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Abstract—Nowadays, Partially Observation Markov Decision
Processes (POMDPs) provide a principled mathematical frame-
work for solving some realistic problems with continuous spaces.
The recently introduced Monte Carlo Value Iteration (MCVI) can
tackle such problems with continuous state spaces. It uses a policy
graph implicitly to represent the value function, instead of using a
set of α-functions explicitly. However, the size of its graph would
grow over time and it doesn’t take any measure to optimize the
graph. This makes it not applicable for the devices with limited
resources such as wearable watches. This paper introduces three
novel techniques to prune and optimize the policy graph obtained
by MCVI. First, we optimize the internal structure of a policy
graph G whenever a new node is added into the policy graph.
Second, we evaluate the value of each node in G and prune
the nodes dominated by others. Third, we prune the redundant
nodes, meaning that they are not reachable from the initial action
node in any optimal policy graph. Empirical results show that,
on the corridor and musical chairs problems, our pruning and
optimization methods are useful for constructing more compact
policy graphs with comparable qualities.

I. INTRODUCTION

Partially Observable Markov Decision Processes (POMDPs)
provide a natural framework for planning under uncertainty
[1]. In POMDP planning, the robot’s possible states are
represented probabilistically as a belief and we can system-
atically reason over the belief space in order to derive a
policy with imperfect state information. There are two major
computational challenges in POMDP planning. The first is
the “curse of dimensionality”: the size of belief space grows
exponentially. For example, a robot navigates in a planar
environment modeled as a 5 × 5 grid. The resulting belief
space is 25-dimensional! The second obstacle is the “curse
of history”. In POMDP planning tasks, a robot often takes
many actions before reaching its goal which results in a long
planning horizon. The complexity of the planning task grows
very fast with the horizon.

It is notoriously intractable to solve POMDP problems
exactly because of highly computational complexity [2]. How-
ever, tremendous progress has been made in recent years to
develop approximate POMDP solutions [3]–[5] including a
number of point-based POMDP algorithms [6], [7]. HSVI2
[8] and SARSOP [9] are the well-known POMDP algorithms
for discrete models. Over the last decades, the POMDP model
has gained a great success for robotic applications such as
robot navigation [10]–[13], active sensing [14], object grasping
[15], target exploration [8] and spoken dialogue systems [16].
Efficient POMDP algorithms [17]–[21] today assume discrete

models, in which a robot’s states, actions and observations are
all discrete. However, continuous models are often much more
natural. Monte Carlo Value Iteration (MCVI) [22] can tackle
the POMDP planning problems with very large discrete state
spaces or continuous state spaces, but the size of its policy
graph grows over time. This makes the graph inapplicable for
the mobile and embedded devices with limited resources, such
as smart phones and wearable systems. We are motivated to
develop a new method to improve the policy graph and make
it much more compact.

In this paper, we describe three novel techniques to prune
and optimize the policy graph gained from the MCVI algo-
rithm. The first way is to optimize the internal structure of a
policy graph G when MCVI updates the graph at a belief b. We
evaluate each new node which would be added into G. Some
new nodes do not need to be added into G if we could optimize
the internal structure of G. The second one is to evaluate the
value of each node in G and prunes the nodes if they are
dominated by some other ones. During this process, we can
get a new policy graph G′ with a value equal to or better than
the value of the original one. The third one is to prune the
redundant nodes in G. We can prune the nodes if they are
not reachable from the initial action node when we obtain an
optimal policy graph. We show the ways of constructing more
compact policy graphs with comparable qualities.

This paper is structured as follows. Section II introduces the
foundations about POMDPs and policy graphs. We also simply
review the MCVI algorithm. Section III explains three steps
to improve the MCVI algorithm. At each step, we can prune
some nodes and get a more compact policy graph. Section IV
reports experiments with two benchmark problems. Section
V reports related works about algorithms for continuous-state
POMDPs. Section VI concludes this paper and lists some
issues that we will study in the future.

