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Abstract—This paper proposes a novel model called Space
Time Features-based Recurrent Neural Network (STF-RNN)
for predicting people next movement based on mobility pat-
terns obtained from GPS devices logs. Two main features
are involved in model operations, namely, the space which
is extracted from the collected GPS data and also the time
which is extracted from the associated timestamps. The in-
ternal representation of space and time features is extracted
automatically in the proposed model rather than relying on
handcraft representation. This enables the model to discover
the useful knowledge about people behaviour in more efficient
way. Due to the ability of RNN structure to represent the
sequences, it is utilized in the proposed model in order to keep
track of user movement history. These tracks help the model to
discover more meaningful dependencies and as consequence,
enhancing the model performance. The results show that STF-
RNN model provides good improvements in predicting people’s
next location compared with the state-of-the-art models when
applied on a large real life dataset from Geo-life project.

1. Introduction

Human behaviour is very complex and diverse. Mobility,
as a component of human behaviour, is also complex, but
its variability is lower and could be studied with more
focused pattern-recognition approaches. In most cases, hu-
man mobility is analysed with the goal of predicting future
behaviours. Mobility prediction is defined as the prediction
of people’s next location in the region that they constantly
move in.

Owing to the widespread availability of mobile devices,
such as tablet PCs, smartphones and smart watches, along
with the rapid enhancement of their data collection abilities,
we can collect a large amounts of people’s mobility data
at a very low cost. The availability of large amount of
collected data together with the development of location-
based applications and services, have attracted a special
attention from both academy and industry towards building
efficient methods for analysing and predicting user next
movement or location. These methods aim to improve end-
user applications, such as healthcare applications [1], recom-
mendation systems [2], route planning, carpooling, meeting

planners or location-based advertisements. They also aim to
help the corresponding institutions in solving issues related
to network management, healthcare, human computer inter-
action, socio-economic modelling for urban planning, public
transportation planning, public safety assurance and etc [3],
[4].

To predict people’s future locations, learning techniques
like Markov Model, Association rules, Bayesian Networks
or Neural Networks (NN) are obvious candidates to be
applied. One of the challenges that are faced by researchers
while predicting people movements is how to transfer
(adapt) these techniques to work with the context informa-
tion of the movements. Also, building an accurate prediction
model for all users is not an easy task and sometimes might
be impossible because the next location prediction is a user
specific problem. Even if the visited locations might over-
lap among different users, the trajectory of a user visiting
different location is most likely unique. Thus, building one
prediction model for each user might be preferable. Usually,
building the model, i.e. discovering the frequent trajectories
and locations, is performed off-line while the prediction
itself is performed on-line.

Nowadays, predicting people’s next location has been
extensively studied. Markov Chain (MC) model has been
presented in [5], [6] to infer users’s next place by computing
the transition probability from their mobility data logs. Simi-
larly, hidden Markov model has been employed in [7], [8] to
predict the trip destination taking into account the location
characteristics or user activity transition as an unobservable
parameter. A rule-based approach that discovers associations
from movement transaction database is proposed in [9]–
[11]. As another popular method, NN has been applied
for location prediction problem in cellular communication
network to reduce the traffic load by automatically update
the location information of mobile user [12]–[16]. Recently,
Recurrent Neural Networks (RNN) has been successfully
utilized in many areas such as sequential click prediction
[17], word embedding [18] and time series prediction [19],
[20]. Some of the most recent studies leverage RNN to
model people’s mobility [21], [22]. The authors have re-
ported that RNN achieves promising performance in com-
parison with traditional NN model.

Generally, users can be classified into three different



types according to the predictability of their daily routine as
follows: predictable users, expected users and random users
[24]. Predictable users follow regular routines between their
home place and workplace during their working days. For
this type of users, it is easy to accurately predict their next
locations. The last two types are characterized by highly
complex movement and usually a larger number of visited
locations. Therefore, it is difficult to accurately predict their
next locations. Hence, a certain likelihood of being in a
predicted location is provided. Towards building efficient
prediction methods for these users, their mobility data must
be studied with more sophisticated approaches.

Some studies have focused on using a set of features to
obtain a good prediction performance. For instance, in [25],
[26], a variety of hand-crafted features have been used. Such
models lack the capability of capturing semantic information
from people’s mobility data. To overcome this drawback,
a deep learning model has been utilized for automatically
learning the best internal representations of the space and
the time features.

