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Abstract—Imitation is a social learning method in which an
individual observes and mimics another’s actions. To implement
imitation on robots, a number of questions should be answered,
including what information should be copied during imitation,
how to choose the behaviors to be copied and how to translate
the observed behaviors. In this research, we aim to answer the
first two questions in an experiment scenario with simulated
agents. First, based on the content of information that is copied
during imitation, we compare two different imitation methods,
namely, imitation of actions only and imitation of actions and
perceptions. It is shown that if the observed behaviors are
highly context specific, imitating perceptions along with actions is
beneficial compared to imitating actions only. Second, to answer
the question of which behaviors to copy, we compared different
selection strategies. It is shown that the agents can choose which
behaviors to copy by checking the utility of observed behaviors
by a trial and error mechanism.

I. INTRODUCTION

Imitation is a social learning method in which an individual

observes and copies another individual’s actions. A well-

known definition from Thorndike [1] claims that imitation

is the activity of ”learning to do some act from seeing it

done”. As the definition suggests, there is a direct link between

imitation and learning. Because it allows information and skill

transfer between agents, it has been seen as an important

form of cultural learning [2]. As a results, imitation have been

widely studied by both biologists and psychologists. Biological

research on imitation is mainly interested in the adaptive value

of imitation and psychological research on imitation examines

the mechanisms and functions of imitation [3].

The study of imitation has received much attention in

Robotics research. Dautenhahn et al. claimed that [4] the

study of imitation in robotics holds the promise of overcoming

the need to program every behavior a robot might need to

perform. A robot that is able to imitate can learn new actions

by observing the demonstrations of those actions. Bakker and

Kuniyoshi [5] claimed that the observed actions that are copied

by imitation is valuable as they are executed by an agent

sharing the same environment. As a result, an agent with the

ability to imitate has an increased level of adaptation to its

environment. As the expectations from imitation is high, there

have been many research on the topic, leading to the area of

imitation learning. Some example research that used imitation

to train robots are [6], [7], [8], [9].

Learning by imitation is different from other adaptive learn-

ing algorithms that have been widely used in robotics research,

including evolutionary algorithms [10], reinforcement learning

[11] or supervised learning [12] as learning by imitation

exploits social interactions. An agent that is able to imitate

can observe model behaviors that are executed by other

agents that share the same environment. After the observation,

the agent should find the matching behaviors of its own to

imitate the observed behaviors. Yet, the observed behaviors

should become a part of the individual learning process of the

imitating agent. As a result, in order to implement imitation,

a number of questions should be answered:

1) How to translate the observed behaviors.

2) What information should be copied during imitation.

3) How to choose the behaviors to be copied.

To answer the first question, an agent that imitates should

translate the observed behaviors to its own set of actions.

This can be done by matching each observed behavior with a

behavior of its own. The problem of matching the actuators of

the demonstrator agent to the imitator’s actuators is presented

as the correspondence problem [13]. This issue is solved by

programming in most of the research that use imitation. That

is, there are some procedures that automatically translate the

observed actions into a set of actions that can be executed by

the imitating agent.

The second question is about what information should

be copied during imitation. Based on the content of the

information that is copied during imitation, Winfield and Erbas

[14] identified at least three types of imitation:

• Imitation of actions only: An agent copies another’s

sequence of movements, lights, or sounds. With this type

of imitation, the imitator only records a sequence of

actions that are executed by the demonstrator.

• Imitation of actions and perceptions: An agent copies

another’s sequence of actions along with the environmen-

tal effects that triggered those sequence of actions. The

imitator can then enact the copied behaviors in a similar

environmental context.

• Imitation of goals: An agent copies the goal or intentions

of another’s. It is possible that the imitator, once it copies

the intentions of the demonstrator, may execute different

set of actions to achieve the same goal.



In this research, two types of imitation methods, namely

imitation of actions only, and imitation of actions and percep-

tions, are compared in an experiment scenario. The simulated

agents learn to achieve a task by using Reinforcement Q

Learning Algorithm [15] and imitation enhance their learning.