II. BACKGROUND

The continuous-state POMDP framework is a rich mathe-
matical model for single robot’s sequential decision making.
Its goal is to maximize the Average Discounted Reward (ADR)
in a partially observable and stochastic environment. It can be
defined as a tuple 〈S,A,Z, T,Ω, R, γ〉. In this tuple, S is a set
of states, A is a set of actions, Z is a set of observations, T is
a transition function defined as T : S×A×S → [0, 1], Ω is an
observation function defined as Ω: A×S×Z → [0, 1], R is a
reward function defined as R: S ×A×S → R and γ ∈ [0, 1)



is a discount factor which makes the total reward finite and
the problem well defined. At each time step t, the robot takes
some action a ∈ A from a start state s to an end state s′ and
then it would receive an observation z ∈ Z and a reward R.
The ADR is given by E [

∑∞
t=0 γ

tR(st, at)], where st and at
denote the robot’s state and action at time t, respectively. In
this paper, we only consider POMDPs with discrete action and
observation spaces.

A belief state (or belief ) b is a sufficient statistic for the
history of actions and observations. A belief state space B is
a set of all possible beliefs. The robot will arrive at a new
belief ba,z (= τ(b, a, z)) when it takes action a and receives
observation z according to Bayes’ theorem:

ba,z(s′) =
Ω(a, s′, z)

∫
s∈S T (s, a, s′) b (s)

Pr (z|a, b)
, (1)

where Pr (z|a, b) =
∫
s′∈S Ω (a, s′, z)

∫
s∈S T (s, a, s′) b (s).

The goal of solving a POMDP planning problem is to find
an optimal policy π that maximizes the ADR. A POMDP
policy π: B → A maps a belief b ∈ B to a prescribed action
a ∈ A. In other words, π indicates which action a to be taken
at belief b. The value function V π(b) specifies the ADR of
executing π starting from b:

V π (b) = Eπ

[ ∞∑
t=0

γtR (bt, π (bt)) |b0 = b

]
, (2)

where R (bt, π (bt)) =
∫
s∈S R (s, π (bt)) bt (s).

When a policy π maximizes the value function V π , it is the
optimal policy and denoted as π∗. π∗ specifies the optimal
action to take at the current step for each b if the robot acts
optimally at future time steps. The value of an optimal policy
π∗ is defined by the optimal value function V ∗. It satisfies the
Bellman optimality equation:

V ∗ = HPOMDPV
∗, (3)

where HPOMDP is the Bellman backup operator for POMDPs,
defined as:

V ∗(b) = max
a∈A

[
R(bt, a) + γ

∑
z∈Z

p(z|b, a)V ∗(ba,z)

]
. (4)

We ensure the solution is optimal when Eq. (4) holds for every
b ∈ B. V ∗ can be approximated arbitrary well by a piecewise
linear and convex (PWLC) value function. The value function
also can be defined as:

V (b) = max
α∈Γ

∫
s∈S

α(s)b(s) ds, (5)

where α ∈ Γ is a function over S. We commonly call it
α-function. The gradient of the value function at b is given
by the function αb = arg maxα∈Γ

∫
s∈S α(s)b(s) ds.

A policy graph G could be seen as a Finite State Controller
(FSC). We use a tuple 〈N , φ, ψ〉 to represent the graph, which
is defined by a set N of nodes n, a mapping φ: N → A
indicating which action a to be taken at each node n and a
mapping ψ : N ×Z → N indicating that the edge rooted at
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Fig. 1. The belief tree TR with the initial state b0.

n and labeled by z should point to n′. The value αn of the
graph when the robot starts from n is computed as follows:

αn(s) = R(s, φ(n))

+ γ

∫
s′∈S

Pr(s′|s, a)
∑
z∈Z

Pr(z|s′, a)αψ(n,z) (s′)

∀n, s. (6)

Here, αn (s) is similar to the α-function.
Given a belief state b, the value rooted at node n for

continuous state space is αn (b) =
∫
s∈S b (s)αn (s). The

optimal value of G can be computed as:

αG (b) = max
n∈N

αn (b) , (7)

where αG(b) is piecewise-linear and convex since αn(b) is
linear with respect to the belief state.

