
Finding Informative Collaborators for Cooperative

Co-evolutionary Algorithms Using a Dynamic

Multi-population Framework

Xingguang Peng∗ and Zhe Shi
College of Marine Engineering

Northwestern Polytechnical University, 127 Youyixi Road Xi’an China, 710072
∗E-mail: xgpeng.nwpu@gmail.com

Abstract—Cooperative co-evolutionary algorithms (CCEAs)
conduct high-efficiency problem solving by decomposing a given
problem into a number of separate subcomponents, which terms
the divide-and-conquer manner. In this paper, the dynamic
multi-population framework was incorporated into the CCEAs
to continuously search multiple optima of the subcomponents,
so as to compensate the lost information induced by problem
decomposition and enhance the global optimization capability.
These optima are seen as the informative collaborators that
can feature the landscapes of the subcomponents. Thus, more
accurate fitness evaluation could be conducted by mixing those
collaborators. To verify this idea, two dynamic multi- population
optimizers were implemented, which results in two dynamic
multi-population based CCEAs. Experimental study was carried
out on a wide range of benchmark functions. The proposed
algorithms was compared with four peer algorithms to verify
the effectiveness.

I. INTRODUCTION

In the field of evolutionary computation the concept of co-

evolution had been used to propose coevolutionary algorithms

for optimization and machine learning.

The CCEA was firstly proposed by Potter and De Jong [1],

[2]. The divide-and-conquer evolution scheme was introduced

to decompose a complex problem into several relatively sim-

pler subproblems and optimize them separately. This make

CCEAs have the potential of high efficiency for some complex

optimization problems, such as sensor networks [3], plan-

ning [4] and large-scale optimization [5], [6].

However, the divide-and-conquer scheme is also a double-

edged sword. A great deal of landscape information may

be lost during the decomposition procedure. Without proper

landscape information, coevolutionary individuals will be in-

correctly assessed and converge to a Nash equilibrium rather

than an optimum [7]. It has been theoretically proved that

if the information provided by the collaborators is insuffi-

cient poor fitness estimation will be inevitable, which could

result in some inherent problems that are harmful to global

optimization [8]. Relative overgeneralization (RO) may be the

most typical inherent problem for CCEAs. In a RO-featured

problem, a CCEAs coevolutionary populations are very likely

to converge to the larger basin area (rather than a area that the

global optimum locates in) where there are many solutions

that perform well.

In addition, exchanging more collaborators doesn’t mean

exchange more collaborative information. In [9] an extreme

variant of conventional CCEA which exchanges all individuals

between subcomponents still poorly finds the global optimum.

Drawn from these theorems and findings the way to develop

new CCEAs for global optimization could be inferred: finding

informative collaborators to compensate information.

In order to search the informative collaborators, one must

consider the dynamic nature of the subcomponents’ land-

scapes. This is because that the assessment of a given individ-

ual depends on the collaborators provided by the collaborative

subcomponents and those collaborators may change over time

during the coevolution. Although this phenomenon has been

pointed out in a early fundamental work [7], little work in the

literature deals with it. If the dynamics of the landscapes was

taken into account when designing a CCEA, collaborators with

better informative information could be obtained to enhance

the resulting CCEA’ performance.

Bearing this idea and motivation in mind, a dynamic multi-

population framework is incorporated into the CCEA in this

paper to continuously find informative collaborators so as to

compensate information. In particularly, two dynamic multi-

population approaches are incorporated into the conventional

CCEA respectively. In the resultant algorithms multiple optima

(local or global) of a given subcomponent are dynamically

discovered and maintained. These optima are recognized as in-

formative collaborators that can feature the landscapes of sub-

components. Thus the information compensation is conducted

by exchanging multiple optima between subcomponents.

This work is based on our previous work [10] where the

idea that finding representatives of subproblems using dynamic

evolutionary algorithms was proposed. In this paper, we further

verify the proposed idea by designing a cluster-based particle

swarm optimization (PSO) algorithm and implementing it as

another realization of the dynamic multi-population approach.

