∗) ((

∗,) −
∗ ,))

 ← (, ∗, ∗)
 ← ∪ { }
 HSVIExploration(, , + 1)

end if
return B

HSVI expands belief point set based on value function
standard. It maintains both upper bound and lower bound
 of value function at the same time. HSVI iterates the value
function repeatedly until the reward value function is
convergent at the initial belief point b0. For each round of
exploration, HSVI selects the optimal action with the greatest
upper bound of the value function according to the IE–MAX
principle and then explores the subsequent belief point of the
greatest uncertainty. HSVI’s exploration recursively follows
a single path down the search tree until satisfying a
termination condition based on the width of the bounds
interval:

() − () ≤ εγ−t.
After each exploration, HSVI updates the upper and lower

bounds on the value function to the explored belief point set
in reverse order of exploration.

III. A MULTI-CRITERIA VALUE ITERATION

ALGORITHM FOR POMDPS

A. Multi-Criteria for Exploration

PBVI explores the successor points with the farthest
distance to expand the explored belief point set. Although the
successor points found in the space are fully dispersed, they
cannot guarantee the improvement of value function. HSVI
explores the belief point set only according to the difference
between upper and lower bounds of value function, which
may lead to the problem that the same belief points and paths
are repeated explored.

In order to improve the efficiency and effectiveness of
exploration, this paper proposes a new value iteration
algorithm MCVI, which optimizes the expansion process of
belief point set according to multi-criteria. MCVI evaluates
the expansion value of each explored points on account of
value function heuristic criterion and then selects reasonable
successors by both the density criterion and the value
function heuristic criterion.

MCVI prunes belief points from explored belief point
set on which the interval between upper and lower bounds of
value function is less than the threshold after each iteration:

= (

 () − ())/3,

= { | ∈ , () − () ≥ ∧ () −

 () ≥ }.
Where t is the number of the iteration.
 For each belief point in , MCVI only takes into
account those successor belief points on which the interval
between upper and lower bounds of value function is also
greater than threshold:

() = { | = , () − () ≥ ∧

 () − () ≥ }.
Then, MCVI only explores the belief points which is

farthest away from the explored belief point set to ensure the

explored belief point set fully distributed in reachable belief
space.

‖ − ‖ = min ∈ ‖ − ‖ ,
() = ∈ ()\ ‖ − ‖ .

 Compared with PBVI algorithms, MCVI only considers
quality belief points based on value function heuristic
criterion. On the one hand, MCVI reduces the size of
explored belief point set and improves algorithm’s
adaptability. On the other hand, the value iteration performed
only on the effective belief points guarantees the efficiency
of the algorithm.

Compared with value function based algorithms such as
HSVI, MCVI ensures the explored belief point set distributed
as far as possible, so it can avoid the interference of local
optimum which may lead to meaningless iterations.

B. MCVI Algorithm

MCVI(see Alg. 4) is a multi-criteria value iteration
algorithm, and it optimizes the exploration of belief point set
by MCVIExploration (see Alg. 5). MCVI maintains both
lower and upper bounds on the value function. The lower
bound on the value function is initialized by Blind Policy
(see Alg. 6) and iterated by backup function (see Alg. 1). The
upper bound of the value function is expressed as a set of
belief/value points (,). is initialized according to Fast
Informed Bound algorithm (see Alg. 7) and updated by
adding explored belief point and its upper value:

= ∪ ,
∈

(,) ,

(,) = ∑ (,) () + ∑ (| ,) (,)∈∈ .

The upper value () at point b is the projection of b onto
the convex hull formed by . The exact upper value of a new
belief point can be calculated by dynamic programming
techniques. However, the computational cost for the dynamic
programming is relatively high. So in MCVI algorithm we
calculate the projection approximately by sawtooth algorithm
(see Alg. 8).