The agents that imitate actions only copy the executed actions

that are performed by other agents. The agents that imitate

actions and perceptions copy the executed actions and also

record in what context these actions are executed. It is shown

that the agents that imitate actions and perceptions can learn

faster if the executed actions are context specific.

To answer the third question, the imitator agent should be

able to determine which demonstrated actions are beneficial to

itself and copy specifically those actions that are beneficial (or

at least, expected to be beneficial). In most of the research that

use imitation in conjunction with individual learning, the agent

that imitates is able to imitate a teacher or mentor agent and

the observed behaviors are expected to be beneficial [16], [17],

[18], [19]. In these research, the imitating agent has access

to the internal state or expectations of the observed agent.

The experiences or the expectations of the observed agent are

used to train the imitator agent. In these research, the task

that the imitator has to achieve is to learn the optimal policy

or the unknown reward function of the expert agent which

is supposed to be implicitly followed in the expert’s behavior.

Erbas et al. [20] had a different approach in which the imitator

has no access to the internal state of the observed agent. The

only information that is transferred between the agents is the

set of actions that are performed by the demonstrator. Finding

in what context these observed behaviors is beneficial (or if

these actions are beneficial at all) is determined by a trial and

error mechanism as the imitator tries those observed actions

in a number of different states. In this way, it has been shown

that imitation of purely observed behaviors speeds up learning.

In this research, different selection strategies are compared

and it is shown that the agents can choose which behaviors to

copy by checking the utility of observed behaviors in a trial

and error mechanism.

The paper organized as follows: In section II, we explain the

experimental setup. In section III the models for different types

of imitation are presented. Section IV presents the experiments

to compare the models of different types of imitation. In

section V, different types of selection strategies are presented

and their effects on the performance of the learning agents

are examined. Finally section VI concludes the paper and

mentions some further research questions.

II. EXPERIMENT SETUP

To explore different aspects of imitation in a multi agent

group, we simulated agents that employ the Q-learning al-

gorithm [15] to achieve a foraging task. The environment in

which the agents operate is a grid world (Fig. 1). In each

experiment run, there are some randomly placed obstacles

that limits the possible actions of the agents. During the

experiments, in each time unit the agents can move to one

of the eight neighboring cells of their current position. The

agents start from their initial position and try to reach the

target location.

A learning agent uses an ǫ-greedy algorithm in which it

determines the action with the highest Q value in its current

state. With a probability of 1 − ǫ, it chooses that action and

executes it. With a probability of ǫ, it chooses a random action

and executes it. In this way, the agent updates the Q value for

its current state and chosen action by using the formula below:

(1)
Q(st, ac) = Q(st, ac) + α[rt+1 + γmaxaQ(st+1, a)

−Q(st, ac)]

in which ac is the chosen action, α is the learning rate, γ is

the discount factor, and rt+1 is the reward for getting to state

st+1 from the state st. The only state that gives a reward is

the goal state.

Fig. 1. The arena is a 10 x 10 grid world. The agents start from the top-left
corner (S) and they try to reach the target which is at bottom-right corner of
the arena (T). In the figure four obstacles that limit the possible moves of
agents in adjacent cells, are placed on the arena (thick lines). In each run,
two obstacles of length four units are placed on the top of the arena and two
obstacles of length four units are placed on the bottom of the arena.

When the agents reach the target, they return to their starting

position and try to reach the target again. One experiment

run takes 100,000 time units, during which the Q values for

each state action pair have enough time to converge to their

final values. Every 100 time units, the shortest path to target

location that can be achieved by the agent is determined by

using a greedy action selection method on the current Q values.

III. THE MODELS OF IMITATION

A. Imitation of Actions Only

The agent that can imitate actions only are able to observe

and replicate the sequence of action that are executed by other

agents. Based on this algorithm, at each time unit, the agent

can be in one of the three states:

• Moving: The agent makes its move based on the ǫ-greedy

Q learning algorithm, as explained in section II.