In this paper, we propose to leverage RNN for modeling
people’s movement behaviour in order to predict their next
location. Space and time are included to the network as
features where their internal representation are learned by
the network itself rather than relying on man-made rep-
resentation. The space represents a specific location that
has been visited by the user while the time represents the
location visiting time. Before building the prediction model,
the previously collected GPS points are converted into a
sequence of interest points that represent series of locations
visited by the user. In the training process, the trainable
input features will be feed-forwarded into the hidden layer,
together with previously accumulated hidden state. Our ex-
periments on a large real life mobility dataset from Geolife
project reveal that, such RNN structure will enhance the
model effectiveness in comparison with the stateof-the-art
models such as NN and Markov-based methods.

The main contributions of this paper are as follow. First,
we use a look up table layer to discover adequate internal
representations of the space and time input features while
avoiding man-made representations. Second, we use RNN
to model people movement and successfully incorporate
the recurrent structure with space and time features into
enhancing the model efficiency. Third, an extensive set
of experiments is conducted on a large real life mobility
dataset in order to evaluate the efficiency of the developed
model. The experiments show that the RNN model outper-
forms the state-of-the-art models by up to 26% in terms of
Recall@N performance metric. STF-RNN is implemented
using Theano [23]. We plan to make the source code of
STF-RNN model publicly available to be used by other
researchers.

The rest of this paper is organized as follows. Section
2 provides a brief state-of-the-art on the models employed
in mobility studies to predict people next locations. Section
3 explains the new proposed model defined in this study.
Section 4 presents and discusses in detail the experimental
results. Finally, we conclude the paper in section 5.

2. State of the art

This section summarizes different types of models that
have been proposed in mobility prediction including MC,
NN and RNN models highlighting the employed dataset and
the techniques used for the analysis and prediction.

RNN is employed in [21] to build a mobility prediction
method in wireless Ad-Hoc networks. To evaluate the effi-
ciency of the mobility predictor, Random Waypoint Mobility
(RWM) model is used to generate location time series
dataset. The proposed recurrent neural network architecture
has three layers, namely, input, hidden and output layers.
The three layers are arranged in a feedforward connection
and trained with Backpropagation algorithm. The input layer
receives the data from the time series of the previous loca-
tion observations as well as from the output layer feedbacks.
The characteristics of the learned patterns are stored in
the hidden layer. The location prediction can be used to
estimate the expiration time of the links connecting the
nodes enabling them to select the most stable paths which
improves routing performances. Unfortunately, the author
doesn’t present details on the results.

Another recent work in which RNN was used is in-
troduced in [22]. This work proposed a global prediction
model called Spatial Temporal Recurrent Neural Network
(ST-RNN) for predicting where users will go next. Two
typical datasets called Global Terrorism Database (GTD)
and Gowalla dataset are used to evaluate the effectiveness
of ST-RNN model. The recurrent structure is utilized to
capture not only the local temporal contexts but also the
periodical ones. The spatial and temporal values are divided
into discrete bins in order to produce the time-specific
and distance-specific transition matrices. The corresponding
transition matrix is calculated for each specific temporal
value in one time bin and similarly for each specific spatial
value. Unlike ST-RNN, in our model, the space and time
features were fed directly into the network and the network
itself is responsible for learning their internal representation.

Building local and global predictors to predict a per-
son’s next movement based on NN are proposed in [16].
Movement histories of four persons of the research group at
the University of Augsburg are used to evaluate the neural
predictor. In their model, they use the simplest multi-layer
perceptron with one hidden layer trained with Backprop-
agation algorithm. The bit encoding is used to represent
the rooms and the persons. In the case of local predictor,
each NN is trained with the movement of a single person.
Therefore, only the codes of the last visited rooms will be
the input to the network. In the case of global predictor, one
NN is trained with the movement of all persons. Hence,
both codes of person and the last visited rooms will be
fed to the network. After several experiments, the optimal
configuration of the NN is determined. Two and three neu-
rons are used in the input and hidden layer respectively.
Their evaluations showed that the local predictor overcomes
the global predictor with accuracy of 92.32% and 87.3%
respectively.



Figure 1: STF-RNN architecture.

The works introduced in [12]–[14] used NN technique
to build a prediction-based location management scheme
for mobile users in cellular communication network. The
evaluation of the prediction scheme is conducted on dataset
obtained from the MH’s history of movement patterns that
contains two mobiles MH1 and MH2. The movement data
is represented as a pair (dsi, dri) where dsi is the distance
the mobile user has crossed in cells and dri is the direction
of movement at time i. A three-layer artificial NN trained
with Backpropagation technique is used for building the
prediction model. The hidden layer contains eight neurons
while both input and output layers contain two neurons
representing the distance and the direction. Sigmoid function
is used as non-linear activation function. This prediction is
used to automatically update the location information of
the mobile user which reduces the traffic load in cellular
communication networks. Unlike their model, where the
time factor is not considered, STF-RNN has incorporated
space and time interval sequences with the recurrent struc-
ture resulting in much more prediction accuracy.