Algorithm 4： MCVI

Input: POMDP
Output: ∗, ,

 ← (POMDP)
 ← (POMDP)
 ← { }
 while (V() - V()) > Ɛ do

 B ← MCVIExploration (B)
 V ← backup(B, V)
 V ← sawtooth(B, V)

 end while

Algorithm 5： MCVIExploration (B)
Input: B
Output: B

= (

() − ())/3

 ← { | ∈ , () − () ≥ ∧ () −

 () ≥ }
for (∈ B)
 ∗ = ()

 successor() ← { | = ∗ , V() − V() ≥
 ∧ () − () ≥ , ∀ }

 ′ ← argmax ∈ (), ∉ ‖ − ‖
 = ∪ { ’ }

end for
return

Algorithm 6： Blind Policy

Input: POMDP
Output:

 (s) ← , (s) (1 − γ)⁄ ∀ ,
 repeat

 (s) ← (s) + γ ∑ T(, ,) (s) ∀ ,

until convergence
return

Algorithm 7： Fast Informed Bound

Input: POMDP
Output:

 (s) ← , (s)/(1 − γ) ∀ ,
 repeat
 (s) ← (s) +
 γ ∑ ∑ T(, ,) O(, ,) (s) ∀ ,

 until convergence
return

：Algorithm 8 sawtooth

Input: POMDP
Output: V

 for each b ∈ B do
 V ← { b | b(s) = 1, ∃s ∈ S })
 v ← ∑ v(b)∈ ∙ b

 for each <b , v >∈ V- V do
 c(b) ← min : () b(s) b (s)⁄
 f(b) ← v - ∑ v(b)∈ ∙ b (s)

 end for
 v ← v + min c(b) f(b)
 V ← V ∪<b, v>

 end for
 return V

C. Algorithm Analysis

The computational complexity of measuring the
expansion value of each belief point in set B for further
extending is similar to O(| |) . The computational
complexity of estimating the value of each subsequent points
for exploring is about O(|B||A||Z|).

The density of a set of belief points B is the
maximum distance from any legal belief to B, =
max ∈∆‖ − B‖ . Then, the error introduced by MCVI’s

each iteration is at most
()

 [4]. Let ϵ∆ be the

point where MCVI makes its worst iteration error, and ϵ
be the closest sampled belief point to . Let be the vector
which is the exact value function at , and α be maximal at
b.

Then:
 ≤ ∙ − ∙

= ∙ − ∙ + (∙ − ∙)
 ≤ ∙ − ∙ + ∙ − ∙
 = (−) ∙ (−)

≤ ‖ − ‖ ‖ − ‖
≤ ‖ − ‖

 ≤
()

For any belief set B and any horizon n, the error of MCVI
is V − V∗ . The overall error is bounded by ‖V∗ −

V∗‖ + V − V∗ .The first term is bounded by ‖ ∗ −
∗‖ , the second is bounded by the theorem below.

 ‖ − ∗‖ = ‖ − ∗ ‖
 ≤ ‖ − ‖ + ‖ − ∗ ‖
 ≤ + ‖ − ∗ ‖
 ≤ + ‖ − ∗ ‖
 = +

 ≤
()

+

 ≤
()

()

So the maximal error between value function and

exact value function in simplex Δ is
()

()
 .

IV. EXPERIMENTS AND ANALYSIS

A. Experimental Setup

We run MCVI, PBVI and HSVI with four well-known
benchmarks: Hallway2, Tiger-grid, TagAvoid and
UnderwaterNav. Hallway2 and Tiger-grid are classic maze
problems. Tag Avoid simulates the chase of robotics.
Underwater Navigation is an instance of coastal navigation.
The characteristics of POMDP benchmarks are described in
Table I, where |S| is the number of states, |A| is the number
of actions and |Z| is the number of observations.

We implement MCVI, PBVI and HSVI by the package
MCVI. In all experiments the discount factor γ is set to 0.95
and the threshold ε is set to 0.001. We log the iteration time,
|B|, |Γ| when a new value function is obtained, then execute
actions from for 100 horizons to simulate the discounted

reward, and repeat this simulation 500 times to calculate the
average discounted reward (ADR) of the value function.
Experiment will be terminated when presupposed ADR or
time is reached. We report the highest ADR, the number of
vectors and belief states, and the iteration time of each
algorithm on each benchmark.