• Observing: While in moving state, with a probability

equal to 0.01, the agent gets into the observing state and

stays static for five time units. It chooses an agent to

observe the actions that are executed by that agent. At

the end of this period, the agent saves the observed list

of actions into its memory and gets back to moving state.

There is a cost of imitation such that the agents lose time

while they watch other agents.

• Imitating: While in moving state, with a probability

equal to pimitate, the agent gets into the imitating state

and enacts one of the list of actions that it previously

observed, by executing the actions in the selected list of

actions one by one while updating related Q values of the

state action pairs. If these actions contradict the Q values

of the agent, i.e. they have lower Q values compared to

other actions in the same state, or if there is an obstacle

that prevents the action to be executed, then the selected

list of actions is abandoned and the agent acts according

to its original ǫ-greedy algorithm.

The pseudo-code for the controller of the agents is given in

Algorithm 1.

Once in imitating state, the agent executes the actions that

are previously observed as it checks if those actions contradict

its Q values. If the agent has an alternative action in its current

state with a higher Q value, the observed action is rejected

and the agent acts based on its original ǫ-greedy algorithm.

Therefore, imitation provides model behaviors to the learning

agent, if the agent does not have an action with a high Q

value in its current state. This can only happen in the regions

of the state-action space that the agent has not explored yet.

As the agent executes observed actions, those actions become

a part of its individual learning process and assists the agent

in unexplored regions of the state-action space.

As stated above, while in moving state, the agent prob-

abilistically selects a list of actions and with a probability

equal to pimitate, the agent gets into the imitating state (These

procedures are executed at line 10 and line 11 of Algorithm

1). To choose which list of actions to enact and to calculate

pimitate, the agent performs a Q value test that is implemented

in [20]. According to this method, the agent calculates the sum

of Q values for all state-action pairs, and compares this value

to the sum of Q values for all state-action pairs when the

enacted list of actions is completed or abandoned. If there is

an increase in the Q values, it means that the observed set of

actions takes the agent closer to the goal state. If there is no

increase, it means that the observed set of actions cause the

agent to explore some part of the state-action space which do

not contribute to the agent’s overall performance. The method

depends on the past experience of the agent, and it tries to

determine the utility of observed set of actions based on the

temporal differences in Q values.

The ratio of which there is an increase in the Q values, Ri,

is calculated for each list of actions as follows:

ni
Q+

= number of times Q values increased when list of

actions i is enacted

ni
replicated = number of times list of actions i is enacted

(2)Ri =
ni
Q+

+ 1

ni
replicated + 1

Ri is used to regulate the imitation probability of each list

of actions and to choose which list of action to imitate. If

the agent has n distinct list of actions in its memory, the

probability of choosing the list of action i is calculated by:

(3)P i
choose =

Ri∑n

k=1
Rk

The probability of enacting list of actions i once it is chosen

is:

(4)piimitate = βRi

in which β is a constant that regulates the initial imitation

probability.

The agents can store up to ten lists of actions in their

memory. Whenever the memory is filled up and a new list

of actions is observed, among the lists of actions currently in

the memory, the list of action that has the minimum Ri value

is removed and the new list is recorded in the empty slot.

B. Imitation of Actions and Perceptions

As explained in the previous section, the agents that imitate

actions and perceptions are able to copy the actions that

other agents execute and they record in what context those

actions are executed. For that purpose, along with each list of

actions that is observed, the imitator store the starting position

of each list; that is, the position of the demonstrator when

the observation starts. The exact position of start and eight

neighboring cells are declared as the region of interest for that

list of actions. Based on this information, if the agent has n

distinct list of actions in its memory, the formula (3) is updated

as:

If the imitator is in region of interest of list of actions i

(5)P i
choose =

Ri∑n

k=1
Rk

else

(6)P i
choose = 0

So, whenever the agent goes into imitating state, it can only

enact the list of actions that has been executed in the close

proximity of the imitator’s position. Other observed lists of

actions, that have been executed in different regions of the

arena, are ignored. The rest of the controller is exactly same

with the agent that imitates actions only.