II. THE PROPOSED ALGORITHM

A dynamic multi-population based CCEA (mCCEA) is

proposed in this section. Assume that a given problem is de-

composed into N subcomponents, each of which is optimized

by a separate subpopulation (co-evolutionary population). The

flowchart of the mCCEA for a certain subcomponent is shown

in Fig. 1. The subpopulations coevolve in a divide-and-conquer

manner by exchanging (ending and receiving) collaborators

with each other. That means each subpopulation plays not

only as a collaborator sender but also collaborator receiver. As

shown in Fig. 1, in the context of sending collaborators, the

informative collaborators of a subcomponent are provided to

its counterparts (the other subcomponents). To find informative

collaborators, a multi-population optimizer (see Section II-A)

is used instead of single-population evolutionary algorithms.

Several child populations are continuously maintained to si-

multaneously search current local or global optima which are

recognized as the informative collaborators and sent to the

other subcomponents occasionally.

In the context of receiving collaborators, the collaborators

provided by the other subcomponents are stored in a archive.

When evaluating a certain individual, it is mixing with the

collaborators to construct a set of complete solutions whose

number equals to the number of collaborators. Besides, the

historic best individual of each child population is maintained

in terms of complete solution whose solutions context is also

used as an informative collaborator. That means each historic

best individual is maintained together with its best collaborator

when achieving up-to-date best fitness value. The collaborative

solution context of a historic best individual is also used

evaluate the given individual. Given a set of collaborators

(received collaborators and collaborative solution context of

the historic best individual), best-of-N strategy is used to

estimate the fitness of the given individual, i.e. the fitness value

of the best mixed complete solutions is assigned to the given

individual.

In summary, the proposed mCCEA evolves each subcompo-

nent separately with a dynamic multi-population optimizer. It

is more practical for real-world problems since no centralized

information and randomly-selected collaborators (which may

lead to a large amount of fitness evaluation) is needed.

Moreover, due to finding and exchanging informative collabo-

rators information compensation could be achieved to prevent

CCEAs from inherent problems.

Initialize subpopulation

Stopping Criteria met?
Output

solution

Yes

Dynamic multi-population optimizer

(See Section !")

Exchange collaborators?

Yes

No

No

Exchange representative collaborators

Archive of informative

collaborators from the

other subcomponents

Construct complete solutions

for fitness eValuation

(See Section !#)

Receive

Send

Fig. 1. Flowchart of proposed algorithm.

A. Dynamic multi-population optimizers

The key technology of dynamic multi-population ap-

proaches is to continuously maintain several child popula-

tions to discover and track the moving optima in dynamic

landscapes. In general, there are two main categories of

multi-population maintaining methods. The first one is to

maintain child populations through some explicitly technics

according to the searching radius of child populations, such as

splitting and merging procedures in the Self-Organizing Scout

(SOS) algorithm [11]. The second category employs implicit

technics to continuously generate child populations. A number

of cluster-based dynamic evolutionary algorithms have been

proposed [12]–[14]. The individuals are allocated to different

child populations via clustering methods rather than searching

radius based technics.

To obtain a generic verification of the proposed algorithm

framework (shown in Fig. 1), in this section we will implement

two dynamic multi-population optimizers: a modified-SOS and

a cluster-based PSO.

1) The modified SOS: In our previous work [10] the SOS

was slightly modified and incorporated into the framework

of CCEAs. Besides, in each child population a local search

technic was employed to track the corresponding optimum.

In this paper, we use this algorithm as an implementation of

explicit multi-population maintaining method. For saving the

space, here we just show the brief flowchart of the modified

SOS. Please see the original work for more details.

Check forking criteria to split off child populations

Reproduction of base population using genetic operators

Forking criteria met?

Conduct Simplex local search in child populations

Split off forked child populations from base population

Discarded individuals

Reusing the individuals in recyclable archive

Adjust search space center according to the best individual

Shrink search space

Merge child populations that are too close to each other

Manage child populations

Yes

No

Reuse

Recyclable

archive

Fig. 2. Brief flowchart of the modified SOS.

As seen in Fig. 2, forking criteria are checked at every

generation to determine whether a new child population should

be split off from the base population. If so, the corresponding

individuals are removed from the base population into a new

child population. In the reproduction procedure, all child

populations generate their offsprings using the Simplex local

search while the base population conducts genetic operators

(crossover and mutation) to generate its offsprings. To make

the child populations track the local or global optima sepa-

rately, a management procedure is conducted according to their

offsprings. This procedure includes adjusting search space and

merging two child populations if any searching center locates

in the search area of the other one. Note that, in the search

space adjustment and population merging procedure some

individuals may be discarded and removed to a recyclable

archive. Those individuals are then re-initialized and added

to the based population in the next cycle.