B. Experimental Results

The experimental results of MCVI, PBVI and HSVI are
compared in Table II and Table III. In Table II, column 2 lists
the ADR for each algorithm and column 3 lists the iteration
time it costs. Table III shows the number of vectors and belief
points when each algorithm is convergent.

Experimental results show that the convergence speed of
MCVI is faster than PBVI and HSVI algorithm, and MCVI
algorithm can achieve higher ADR in relatively shorter time
as the scale of POMDP problems goes up.

Table I

CHARACTERISTICS OF POMDP BENCHMARKS

Table II
THE COMPARISON FOR MCVI, PBVI AND HSVI ON

ADR AND TIME

Table III

THE COMPARISON FOR MCVI, PBVI AND HSVI ON
|Γ| AND |B|

C. Experimental Analysis

Fig.2 to 5 show the comparison for MCVI, PBVI and
HSVI on four problems. The X-axis denotes the iteration time
(s) of algorithms and the Y-axis denotes ADR. In all figures,
MCVI is denoted by the solid line, PBVI is denoted by the
dashed line, and HSVI is denoted by the dot line. The dotted
line perpendicular to the X axis indicates the time when
MCVI is convergent.

Fig.2. The comparison of ADR for MCVI, PBVI and HSVI
on Tiger-grid

Fig.3. The comparison of ADR for MCVI, PBVI and HSVI
on Hallway2

Fig.4. The comparison of ADR for MCVI, PBVI and HSVI
on TagAvoid

problems |S| |A| |Z|
Tiger-grid 36 5 17
Hallway2 92 5 17
TagAvoid 870 5 30

UnderwaterNav 2650 6 103

problems ADR Time(s)

PBVI HSVI MCVI PBVI HSVI MCVI
Tiger-
grid

2.278 2.231 2.353 375 385 365

Hallway2 0.478 0.481 0.500 115 95 65
tagAvoid -6.361 -6.205 -5.966 265 125 100
Underwa

terNav
731.5

03
737.8

35
743.6

31
150 105 55

problems |Γ| |B|

PBVI HSVI MCVI PBV
I

HSVI MC
VI

Tiger-
grid

2861 1762 1302 828 963 728

Hallway
2

395 933 162 226 282 128

tagAvoid 2198 1233 906 633 1865 426

Underwa
terNav

1036 501 432 415 812 238

Fig.5. The comparison of ADR for MCVI, PBVI and HSVI
on UnderwaterNav

As Tiger-grid is a small-scale problem, in the experiments
MCVI converges faster than PBVI and HSVI and achieves
slightly higher ADR. In the solution of Hallway2, MCVI
converges faster than HSVI by 1.46 times and PBVI by 1.77
times. As shown in Fig. 2 and Fig. 3, due to the less sampling
of HSVI than MCVI in each iteration, the convergence rate
of HSVI is relatively higher during the early stage of
iterations. However, MCVI keeps on exploring distributed
belief points which are helpful to the convergence of value
function while HSVI spends time in meaningless iteration in
the later period, so MCVI can gain better convergence
efficiency and effect at last.

In the experiments of TagAvoid, MCVI gains higher ADR
than HSVI when the algorithm converges, and the
convergence efficiency of the MCVI is 1.25 times faster than
that of HSVI. MCVI’s ADR is much higher than PBVI, and
converges faster than PBVI by 2.65 times. In UnderwaterNav,
MCVI also achieves better ADR than HSVI and PBVI.
MCVI converges faster than HSVI by 1.91 times and PBVI
by 2.73 times.
 Fig.6 to 9 show the comparison of the number of vectors
in value function |Γ| for MCVI, PBVI and HSVI on four
problems. The X-axis represents the iteration time (s) of
algorithms and the Y-axis represents the number of vectors.