IV. EXPERIMENTS ON DIFFERENT IMITATION METHODS

A. Agents Imitating an Inexperienced Agent

In the first set of experiments, three agents are placed on the

arena. The first agent uses pure ǫ-greedy Q learning algorithm

only, so it can not imitate. The second agent imitates actions

only and the third agent imitates actions and perceptions. Both

imitating agents, when they are in observing mode, observe

the actions of the no-imitation agent. As shown in Fig. 1, four

obstacles are randomly placed on the arena. The agents can not



Algorithm 1 Pseudocode for imitation of actions only algo-

rithm
1: Input:

2: Q(s, a)← 0 for all state action pairs

3: currentState←Moving, actionList← ∅

4: s← StartPosition, selectedPath← 0
5: for time = 0 : 100, 000 do

6: if currentState = Moving then

7: if 0.01 > random() then

8: currentState = Observing

9: else

10: i← SelectActionList(actionList)
11: if piimitate > random() then

12: selectedPath← i

13: currentState← imitating

14: else

15: a← maxa′Q(s, a′)
16: if ǫ > random() then

17: a← SelectRandomAction()
18: end if

19: end if

20: end if

21: else if currentState = Imitating then

22: a← GetNextAction(selectedPath)
23: if ∃a′Q(s, a′) > Q(s, a) then

24: a← maxa′Q(s, a′)
25: if ǫ > random() then

26: a← SelectRandomAction()
27: end if

28: selectedPath← 0
29: end if

30: else if currentState = Observing then

31: newList← ObserveNewAction()
32: if ListCompleted(newList) then

33: actionList← AddNewList(newList)
34: currentState←Moving

35: end if

36: end if

37: Q(s, a)← Q(s, a) + α[r +maxa′(s′, a′)−Q(s, a)]
38: s← s′

39: if s = TargetPosition then

40: s← StartPosition

41: end if

42: end for

cross these obstacles. At each 100 time units, the length of the

shortest path that can be achieved by each agent is calculated

and this metric is used for comparing the performance of

different agents. One experiment run takes 100,000 time units

and the same experiment is repeated 100 times.

Fig. 2 shows the results for this experiment set. As all

agents start to learn at the same time, none of them is more

experienced than the others. As a result, the agents can not

fully benefit from their imitation activity. Nevertheless, it can

be observed that, although statistically not significant, the

agents that can imitate have slightly better performance than

the no-imitation agent. The imitating agents lose time while

they stay static during observation; however, the gain they

achieve by imitation compensates for the loss of time during

observation. This is due to the fact that, in some runs, the

observed behaviors have a positive effect on the learning speed

of the agents. By checking the utility of each observed list

of actions, the agents are able to determine which list of

actions is beneficial to them. However, as the demonstrator is

not experienced at all, imitation does not help much. When

we compare two different imitation methods, although the

agent that imitates actions and perceptions has a slightly better

performance, we can not observe any statistically significant

difference in their relative performances in this experiment set.
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Fig. 2. Shortest achieved path length for imitating an inexperienced agent.
The results are mean shortest path length from 100 experiment runs along
with 95% confidence intervals (note that the confidence intervals are shown at
specific intervals). The shortest path achieved by each agent is calculated every
100 time units by using a greedy action selection algorithm on the current Q
values. Parameters are set as follows: ǫ = 0.1, β = 0.5, α = 0.2, γ = 0.7.
Time is given in 100 time units.

B. Agents Imitating an Experienced Agent

In the second set of experiments, initially we placed one

agent that uses pure ǫ-greedy Q learning algorithm. The

agent is trained for 90,000 time units while it becomes an

experienced no-imitation agent. Then, at the 90, 000th time

unit, two agents, one imitates actions only and the other

imitates actions and perceptions, are placed on the arena. The

imitating agents can observe the actions that are executed by

the no-imitation agent. The no-imitation agent completes its

life time at the 100, 000th time unit and the other agents

continue to be trained for another 90,000 time units, by using

the copied list of actions that they have in their memory. So

each agent stay on the arena for 100,000 time units. Note that,

at the 90, 000th time unit, the no-imitation agent may achieve

the shortest path but because of its random move probability, it

can still execute some actions that are not part of the shortest

path. Once again, four obstacles are randomly placed on the

arena and the same experiment is repeated 100 times.