Value iteration (VI) is a common way to compute the
optimal POMDP value function V ∗. A backup is an iteration
of the value function and constructs a new value Vt+1 from
the current value Vt with the backup operator HPOMDP. Vt
converges to the unique optimal value function V ∗ after a
sufficient large number of iterations. There are many benefits
to represent a value function as a set of α-functions, but
it is difficult to store and compute α-functions over high-
dimensional, continuous spaces. In the MCVI algorithm, it
represents a value function implicitly as a policy graph instead
of a set of α-functions explicitly. Let VG denote the value
function of the current policy graph G, we get a new value
function VG′ of the new graph G′ after performing a backup:

VG′(b) = HPOMDPVG(b)

= max
a∈A

[∫
s∈S

R(s, a)b(s) ds

+ γ
∑
z∈Z

p(z|b, a) max
n∈N

∫
s∈S

αn(s)ba,z(s) ds

]
.(8)

The entire right-hand side of Eq. (8) can be evaluated via
sampling and MC simulations. This process is called MC-
backup. The MCVI algorithm uses MC-backup and particles
filtering to handle continuous state spaces. It computes an
approximate optimal policy by updating the policy graph.
R ⊆ B is defined as a subset of reachable beliefs from a
given initial belief b0 ∈ B. The MCVI algorithm samples a



Algorithm 1 Optimize the policy graph G when adding a new
node nnew
OPTIMAL-BACKUP(G,nnew)

1: Initialize a new graph G′ ← ∅.
2: Nφ(nnew) ← ∅.
3: c← 0.
4: for all n ∈ N do
5: if φ (n) = φ (nnew) then
6: Nφ(nnew) ← Nφ(nnew) ∪ {n}.
7: end if
8: end for
9: for all n ∈ Nφ(nnew) do

10: for all zn ∈ Z̄n and znnew
∈ Z̄nnew

do
11: if zn = znnew

and ψ (n, zn) 6= ψ(nnew, znnew
) then

12: c← c+ 1.
13: break.
14: end if
15: Choose z ∈ Z̄nnew

and z /∈ Z̄n.
16: Z̄n ← Z̄n ∪ {z}.
17: ψ (n, z)← ψ (nnew, z).
18: G′ ← optimizeGraph (G).
19: end for
20: end for
21: if c = |Nφ(nnew)| then
22: N ← N ∪ {nnew}.
23: G′ ← optimizeGraph (G).
24: end if
25: return G′.

set of beliefs from the reachable space R rather than B for
computational efficiency. All the sampled beliefs form a tree
TR (Fig. 1). The algorithm updates TR by sampling in R.
To sample new belief points, MCVI sets a target gap size ε
between the upper and lower bounds at the root b0 of TR.
It traverses a single path down TR by choosing at each node
the action with the highest upper bound and the observation
that makes the largest contribution to the gap at the root of
TR. The sampled path terminates when it reaches a node
whose gap between the upper and lower bounds is smaller
than γ−lε, where l is the depth of the node in TR. We then go
back to b0 and perform backup along the way to improve the
upper and lower bound estimates. The sampling and backup
procedures will be repeated until the gap between the upper
and lower bounds at b0 is smaller than ε, and we finally get
an approximate optimal policy graph.

III. POLICY GRAPH IMPROVEMENT

The policy graph in MCVI grows rapidly over time. We
now describe three techniques to prune and optimize the policy
graph generated by MCVI.

A. Optimize the Backup of Policy Graph

The MCVI algorithm uses MC-backup to back up the
policy graph G at a belief b during the sampling and backup
procedures. The beliefs are represented with particle filters.
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Fig. 2. (a) Backup a policy graph G; (b) new policy graph G′ by optimizing
G. The dashed lines indicate the new node and edges. |A| = 3, |Z| = 3.