Fig.6. The comparison of |Γ| for MCVI, PBVI and HSVI on
Tiger-Grid

Fig.7. The comparison of |Γ| for MCVI, PBVI and HSVI on
Hallway2

Fig.8. The comparison of |Γ| for MCVI, PBVI and HSVI on
TagAvoid

Fig.9. The comparison of |Γ| for MCVI, PBVI and HSVI on
UnderwaterNav

These figures show that the vectors number of PBVI and
HSVI in each iteration is obviously more than that of MCVI
algorithm. So MCVI can achieve better convergence with
less value function vectors during the iteration on all
benchmark problems, which means that MCVI can obtain
more reasonable belief point set through the exploration
based on hybrid heuristic criterion.

Although both MCVI and PBVI use density criterion to
explore reachable belief point set, MCVI maintains the upper
bound of the function value and filters the belief points which
do not have exploration value according to the value function
criterion, thus guarantees the effectiveness of the sampled
belief points. Compared with HSVI, MCVI breadth-first
explores belief points by density criterion, thus can avoid the
interference of local optimization.

As shown in experimental results, MCVI is not only able
to obtain a better ADR value, but also improve the
convergence efficiency, especially in the large-scale problem
UnderwaterNav. So it is convinced that MCVI is more
capable of dealing with large-scale problems. Furthermore, it
is also obvious that MCVI can avoid the limitations of single
exploration standard, enhance the adaptability to different
POMDP problems, and improve the efficiency and
effectiveness of value iteration.

V. CONCLUSION

This paper proposes a new algorithm MCVI which makes
up the defects of the single exploration standard by using both
the density standard and the value function heuristic criterion
for exploring reachable belief points. MCVI integrates PBVI
and HSVI, and maintains the upper and lower bounds of the
value function at the same time. The larger the difference

between the upper and lower bounds, the greater the
uncertainty of value function at the belief point. So MCVI
filters points on which the interval between the upper and
lower bounds of value function is less than a given threshold
to ensure the sampling effect during exploring the belief point
set. On the other hand, MCVI only explore belief point with
the most distance from the explored point set, which
guarantees that the explored point set is fully distributed in
reachable belief space.

In next step, we will try to explore a number of effective
successor belief points every time for each belief point in

 to further improve the efficiency of the exploration of
the reachable belief space according to GapMin algorithm.

ACKNOWLEDGMENT

This work is supported by the National Natural Science
Foundation of China (No. 61373010) and the Fund of State
Key Laboratory for Novel Software Technology (Nanjing
University, No. ZZKT2016B07).

REFERENCES

[1] T. Smith, “Probabilistic planning for robotic exploration”,
Doctoral dissertation, Massachusetts Institute of Technology,
2007

[2] J. Boger, P. Poupart, J. Hoey, C. Boutilier, G. Fernie and A.
Mihailidis, “A decision-theoretic approach to task assistance
for persons with dementia”, In Proceedings of the international
joint conference on artificial intelligence, IJCAI (pp. 1293–
1299), 2005

[3] J. D. Williams, and S. Young, “Partially observable Markov
decision processes for spoken dialog systems”, Computer
Speech & Language 21(2): 393-422, 2007

[4] J. Gordon, G. Pineau and S. Thrun, “Point-based value iteration:
An anytime algorithm for POMDPs”, In Proceedings of the
Twenty-Third International Joint Conference on Artificial
Intelligence, pp.1025–1032, 2003.

[5] T. Smith and R. Simmons, “Point-based POMDP algorithms:
Improved analysis and implementation”, In Proceedings of the
21th conference on Uncertainty in artificial intelligence,
pp.542-547, 2005.

[6] P. Poupart, K. E. Kim and D. Kim, “Closing the Gap: Improved
Bounds on Optimal POMDP Solutions”, In Proceedings of the
21st International Conference on Automated Planning and
Scheduling, pp.194–201, 2011.

[7] R. D. Smallwood and E. J. Sondik, “The optimal control of
partially observable Markov processes over a finite horizon”,
Operations Research, 21(5): 1071-1088, 1973.

[8] G. Shani, J. Pineau and R. Kaplow, “A survey of point-based
POMDP solvers”, Autonomous Agents and Multi-Agent
Systems 27(1): 1-51, 2013.