2) The cluster-based PSO: In [12] the clustering technic

was firstly incorporated into dynamic EAs to continuously

maintain several child populations. In that work, a single

linkage hierarchical clustering method was proposed to cluster

particles into several child populations without preset the

number of child populations. Here we borrow this clustering

method to generate multiple child populations. Please see the

original paper for more details about this clustering method.

The flowchart of the cluster-based PSO is shown in Fig. 3.

At the beginning, the randomly initialized particles in a single

swarm are clustered into several child swarms. Then each child

swarm conducts an independent PSO procedure, the particles

of each child swarm will gradually converge to the center (best

solution). During this process the historic best solution BI of

each child swarm is recorded. If the evolution process is not

stuck, the particles in all child swarms will be collected and

clustered again at every Gc generations. By doing this, some

close child swarms may be merged into a new child swarm. If

the evolution process is recognized to be stuck, re-initialization

will be conducted. All historic best particles, i.e. {BI}, are

kept in the new single swarm and the remaining particles are

re-initialized. Then such single swarm is clustered into several

child swarms and the above procedure will be conducted again.

Note that, in this paper, the evolution process is recognized to

be stuck when the fitness of the best element in BI has not

changed for NGs generations.

B. Construct complete solutions

Assume that an m-dimensional problem is decomposed

into N subcomponents. Every subcomponent is evolved by

a co-evolutionary population in a divide-and-conquer manner.

The ith co-evolutionary is consist of Nci child populations

P (j), j = 1, . . . , Nci. The historic best individual BIi(j)
(dim(BIi(j)) = m) is maintained for P (j) during the run.

To conduct co-evolution, each subcomponent provides Ncom
informative collaborators.

Algorithm 1 shows how to construct complete solutions

in the mCCEA. Two information sources are collected to

construct complete solution: 1) the informative collaborators

provided by the other subcomponent; 2) historic best individ-

ual (together with the whole solution context) of each child

population of a certain subcomponent. At every generation,

a set of complete solutions are constructed by mixing the

collaborative solution context of the collaborators with the

corresponding solution context of a certain individual that

Randomly initialize a swarm of particles

Clustering

Calculate the best particle BI of each subswarm

Best{ !} has been stuck for NGs generations

Keep !"in the population and randomly reset the

remaining particles

Clustering at every Gc generations

Yes

Conduct PSO procedure for each subswarm

No

Fig. 3. Flowchart of the cluster-based PSO.

is under evaluation. Then the best-of-N strategy is used to

estimate the fitness of the given individual, i.e. the fitness

value of the best mixed complete solutions is assigned to the

given individual. Note that the historic best individuals are

persistently updated during the run after evaluating the child

populations.

Algorithm 1 The pseudo code of constructing complete

solutions for ith subcomponent.

1: Shuffle collaborators in each {Colbk}, k ∈ N, k ∕= i;
2: for l = 1, . . . , Ncom do

3: Construct collaborative solutions Si(l) = {Colbk(l)},

k ∈ N, k ∕= i;
4: end for

5: for j = 0, . . . , Nci do

6: Add historic best individual BIi(j) to Si(l), i.e.

Si(Ncom + 1) = Genotype(BIi(j), g), g ∈ m but

gth decision value /∈ ith subcomponent;

7: for Each individual I in P (j) do

8: Complete solution CS(l)={S(l) ∪ I};

9: Fitness(I)=best {F (CSi(l))}, l ∈ Ncom+ 1;

10: lbest = l s.t. F (CSi(l)) is the best;

11: if Fitness(I) is better than Fitness(BIi(j)) then

12: BIi(j)=CS(lbest);
13: end if

14: end for

15: end for

III. EXPERIMENTAL STUDY

Two mCCEA variants are realized under the framework of

mCCEA and compared with four peer CCEAs from the liter-

ature. The first variant, i.e. mCCEA-1, employs the modified

SOS as the multi-population optimizer while the second one,

termed mCCEA-2, employs the cluster-based PSO. A wide

range of experiments are carried out on RO-featured problems

and ten non-separable continuous test functions.

A. Benchmark Problems

There are two set of test functions. One is RO-featured prob-

lems and the other one is selected from the benchmark suite of

“learning-based real-parameter single objective optimization”

competition in CEC’ 2015 .