The concept of n-Mobility Markov Chain (MMC) is
proposed in [5]. In this approach, a track of the n visited
previous locations is kept to predict a user’s next location.
Three different datasets are used: Phonetic, Geolife and
synthetic. The datasets are collected using GPS devices for
more than 180 users. Density-Joinable clustering algorithm
is used to discover the Point Of Interest (POI). n-MMC
is constructed based on the transition probabilities among
the discovered POIs. Based on high frequency movement
between locations, the next location is retrieved. The best
model performance has been achieved when n=2 with 69%
on Geolife dataset.

3. Methodology

This section presents data pre-processing steps. Then,
the description of STF-RNN, highlighting the problem being
solved in this paper, is introduced.

3.1. Pre-processing

Data pre-processing is a technique that transforms raw
data into an appropriate format for further processing. We
convert the GPS logs of each user into trajectories by de-
tecting the interest points. The interest points represent those
spatial regions where the user has stayed for more than a pre-
determined threshold providing that the distance between
the start and end points of the region is under a specific
threshold. For more details, please refer to [27]. These in-
terest points will be clustered into several geospatial regions
using Density-based spatial clustering of applications with
noise (DBSCAN) [28]. Finally, the location history of each
user is formulated using these clustered interest points.

3.2. STF-RNN: Model Description

In STF-RNN, the trajectory is represented as a sequence
of tuple (xt, ht) where x is the centroid ID of the interest
point visited at time t and h is the time unit part in hours
of the leaving time from the interest point, t = 1, 2, ..., n,
and n is the length of the trajectory. The task is to predict
the future location of the mobile user at a specific time t on
the basis of his/her historical mobility records.

The architecture of STF-RNN model is shown in Figure
1. It consists of four layers: input layer, lookup table layer,
hidden layer (with recurrent connection) and output layer.
The input layer consists of two vectors. The first one is
xt ∈ RN which represents the centroid ID of the interest
point at time stamp t. This vector is encoded using 1-
of-N (or one-hot encoding) where N is the number of
interest points. The second vector represents the time unit
part in hours of leaving time from the interest point at time
stamp t. We denote this vector by ht ∈ RM and it is
encoded also using 1-of-M encoding technique where M
is the number of different time intervals. The time intervals
represent the number of hours per day in which there are 24
time intervals (hour). In the one-hot vector representation,
the interest points (or leaving times) are equidistant from
each other without preserving any relationship among them.
The lookup table layer maps the vectors of the centroid
IDs and leaving times into real value vectors. The aim of
the lookup table layer is to learn a meaningful represen-
tation of the interest points and the leaving times input
features. This representation enables the model to capture
the embedded semantic information about user behaviour
and as a consequence improving the prediction performance.
Therefore, the trainable features will be used as input to
further layers in the network rather than using one-hot
vectors. More formally, let X ∈ RN×d be the embedded
matrix that represents a set of interest points, where d is the
dimensionality of the embedded vector of the interest point.



The embedded vector xet ∈ Rd is given by multiplying the
embedded matrix X and the input vector xt.

xet = xtX (1)

Similarly, the embedded vector het ∈ Rk is given by
multiplying the embedded matrix H ∈ RM×k and the input
vector ht. Here, H represents a set of leaving time and k
is the dimensionality of the embedded vector of the leaving
time.

het = htH (2)

The objective of the hidden layer rt ∈ Rdr is to maintain
the user movement history where dr is the dimensionality of
the hidden layer vector. The output layer ŷt ∈ RN produces
a probability distribution over the interest points and it has
the same dimensionality of the input vector xt. The values
of the hidden layer and the output layer are computed as
below:

rt = f

(
xetU + hetS + rt−1W + br

)
(3)

ŷ = g(rtV + b) (4)

In equation 3, U ∈ Rd×dr, S ∈ Rk×dr are the weight
matrices between the input and hidden layers, W ∈ Rdr×dr

is the recurrent connection propagating sequential signals
and br ∈ Rdr is the hidden layer bias. In equation 4, V ∈
Rdr×N represents the weight matrix between the hidden and
output layers and b ∈ RN is the output layer bias. The tanh
is used as the non-linear activation function for the hidden
layer and the softmax function is used for the output layer.

f(x) =
1− e−2x

1 + e−2x
(5)

g(xi) =
exi∑
j e

xj
(6)

The current input layer, as well as the previous state
of the hidden layer, is used to compute the next state of
the hidden layer. Thus, the next location prediction depends
on not only the current input location, but also the sequen-
tial historical information. This property of RNN structure
helps the model to keep track of user movement history
and discover meaningful dependencies and as consequence,
enhancing the model performance.