Fig. 3 shows the results for this experiment set. As can

be seen, both imitating agents have statistically significant

better performance compared to the no-imitation agent. A pair-

wise ttest reveals that the difference between the no-imitation

agent and the agent that imitates actions only is statistically

significant until 50, 000th time unit as the difference between

the no-imitation agent and the agent that imitates actions

and perceptions is statistically significant during the whole

experiment. So the agents that can imitate are able to get model

behaviors from the experienced agent and enhance their learn-

ing by enacting those model behaviors. When we compare two

types of imitation methods, although the difference is minimal

after 20, 000th time unit, the agent that imitates actions and

perceptions has a better performance compared to the agent

that imitates actions only. The reason is that the agent that

imitates actions and perceptions is able to test an observed

model behavior in the environmental context in which the

model behavior is demonstrated. As a results, it can highly

exploit the information that it gets from the experienced agent.
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Fig. 3. Shortest achieved path length for imitating an experienced agent.
The results are mean shortest path length from 100 experiment runs along
with 95% confidence intervals. The shortest path achieved by each agent is
calculated every 100 time units by using a greedy action selection algorithm
on the current Q values. Parameters are set as follows: ǫ = 0.1, β = 0.5, α =

0.2, γ = 0.7. Time is given in 100 time units.

Fig. 4 and fig. 5 shows two lists of actions that are recorded

and then enacted highest number of times by an agent that

imitates actions and perceptions during one experiment run.

The shaded regions mark the region of interest of each list of

action. As can be seen, the first list of action makes the agent

avoid the first obstacle and move towards the middle of the

arena. So it is only meaningful around the starting position of

the agent. Similarly, the second list of action let the agent avoid

another obstacle and move towards the target. The second list

of action is meaningful in its region of interest.

C. Agents Imitating an Experienced Agent in an Environment

with Bottleneck States

In the previous set of experiments, it is shown that the agent

that imitates actions and perceptions is able to determine the

Fig. 4. List of actions that are copied and enacted highest number of times.
It consist of one move towards South (S), followed by one move towards
South-East (SE), one move towards S and two moves towards SE.

Fig. 5. List of actions that are copied and enacted highest number of times.
It consist of two moves towards SE, followed by one move towards East (E),
two moves towards SE.

observed behaviors that are beneficial to itself and enact those

behaviors in the appropriate regions of the arena. Based on

this observation, it can be hypothesised that if the actions that

are observed are highly context specific, copying perception

would be advantageous. To test this hypothesis, an arena with

two bottleneck states is formed, as shown in fig. 6. These

bottleneck states divides the environment into three distinct

regions and these states should be visited to move from one

region to another. The important property of this setting is that,

the actions that should be executed to move towards the target

in the first and third regions are different from the actions that

should be executed in the second region. On this arena, an

agent that can not imitate is trained for 500,000 time units. At

the 490, 000th time unit, two agents, one imitates actions only,

the other imitates actions and perceptions are placed on the

arena. Each agent stays on the arena for 500,000 time units

during which they learn the shortest path to the target location.

Both imitating agents, when they are in observing mode, copy

the actions of the no-imitation agent.

Fig. 7 shows the results for this experiment set. As can be

seen, the difference in the learning speed of the no-imitation

agent and the agent that imitates actions only is minimal but



Fig. 6. Arena with bottlenecks. The obstacles that are placed on the arena
roughly divides the arena into three distinct regions. These bottleneck states
should be visited to reach the target.

the agent that imitates actions and perceptions outperforms

both other agents. The reason for this results can be explained

as followed: the obstacles that are placed on the arena in this

experiment roughly divides the arena into three distinct parts.