1) RO-featured problems: As for RO-featured problems,

we use the Maximum of Two Quadratics (MTQ) [7] problem

domain which has been used to analyze the global optimization

capability of CCEAs in a number of previous works. This class

of problems include a local suboptimum with a much wider

landscape basin which is very likely to misguide the traditional

CCEAs.

There are a set of controlling parameters in the MTQ

function to feature the landscape of the problem domain.

In this paper, we use the default values to set most of the

parameters except H2 which is used to feature the hight of

the global optimal ‘peak’. By assigning different H2 values

problem difficulty could be controlled (the smaller the H2 is

the more difficult the resultant problem is).

2) Non-separable continuous benchmark test functions: To

further verify the performance of mCCEA-1 and mCCEA-2,

we introduce ten benchmark test functions for ‘learning-based

real-parameter single objective optimization’ competition [15]

in CEC’ 2015. Then 2D test functions (F1 ∼ F5, F9, F11 ∼
F12, and F14 ∼ F15) are selected from the original benchmark

suite and renamed as F1 ∼ F10 respectively in this paper.

B. Algorithms for Comparison

The following typical CC algorithms are used as peer

algorithms to compare with the MMO-CC.

1) Traditional CCEA (tCCEA) [16]: tCCEA conducts best-

of-N fitness evaluation with 4 randomly chosen and the current

best individuals of the other subcomponent.

2) Biased CCEA (bCCEA) [17]: The fitness value of a

given individual is partly biased according to the fitness

value obtained like tCCEA. The remaining part is based

on collaborating with the historical best collaborator. A an

algorithmic parameter � is used to control the biasing rate.

3) Complete CCEA (cCCEA): It is an extreme variant of

the tCCEA. An individual has to access the whole population

to conduct best-of-N fitness evaluation.

4) Cooperative Coevolutionary Differential Evolution

(CCDE): It employs SaNSDE [18] as the subcomponent

optimizer. It has been used as the optimizer of several

successful CC algorithms on large-scale optimization

problems.

C. General Experimental Parameter Settings

GA toolbox [19] with the default settings is used to

implement the mCCEA-1, tCCEA, bCCEA and cCCEA. In

mCCEA-2 standardPSO1 is used with default settings and

NGs = 10, Gc = 5. In all compared algorithms, the size

of each subpopulation is 50. Each algorithm terminates when

the number of generation exceeds 1000 and the performance

is obtained according to 50 independent runs.

D. Comparison on MTQ problems

H2 is set to 70, 150 and 300 respectively to obtain three

MTQ problems. Table I shows the results of convergence

rates, statistical comparison and average number of fitness

evaluations. The statistical comparison is conducted according

to Wilcoxon rank sum test. Note that an algorithm is recog-

nized to successfully converge to the global optimum when

the fitness value of its output solution differs from that of the

global optimum within a small value of 0.1.

As can be seen in Table I, according to the convergence

ratios and significantly statistical comparison, CCEA-1 or

mCCEA-2 shows better performance than that of the compared

algorithms in all test cases. This verifies that the dynamic

multi-population optimizer works effectively under the CCEA

framework. The relative high fitness values and good diversity

of the identified optima endow the informative collaborators

with high-quality representative capability of the correspond-

ing subcomponent. Therefore, benefit by dynamically find-

ing and exchanging informative collaborators, mCCEA-1 and

mCCEA-2 can achieve a better cooperative co-evolution.

TABLE I
COMPARISON RESULTS ON 3 MTQ PROBLEMS WITH DIFFERENT

DIFFICULTY. “S+” DENOTES SIGNIFICANT BETTER.

H2 Alg. Rate mCCEA-1 / mCCEA-2 vs.

70

mCCEA-1 98% N/A
mCCEA-2 90% N/A

bCCEA 72% s+ / s+
cCCEA 64% s+ / s+
tCCEA 2% s+ / s+
CCDE 22% s+ / s+

150

mCCEA-1 98% N/A
mCCEA-2 98% N/A

bCCEA 78% s+ / s+
cCCEA 52% s+ / s+
tCCEA 8% s+ / s+
CCDE 26% s+ / s+

300

mCCEA-1 100% N/A
mCCEA-2 100% N/A

bCCEA 98% s+ / s+
cCCEA 64% s+ / s+
tCCEA 4% s+ / s+
CCDE 40% s+ / s+

E. Comparison on ten non-separable problems

To save the space the cCCEA, as an an extreme varint

of tCCEA, is not considered in the following experiments.