MC-backup draws N samples to estimate the value of b. It
picks si ∈ S with probability b (si) and generates the new state
s′i and resulting observation zi with probability T (si, a, s

′
i) and

Ω(a, s′i, zi), respectively. The robot has a higher probability
to know where it is located over time and samples si near its
real state. The observations whose probabilities are 0 would
not be sampled. At this moment, the resulting observations of
each belief consist of a subset Z̄ ⊆ Z. After performing a
MC-backup, the number of observation edges at the new node
nnew has a high probability to be less than |Z|. The square
part in Fig. 2(a) shows a policy graph G after several MC-
backups. In G, nodes n1 and n5 own all possible observation
edges, nodes n2 and n4 own two, and node n3 only owns one,
i.e., z1, with the probability one of observing z1.

MC-backup generates a new policy graph G′ by adding a
new node nnew into G. This makes the policy graph grow
rapidly over time. However, some new nodes could be pruned
if we can optimize the internal structure of G. For example,
the new node nnew in Fig. 2(a) has the same action a1 with
n3 in G. They both have the observation z2 which directs to
the same next node n5. If we add a new observation edge z3

at n3 and make it direct to n4, it is not necessary to add nnew
into G. Fig. 2(b) shows the new graph G′ by this method.

Conceptually, Algorithm 1 considers all possible nodes



nnew when it updates the policy graph G. G′ is the new graph
after updating the graph G. N is a set of all the nodes in G.
Nφ(nnew) is a set of the nodes who own the same action as
nnew. c is a counter. The nodes in G could not be optimized
when c equals to |Nφ(nnew)|. The loop in line 4 selects the
nodes n ∈ N that own the same action as nnew. The loop
in line 10 optimized the node n if each n and nnew’s same
observation edge points to the same next node. Line 11 ignores
the node n if the observation edges rooted at n and nnew are
same but they have different next nodes. Lines 16∼19 generate
a new graph G′ if we can optimize the node n and avoid
adding nnew into G. If we cannot optimize any node in G,
nnew would be added into G (line 22).

Theorem 1: Let G′ be the policy graph without optimizing
the nodes and G′′ the optimized one. α′ and α′′ are the values
of G′ and G′′, respectively. Then, α′′ is always equal to α′.

Proof: If there is no node in G could be optimized, the
new node nnew would be added into G. This means G′ and
G′′ are identical. Obviously, they have the same value. If the
node ni in G could be optimized, the new node nnew would
not be added into G′′. But it does not affect the structure of G′.
G′ and G′′ are similar to Fig. 2(a) and 2(b). In order to prove
that α′ and α′′ are equal. We only need to prove α′nnew

(b) =
α′′ni

(b). If the edges rooted at α′nnew
and α′′ni

have the same
observations, they would direct to the same next node. The
probability of observations at b won’t be affect by the policy
graph. Although the observation edges rooted at ni might be
more than nnew. The probability of the different edges is 0
according to TR (Fig. 1). So we have α′nnew

(b) = α′′ni
(b) (Eq.

(6)) and α′′ is always equal to α′.

B. Prune the Dominated Nodes

The policy graph often contains some dominated nodes. We
describe a technique to prune these nodes while ensuring the
value of G does not decrease (Algorithm 2). The way is to
prune the nodes that are pointwise dominated [23]. A node is
pointwise dominated when its value is less than that of some
other node at all belief states (e.g., n1 is pointwise dominated
by n3 in Fig. 3(a)). Fig. 3(b) shows the original policy graph
and 3(c) shows the new graph once the dominated node n1 is
pruned.

Algorithm 2 shows how to prune the dominated nodes in
G. Ssamples ⊆ S is a set of all the sampled beliefs. The
loop in line 3 samples J states with probability distribution
b0 and gains the value at each node by simulation. α is the
real value when J and K is big enough. The loop in line 10
prunes the dominated nodes. Their inward edges are redirected
to the dominating nodes. The complexity of Algorithm 2 is
acceptable with the sparsity [23].