The actions that are meaningful in first and third regions are

different from the actions that are meaningful in the second

region. Therefore an observed behavior in one of the regions is

may not be helpful in another region. As the agent that imitates

actions only has no information about the region in which

the observed actions are executed, it is not able to choose

appropriate observed behaviors for each region. However, the

agent that imitates actions and perceptions is able to determine

the lists of actions that are suitable to each region and enact

those lists of actions accordingly. Hence, we can deduce that,

copying perceptions along with actions is highly beneficial if

the observed set of behaviors are context specific.

Fig. 8 further explains why the agent that imitates actions

only can not benefit from imitation. In the figure, average

number of imitation attempts and average number of actions

executed in imitating state is shown for two imitating agents.

As can be seen, the agent that imitates actions only makes

more imitation attempts but has to abandon imitation very

often. The agent that imitates actions and perceptions has low

number of imitations attempts but once in imitating mode, it

executes more actions based on its observation. Therefore, the

agent that imitates actions and perception is able to exploit the

information that it gains from imitation to enhance its learning

speed.

V. EXPERIMENTS ON WHICH AGENT TO COPY

In a multi-agent system, past experience of agents is a

valuable source of information. To use imitation in a multi-

agent system, the agent that imitates should be able to select

which behavior to copy. As shown in the previous section,

to enhance learning via imitation, the imitator agent should
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Fig. 7. Shortest achieved path length for imitating an experienced agent on
an arena with bottleneck states. The results are mean shortest path length
from 100 experiment runs along with 95% confidence intervals. The shortest
path achieved by each agent is calculated every 100 time units by using a
greedy action selection algorithm on the current Q values. Parameters are set
as follows: ǫ = 0.1, β = 0.5, α = 0.2, γ = 0.7. Time is given in 100 time
units.
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Fig. 8. Average number of imitation attempts and average number of actions
executed in the imitating state for the agents with two different types of
imitation. Gray line shows average imitation attempts and gray dashed line
shows the average number of imitated actions for the agents that imitate
actions only (IAO). The black line shows average number of imitation attempts
and black dashed line shows average number of imitated actions for the agents
that imitate actions and perceptions (IAP). Time is given in 100 time units.

observe and replicate the actions of an experienced agent that

shares the same environment. Therefore, the agents should

have a mechanism to detect the actions that are beneficial

to them. In most of the research that use agent to agent

imitation, the imitator observes the behaviors of a teacher

or mentor agent and the observed behaviors are expected

to be beneficial [16], [17], [18], [19]. However, in a multi-

agent system, the agents may interact with many agents with

different levels of experience. In addition, an agent with a

low level of experience may be more successful than an agent

with high level of experience. In this section, we examine the

question of which agent to copy in an experiment scenario with



multiple agents. For this purpose, we examined three different

selection strategies:

1) The agents copy the most experienced agent. The agent

select the agent that has the highest experience, in terms

of spent time on the arena. This selection strategy is

similar to the method that is used in past research as the

agent has a mentor or teacher agent with high level of

experience.

2) The agents copy the most inexperienced agent.

3) The agents copy a random agent. In this setting, it is

possible that an agent selects a different agent to copy

each time it gets into the observing mode.

In the experiments, initially an agent that can imitate is

placed on the arena shown in fig. 1. Then, after every 1000

time units, a new agent is placed on the arena. Each agent

stays on the arena for 100,000 time units and in this way

100 agents are trained in one experiment. So the first agent is

active in between time units 0 to 100,000, the second agent

is active in time units between 1000, and 101,000 time units

and so on. One experiment run takes 199,000 time units and

as usual, every 100 time units, the shortest path achieved by

each agent is calculated.

Fig. 9 shows results for imitating actions only and Fig.