3.3. Learning Algorithm

In this section, the learning process of STF-RNN model
with the Backpropagation through time (BPTT) algorithm
is presented. As stated before, the next state of the hidden
layer is computed based on the current input layer as well
as the previous state of the hidden layer. The cost function
used in this work is the cross entropy which is defined as:

J = −
n∑

i=1

yilog(ŷi) (7)

where n is the number of training samples, y is the real
user’ next location, and ŷ is the predicted next location
probability. Because we have represented the centriod IDs
of the interest points using one-hot vector representation,
the cost function can be re-defined as:

J = −log(ŷi) (8)

AdaDelta [29] is employed to estimate the model parame-
ters, θ = [X,H,U, S,W, V, br, b, r0], where r0 is the initial
vector for the recurrent layer. This process is repeated
iteratively until reaching the convergence state.

4. Experiments and Results

In this section, large-scale experiments are conducted to
validate STF-RNN model’s effectiveness. The settings of
the conducted experiments and also the dataset used for
the evaluation are described first. Then, a description of
the evaluation procedure and the performance metric are
introduced. Finally, the experimental results are reported in
detail.

4.1. Dataset

We evaluate STF-RNN model using a large real life
GPS trajectory dataset belongs to Geolife project (Microsoft
Research Asia) [30]. The dataset was collected by 182
users in a period of over five years (from April 2007 to
August 2012). This dataset contains 18,670 trajectories with
a total duration of 50,176 hours and a total distance of
1,292,951 kilometers. The collected dataset covers different
cities located in China, USA and Europe but the majority
of the data was from Chinese cities. These trajectories were
recorded by different GPS-phones and GPS loggers every
5 ∼ 10 meters or every 1 ∼ 5 seconds. The GPS trajectories
are represented by a sequence of time-stamped points, each
of which contains the dimensions of latitude, longitude,
altitude and other information.

4.2. Evaluation Procedure and Performance Metric

The prediction evaluation procedure has been carried
out as follows. First, the previously visited locations (rep-
resented by the centroid IDs) in each trajectory are read
sequentially. Then, the next locations to be visited are
predicated based on these readings. Finally, the output of
the model (the predicted locations) is mapped into the real
data.

We use the Recall score as an evaluation metric in all
experiments in order to assess the efficiency of the prediction
model. The Recall@N is defined as the ratio between the
number of correct predictions over the total number of
predictions. To compute the Recall score, first, a ranked list
is populated with all potential next locations arranged in a
descending order according to their probabilities. Then the
Recall score is calculated as the percentage of the times in
which the real next location was found in the top N most



probable locations within the ranked list. In our study, we
only report Recall@N with N = 1, 2 and 3. Supposing that
Lu denotes the set of correspondingly real visited locations
by a user u in the test data and PN,u denotes the set of
top N predicted locations, the definitions of Recall@N is
formulated as below:

Recall@N =
1

|U |
∑
u∈U

|Lu ∩ PN,u|
|Lu|

(9)

Where U is the set of users.

4.3. Experimental Settings

As stated before, building an accurate prediction model
for all users is not easy task because the next location
prediction is a user specific problem. Thus, building one
prediction model for each user might be preferable. The
model of each user is trained on its own mobility data using
three-fold cross validation technique. The mobility data of
each user is partitioned into three sub-data of equal size. The
Recall score of each case from each user is then calculated
and the final results of all users are averaged.

In order to investigate the model effectiveness, we have
compared STF-RNN with the state-of-the-art location pre-
diction models including:

• MC: It is proposed in [5] which is the most popular
location prediction model.

• NN: This model is introduced in [15], [16] for
predicting a person’s next movement.

• RNN: It is introduced in [21] and it is widely used
for time series prediction.

The goal of these comparisons is to show how incorpo-
rating the recurrent structure with the space and time interval
sequences in our model has improved prediction overall
performance. For precise model comparison, the common
parameters of the models are given the same values. For
example, number of training epochs and hidden layers in
NN, RNN and STF-RNN are set to 100 and 20 respectively.
For MC, the second order is use which achieved better
prediction accuracy as shown in [5], [7]. The grid search
method is used to evaluate various model parameters setting
in order to select the optimum set of these parameters. The
evaluated parameters include: the dimensionality of time-
and-location embedded vector, the hidden layer size and
the width of locations window (number of visited locations
taken as input to the model). Finally, we got the best settings
of the parameters as follows: the dimensionality of the
embedded vector of the location (d) and time (k) is 100, 6
respectively, the hidden layer size (dr) is 20, and the width
of location window is 2.