Each algorithm terminates when the number of generations

exceeds 200 and the performance is obtained according to

50 independent runs. More particularly, the values of best,

1https://www.researchgate.net/publication/259643342 Source code for an
implementation of Standard Particle Swarm Optimization revised

worst, median, mean and standard deviation of each algorithm

are given together with two statistical comparisons (Wilcoxon

signed rank test and average Friedman ranks) are given in

Table II.

As for the Wilcoxon signed rank test results, the mCCEA-

1’s performance is significantly better than that of the tCCEA,

bCCEA and CCDE on all test functions. mCCEA-2 also shows

very competitive performance on most of the functions. As for

the average Friedman ranks results, mCCEA-1 wins the first

place on all test functions. The mCCEA-2’ performance is also

very competitive since it ranks the second place on 80% of

the test functions.

IV. CONCLUSIONS

The global optimization performance of conventional

CCEAs may be dramatically affected by the quality of

the collaborators when the problem decomposition error is

present, some inherent problems like the RO may lead to sub-

optimization. To address this, we extend our previous work

to incorporate a dynamic multi-population framework as the

optimizer of the subcomponents. Such optimizers dynamically

locate and track global and local optima which are seen as

informative collaborators and exchanged between subcompo-

nents for the purpose of information compensation.

To obtain a generic verification of the thought, two dynamic

multi-population approaches (modified SOS and a simple

cluster-based PSO) have been implemented. The resultant

algorithms named mCCEA-1 and mCCEA-2 have been com-

pared with four other peer CCEAs on MTQ problems and ten

selected test functions in the benchmark suite for “learning-

based real-parameter single objective optimization” competi-

tion in CEC’ 2015. Statistical results obtained via Friedman

ranks and Wilcoxon rank sum test show the effectiveness of

the mCCEA variants: the mCCEA-1 outperforms the peer

algorithms in all situations and the mCCEA-2 also shows

competitive performance on most of the test functions.

ACKNOWLEDGMENT

This work has been supported by NSFC under Grant No.

61473233 and Fundamental Research Funds for the Central

Universities of China under Grant No. 3102016ZY007.

REFERENCES

[1] M. A. Potter, “The design and analysis of a computational model of
cooperative coevolution,” Ph.D. dissertation, 1997.

[2] M. A. Potter and K. A. De Jong, “Cooperative coevolution: An architec-
ture for evolving coadapted subcomponents,” Evolutionary Computation,
vol. 8, no. 1, pp. 1–29, 2000.

[3] A. S. Ruela, L. L. Aquino, and F. G. Guimares, “A cooperative
coevolutionary algorithm for the design of wireless sensor networks,”
in 13th annual conference companion on Genetic and evolutionary
computation. ACM, 2011, pp. 607–614.

[4] M. Colby, M. Knudson, and K. Tumer, “Multiagent flight control in
dynamic environments with cooperative coevolutionary algorithms,” in
In Association for the Advancement of Artificial Intelligence, Modeling

in Human Machine Systems: Challenges for Formal Verification 2014.
AAAI, 2014.

[5] M. N. Omidvar, X. Li, Y. Mei, and X. Yao, “Cooperative co-evolution
with differential grouping for large scale optimization,” IEEE Transac-
tions on Evolutionary Computation, vol. 18, no. 3, pp. 378–393, 2014.

[6] Y. Mei, M. N. OMIDVAR, X. LI, and X. YAO, “A competitive
divide-and-conquer algorithm for unconstrained large-scale black-box
optimization,” ACM Transactions on Mathematical Software, vol. 42,
no. 2, pp. 13:1–24, 2016.

[7] R. P. Wiegand, “An analysis of cooperative coevolutionary algorithms,”
Ph.D. dissertation, 2003.

[8] L. Panait, “Theoretical convergence guarantees for cooperative coevo-
lutionary algorithms,” Evolutionary Computation, vol. 18, no. 4, pp.
581–615, 2010.

[9] L. Panait, S. Luke, and J. F. Harrison, “Archive-based cooperative coevo-
lutionary algorithms,” in 2006 Genetic and Evolutionary Computation

Conference, 2006, pp. 345–352.
[10] X. Peng, K. Liu, and Y. Jin, “A dynamic optimization approach to

the design of cooperative co-evolutionary algorithms,” Knowledge-Based

Systems, vol. 109, pp. 174–186, 2016.
[11] J. Branke, Evolutionary Optimization in Dynamic Environments.