10 shows results for imitating actions and perceptions. As

can be seen, for both imitation methods, the agent that uses

the first selection method have a slightly better performance

than no-imitation agents. As the agents that are selected for

imitation have not much experience, the agents that imitate

can not enhance their learning speed much by imitating the

inexperienced agents. The agents that use second method

and the agents that use the third method highly outperform

no-imitation agents. Interestingly, agent that use the second

method and the agents that use the third method have very

similar performances. This result can be explained as follows:

The agents that imitate are able to determine the list of actions

that are beneficial to them. As the agents that select a random

agent to imitate, copies a number of agents with different

levels of experience, they are able to detect the ones with

higher performance and imitate their demonstrated actions. As

a result they can achieve a similar performance compared to

the agents that are guaranteed to select the most experienced

agents of the group.

Fig. 11 compares the performance of two imitation methods,

namely, imitation of actions only and imitation of actions and

perceptions, for each of the selection methods. As can be

seen, for all three cases, the agents that imitates actions and

perceptions have slightly better performance than agents that

imitate actions only.

VI. CONCLUSION

In this research, we aim to investigate two different aspects

of imitation in a multi-agent system. First, we attempt to

find an answer to the question of what information should be

copied during imitation. It is shown that if the actions that are

executed are highly context specific, copying perceptions along

with actions is beneficial. An imitating agent that copies model
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Fig. 9. A group of agents copying each other by using imitating actions
only method. The results are mean shortest path length for 100 agents that
are placed on the arena in one experiment run along with 95% confidence
intervals. The shortest path achieved by each agent is calculated every 100
time units by using a greedy action selection algorithm on the current Q
values. Parameters are set as follows: ǫ = 0.1, β = 0.5, α = 0.2, γ = 0.7.
Time is given in 100 time units.
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Fig. 10. A group of agents copying each other by using imitating actions
and perceptions method. The results are mean shortest path length for 100
agents that are placed on the arena in one experiment run along with 95%
confidence intervals. The shortest path achieved by each agent is calculated
every 100 time units by using a greedy action selection algorithm on the
current Q values. The β value that regulates the initial imitation probability
is set to 0.5 for these experiments. Time is given in 100 time units.

behaviors of other agents that share the environment, can

further enhance its learning speed, if it checks the utility of the

observed behaviors in a similar context with the demonstrator.

The imitation method that is presented in this paper depends

on pure observation as the imitating agent has no access to

the internal state or expectations of the demonstrator agent.

Second, we attempt to find an answer to the question of which

behaviors should be copied. It is shown that the agents can

utilise a trial and error mechanism to select the behaviors that

are beneficial to them.

The two imitation methods are compared in an experiment

scenario in which the agents learn to achieve a simple task
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Fig. 11. Comparison of two imitation types, namely, imitation of actions only
(IAO) and imitation of actions and perceptions (IAP) based on three different
agent selection method. The results are mean shortest path length for 100
agents that are placed on the arena in one experiment run along with 95%
confidence intervals. The shortest path achieved by each agent is calculated
every 100 time units by using a greedy action selection algorithm on the
current Q values. The β value that regulates the initial imitation probability
is set to 0.5 for these experiments. Time is given in 100 time units.

of finding the shortest path to a target location on the arena.

The task that the agents learn to achieve does not require any

interaction between agents (except imitation) or interactions

between the agents and the objects on the arena. With a

more complex task which requires further interactions, such

as collective foraging or collective transportation, it should

be possible for the imitating agent to copy the interactions

between agents and the interactions between agents and the

environment. This can further explain the effects of copying

perceptions during imitation.

The agents that can imitate in this research use a simple

abstract model of perfect imitation in which the executed

actions are transferred between agents. In another research,

Erbas et al. [21] examined the effects of embodied imitation

on the structure of imitated behaviors during multiple cycles

of imitation. It was shown that the variations in the real robots’

sensors and actuators allow certain behaviors to emerge during

multiple cycles of imitation. These adapted behaviors appeared

to be more robust to the uncertainties of the embodied imita-

tion process so that they can be imitated with high fidelity. If

the imitation of actions and perceptions is implemented and

tested on real robots, we would observe sensor and actuator

errors that would add variation to the observed actions and

perceptions. Testing imitation of actions and perceptions on

real robots may help us to further examine the effects of this

imitation method on the learning speed of agents.
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