4.4. Results and Analysis

Table 1 illustrates the comparison between STF-RNN
and the three other models mentioned previously in terms
of Recall@N with different values of N 1, 2 and 3. It is

Recall@1 Recall@2 Recall@3
MC 0.589 (24.45%) 0.787 (11.44%) 0.87 (7.01%)
NN 0.581 (26.16%) 0.821 (6.82%) 0.911 (2.2%)

RNN 0.67 (9.4%) 0.865 (1.39%) 0.927 (0.43%)
STF-RNN 0.733 0.877 0.931

TABLE 1: Performance comparison on the dataset evaluated
by Recall@N. Best scores are in bold. The values in the
brackets refer to the improvement percentage of STF-RNN
compared to the respective models.

clear from the table that MC and NN models have achieved
approximately similar results under Recall@1. However,
NN outperforms MC under Recall@2 and Recall@3. Also,
it can be observed form the table that RNN outperforms
both models MC and NN by up to 13.75%, and 15.31%,
respectively. This can be attributed to incorporating the
recurrent structure of RNN which enables the model to
get more accurate results by taking into account long-
term dependencies. Finally, STF-RNN has achieved the best
results among all models and under all settings of Recall
parameter. More specifically, in term of Recall@1, STF-
RNN outperforms MC, NN and RNN by up to 24.45%,
26.16% and 9.4% respectively. The superiority of STF-RNN
over MC and NN also can be attributed to incorporating
the recurrent structure in the model whereas its superiority
over RNN is due to the fact that STF-RNN uses the time
feature in the model operations which impact positively the
efficiency of the model. Also the internal representations
learning of the input features enable the model to extract the
embedded semantic information about the users’s behaviour
more efficiently.

4.5. Impact of Parameters

Table 2 demonstrates how varying window size may
affect the performance of STF-RNN in order to determine
the best setting for this parameter. The best performance is
obtained with a window size value of 2 under all metrics.
This is similar to the case of second order in MC which
achieved the best performance as shown in [5], [7].

In STF-RNN, the parameters d, k and dr are responsible
for determining the dimensionality of the embedded vectors
of the location, time and hidden layer respectively so they
play an important role in the efficiency of the model. To
investigate the impact of these parameters and to select the
best settings of them, we conduct several experiments to
check the performance of STF-RNN with various dimen-
sionalities as shown in Figure 2. We start by varying the
value of one parameter while fixing the others and then
studying how the model efficiency is affected. The same
procedure is then repeated for the rest of the parameters.

The impact of d parameter on the Recall@1 of the model
is shown in Figure 2a. The model gives the best performance
when d value is around 100. The smaller values of d means
that less location information is provided to the model
limiting its efficiency in discovering dependencies and as
consequence impairing its performance. When d value is
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Figure 2: Parameters impact.

window Recall@1 Recall@2 Recall@3
1 0.719 0.874 0.929
2 0.733 0.877 0.931
3 0.686 0.845 0.896

TABLE 2: Performance of STF-RNN evaluated by Re-
call@N with varying window size.

large (e.g., greater than 100), more noisy information has
to be considered by the model which leads to poor perfor-
mance. The effect of k and dr parameters on the model
performance is depicted in Figure 2b and 2c respectively.
As shown in the figures, the best performance of STF-RNN
is obtained with k value of 6 while it reaches its peak under
the dr parameter value of 40. Here, the fact that the model
achieves its best performance with a small k value gives
the impression that only a little time information is needed
in representing the model dependencies in contrast with the
location features where much more information is needed.
The results confirm that the previous parameters play an
important role in building an accurate location prediction
model based on RNN.

5. Conclusions

In this paper, a Space Time Features-based Recurrent
Neural Network (STF-RNN) is proposed to predict the
future state of people movement. A look up table layer
is used to effectively discover adequate internal represen-
tations of space and time input features enabling the model
to capture the embedded semantic information about the
users’s behaviour more effectively. The recurrent structure is
incorporated with space and time interval sequences in order
to discover long-term dependencies which increases the effi-
ciency of the proposed model. A performance evaluation is
conducted on a large real life mobility dataset from Geolife
project showing that our model has improved the prediction
effectiveness in comparison with the state-of-the-art models.
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