Kluwer Academic Pub, 2002.
[12] S. Yang and C. Li, “A clustering particle swarm optimizer for locating

and tracking multiple optima in dynamic environments,” IEEE Transac-

tion on Evolutionary Computation, vol. 14, no. 6, pp. 959–974, 2010.
[13] C. Li, T. T. Nguyen, M. Yang, M. Mavrovouniotis, and S. Yang, “An

adaptive multipopulation framework for locating and tracking multiple
optima,” IEEE Transaction on Evolutionary Computation, vol. 20, no. 4,
pp. 590–605, 2015.

[14] U. Halder, S. Das, and D. Maity, “A cluster-based differential evolution
algorithm with external archive for optimization in dynamic environ-
ments,” IEEE transactions on cybernetics, vol. 43, no. 3, pp. 881–897,
2013.

[15] J. J. Liang, B. Y. Qu, P. N. Suganthan, and Q. Chen, “Problem definitions
and evaluation criteria for the cec 2015 competition on learning-based
real-parameter single objective optimization,” Computational Intelli-
gence Laboratory, Zhengzhou University and Nanyang Technological
University, Tech. Rep. 201411A, 2014.

[16] M. A. Potter and K. A. De Jong, “A cooperative coevolutionary approach
to function optimization,” in Parallel problem solving from naturePPSN

III. Springer, 1994, pp. 249–257.
[17] L. Panait, S. Luke, and R. P. Wiegand, “Biasing coevolutionary search

for optimal multiagent behaviors,” IEEE Transactions on Evolutionary
Computation, vol. 10, no. 6, pp. 629–645, 2006.

[18] Z. Yang, K. Tang, and X. Yao, “Self-adaptive differential evolution with
neighborhood search,” in IEEE Congress on Evolution Computation.
IEEE, 2008, pp. 1110–1116.

[19] K. Sastry, “Single and multiobjective genetic algorithm toolbox in c++,”
IlliGAL, Tech. Rep., 2007.

TABLE II
STATISTICAL PERFORMANCE COMPARISON ON MINIMIZATION PROBLEMS F1 ∼ F10 OVER 50 RUNS. THE VALUE OF THE GLOBAL OPTIMUM OF EACH

FUNCTION IS GIVEN UNDER THE FUNCTION NUMBER. SIGNIFICANCE LEVEL FOR PAIR-WISE WILCOXON SIGNED RANKS TEST IS 0.05. S+, S- AND ∼

MEANS SIGNIFICANT BETTER, SIGNIFICANT WORSE AND INSIGNIFICANT DIFFERENT RESPECTIVELY. A SMALLER AVERAGED FRIEDMAN RANKS MEANS

A BETTER PERFORMANCE.

Function Algorithm Best worst Median Mean Std mCCEA-1 / mCCEA-2 vs. Friedman

(Wilconxon) (mean ranks)