C. Prune the Redundant Nodes

The policy graph G is initialized with a simple default
policy (e.g., the robot always performs a single fixed action).
The node n0 in Fig. 4 represents the default policy and directs
to itself. Several nodes would be added into G in search
procedures [24], such as n1, n2 and n3 in Fig. 4. The subscribe
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Fig. 4. The optimal policy graph G.

of ni indicates an sequence when a node is added into G. For
example, we add n1 into G earlier than n3. Each layer in
Fig. 4 represents a search procedure with MC-backup. The
edges rooted at node ni in G always direct to the nodes
with smaller subscribe. If the policy graph G in Fig. 4 is
optimal after several searches and n3 is the initial action node
at b0, the robot would not reach n2 forever. At this point,
we can remove n2 without any loss. Nodes like n2 are called
redundant ones. Algorithm 3 describes how to prune these
nodes. We demonstrate that the new graph G′ have the same
performance with the old one.

Theorem 2: The procedure in Algorithm 3 returns a policy
graph with a value equal to the value of the original one.

Proof: Suppose that G′ is the updated graph in Algorithm
3 and G is the original one. G′ and G have the same initial



αG
′

nopt
(s)← R(s, φ(nopt)) + γ

∫
s′∈S

Pr(s′|s, a)
∑
z∈Z

Pr(z|s′, a)αG
′

ψG′ (nopt,z)
(s′) ∀s, (9)

αGnopt
(s)← R(s, φ(nopt)) + γ

∫
s′∈S

Pr(s′|s, a)
∑
z∈Z

Pr(z|s′, a)αGψG(nopt,z)
(s′) ∀s. (10)

Algorithm 2 Prune the dominated nodes in G at the initial
belief b0 with J initial states and K samples
PRUNE-DOM(G, b0, J,K)

1: repeat
2: Ssamples ← ∅.
3: for i = 1 to J do
4: Sample a state si with probability distribution b0.
5: Ssamples ← Ssamples ∪ {si}.
6: for each n ∈ N do
7: Set αn (si) to be the ADR of K simulations and

each simulation starts at n from the initial state si.
8: end for
9: end for

10: for each n1 ∈ N do
11: for each n2 ∈ N \ {n1} do
12: if αn1

(s) ≥ αn2
(s) ∀s ∈ Ssamples then

13: N ← N \ {n2}.
14: for all n ∈ N and z ∈ Z̄n do
15: if ψ(n, z) = n2 then
16: ψ(n, z)← n1.
17: end if
18: end for
19: end if
20: if αn1

(s) ≤ αn2
(s) ∀s ∈ Ssamples then

21: N ← N \ {n1}.
22: for all n ∈ N and z ∈ Z̄n do
23: if ψ(n, z) = n1 then
24: ψ(n, z)← n2.
25: end if
26: end for
27: break.
28: end if
29: end for
30: end for
31: until G doesn’t change
32: return G

node nopt. We have αG
′

n0
(s) = αGn0

(s) ∀s since the robot
always takes the same action at n0. αG

′

nopt
and αGnopt

are their
value function. We want to prove αG

′

nopt
(s) = αGnopt

(s) ∀s.
The value of G′ and G is computed as Eqs. (9) and (10).

G′ shares the same transition function T (s, a, s′) and ob-
servation function Ω(a, s′, z) with G. Algorithm 3 does not
change the next node for the same observation at n. Thus, the
following equation holds for any n and z:

Algorithm 3 Prune the redundant nodes in an optimal graph
G with the initial node n
PRUNE-REDUNDANT(G,n)

1: for each n ∈ N do
2: if n isn’t reachable from n then
3: N ← N \ {n}
4: G′ ← optimizeGraph(G)
5: end if
6: end for

n′ = ψG
′
(n, z) = ψG(n, z) ∀n, z. (11)

Here, n′ is the next node with observation z at n. Both
G′ and G share the same observation edges at node n.
So, we only need to prove αG

′

n′ (s) = αGn′(s) ∀s. Like the
demonstration of the value at nopt, we just need to demonstrate
αG

′

n′′(s) = αGn′′(s) ∀s. With this analogy, we just need to
demonstrate αG

′

n0
(s) = αGn0

(s) ∀s, and this equation has been
clearly established at the beginning.