mCCEA-1 100.00138 740.61482 169.81371 230.83397 160.62826 N/A / ∼ 1.74

mCCEA-2 100.356 368.813 135.874 167.23 67.7221 ∼ / N/A 1.6

F1 bCCEA 103.96952 912811000 5389.92245 43562100 155480000 s+ / s+ 4.36

(100) tCCEA 215.56448 191665000 3298.75112 3888020 27099800 s+ / s+ 4.14

CCDE 101.3109 10391.47 922.68505 1772.84031 2137.56023 s+ / s+ 3.16

mCCEA-1 200.00193 811.41426 242.36952 293.76796 136.60789 N/A / ∼ 1.78

mCCEA-2 200.156 600.204 228.723 247.815 66.1697 ∼ / N/A 1.54

F2 bCCEA 239.38716 2280030000 5440.25574 145833000 476101000 s+ / s+ 4.44

(200) tCCEA 212.27575 19181600 2499.05091 425506.475 2719040 s+ / s+ 4

CCDE 201.7248 10568.17 688.79575 1883.25167 2433.23969 s+ / s+ 3.24

mCCEA-1 300.00019 300.01825 300.00303 300.00416 0.00386 N/A / s- 1

mCCEA-2 300.014 302.694 300.086 300.428 0.6025 s+ / N/A 2.74

F3 bCCEA 300.06996 304.04046 302.10599 302.02212 0.96074 s+ / s+ 4.52

(300) tCCEA 300.06883 304.52032 301.09079 301.48692 1.14052 s+ / s+ 4.02

CCDE 300.0182 301.5586 300.2489 300.33848 0.31951 s+ / ∼ 2.72

mCCEA-1 400 400.00002 400 400 5.1587E-06 N/A / s- 1.09

mCCEA-2 400 401.002 400.002 400.239 0.3957 s+ / N/A 2.39

F4 bCCEA 400.00273 426.19617 401.00023 401.31581 3.64282 s+ / s+ 3.72

(400) tCCEA 400.00029 430.81825 401.06866 404.05262 7.74149 s+ / s+ 4.44

CCDE 400.0023 401.0743 400.99535 400.57163 0.49534 s+ / s+ 3.36

mCCEA-1 500 500.31236 500.00004 500.06249 0.12613 N/A / s- 1.14

mCCEA-2 500 504.511 500.315 500.508 0.6524 s+ / N/A 2.64

F5 bCCEA 500.03048 932.50045 501.11187 514.98612 64.69657 s+ / s+ 3.92

(500) tCCEA 500.05101 1586.87763 503.01843 675.82202 332.30734 s+ / s+ 4.26

CCDE 500.0019 517.9151 500.40395 502.14202 5.12343 s+ / ∼ 3.04

mCCEA-1 900.00016 1000.01676 900.00254 903.00602 15.67502 N/A / s- 1.2

mCCEA-2 900.023 908.063 900.0155 900.5718 1.2146 s+ / N/A 2.46

F6 bCCEA 900.02175 1001.04911 902.58654 933.67696 46.25903 s+ / s+ 3.9

(900) tCCEA 900.05655 1608.67222 1000.07495 980.4748 123.46551 s+ / s+ 4.26

CCDE 900.0077 907.3563 900.9119 901.22338 1.33708 s+ 3.18

mCCEA-1 1100.02128 1109.95425 1100.1897 1100.4379 1.38351 N/A / s- 1.1

mCCEA-2 1100.59 1111.88 1100.8 1103.42 2.5251 s+ / N/A 2.64

F7 bCCEA 1101.58548 1208.00622 1108.56948 1110.83037 15.47258 s+ / s+ 3.94

(1100) tCCEA 1102.06202 1199.35029 1108.45602 1113.12269 18.68598 s+ / s+ 4.24

CCDE 1101.185 1160.954 1104.0545 1105.66846 8.38916 s+ / s+ 3.08

mCCEA-1 1200.00552 1308.64465 1200.03737 1216.3004 37.65394 N/A / s- 1.44

mCCEA-2 1200.03 1246.62 1200.4 1202.7 6.48024 s+ / N/A 2.86

F8 bCCEA 1201.06302 1853.06193 1352.44552 1333.77416 97.96627 s+ / s+ 4.86

(1200) tCCEA 1200.28921 1323.37231 1208.17407 1244.42548 50.10516 s+ / s+ 3.84

CCDE 1200.072 1201.923 1200.472 1200.51794 0.34991 s+ / s- 2

mCCEA-1 1400.47889 1401.47327 1401.05814 1401.04564 0.29018 N/A / s- 1

mCCEA-2 1403.85 1450.65 1403.4 1414.58 10.5635 s+ / N/A 2.76

F9 bCCEA 1406.0355 7796.52367 1428.55908 1589.63281 897.95043 s+ / s+ 3.74

(1400) tCCEA 1402.75172 14191.9005 1538.0799 2959.40782 3066.01293 s+ / s+ 4.26

CCDE 1402.413 1711.535 1414.7575 1470.32188 84.29948 s+ / s+ 3.24

mCCEA-1 1500.04472 1600.02181 1600.00479 1591.19934 27.72482 N/A / s- 1.22

mCCEA-2 1509.7 1600.3 1600.1 1594.12 17.7863 s+ / N/A 1.78

F10 bCCEA 1600.05782 1602.05421 1600.48044 1600.61062 0.42575 s+ / s+ 3.7

(1500) tCCEA 1600.10496 4335.61778 1600.53231 1661.34023 387.92735 s+ / s+ 3.9

CCDE 1600.199 1603.054 1600.943 1601.08556 0.64886 s+ / s+ 4.4