IV. EXPERIMENTS

We used the mcvi-0.2 software package [22] to implement
our pruning and optimization algorithms. The experimental
platform is Intel Xeon 4-Core Processor 3.4GHz, 8GB memo-
ry. The operation system is Ubuntu Linux 14.04. In Algorithm
2, we estimated the α-functions by running 10000∼100000
simulations, and used the ADR as the value of the nodes. To
reduce the variation caused by the randomness in MCVI, each
experiment was repeated 10 times.

A. Corridor

We tested our algorithms on the corridor problem [22], [25]
and compared the performance with the unimproved one. In
this task, a robot can move along the 1-D corridor with four
doors. Its target is to enter in the second door from the left.
There are three actions that the robot can take: move-left,
move-right and enter. Due to the uncertainty, the robot does
not know where it is exactly located and only receives four
observations: left-end, right-end, door and corridor. The robot
gets a positive reward when it takes the action of entering into
the correct door. Otherwise it receives a punishment. If the
robot tries to move out of the corridor, it would be punished.
Here, we used the same model and parameters as MCVI [22].

We ran Algorithm 1 with 600 particles and 400 samples
for each MC-backup. We compared the nodes before and
after optimization at some given time points. In Table I, Gap
indicates the difference between the upper and lower bounds



TABLE I
THE NUMBER OF NODES BEFORE AND AFTER OPTIMIZING THE BACKUP

PROCEDURE

Time (s) Gap |B| Nori Nopt

10 2.14 14 41 37
100 1.55 47 120 100
200 1.24 70 172 140
400 1.14 99 248 200
600 1.10 124 314 249
800 1.04 146 375 289
1000 1.00 164 424 321
1200 0.96 181 486 365
3600 0.79 317 913 645
7200 0.66 441 1300 892

0 1000 2000 3000 4000 5000 6000 7000
Time (s)

0%

5%

10%

15%

20%

25%

30%

35%

O
p

ti
m

iz
e

d
 N

o
d

e
s
 (

%
)

Fig. 5. The percentage of optimized nodes in Algorithm 1 on the corridor
problem.

at the initial belief b0; |B| is the number of beliefs has been
sampled; Nori and Nopt are the number of the nodes in
the policy graph before and after optimization, respectively.
In comparison of Nori to Nopt in Table I, we found that
Algorithm 1 could remove optimizable nodes in the policy
graph efficiently and avoided the graph to grow rapidly.

Fig. 5 shows the percentage of optimized nodes, meaning
that they can be removed from the current graph without losing
its accuracy, with Algorithm 1. At the beginning, the curve
increases fast because there is a large probability of finding
optimizable nodes by using a graph with simpler structure. But
as time goes on, the probability of finding the optimizable
nodes becomes smaller, and therefore, the gradient of the
curve becomes smaller and approaches to 0. After two hours,
Algorithm 1 has pruned about a third of optimizable nodes.

In Table II, we compared Algorithm 2 with MCVI in
different parameter settings. Some dominated nodes have been
pruned by Algorithm 2 without sacrificing the graph quality.

To avoid removing useful nodes, Algorithm 3 uses a near
optimal policy graph as an input. Both the number of particles
and the number of samples are set to be 100. We obtained
such a graph with Gap = 0.22 by running MCVI in 18000
seconds. There are 1354 belief nodes in the belief tree and
2646 nodes in the graph. After pruning the redundant nodes
with Algorithm 3, we got a new policy with 770 nodes. It
is amazing that we have pruned about 70 percent of nodes

TABLE II
THE NUMBER OF NODES BEFORE AND AFTER OPTIMIZING THE

DOMINATED NODES

Particles and Samples Time (s)
MCVI Graph Optimized Graph

Nodes Value Nodes Value

N = 100, M = 100
3600 1198 1.21190 1192 1.21833

18000 2655 1.36347 2638 1.37628

N = 400, M = 600
3600 562 1.32464 534 1.32466

18000 1213 1.50492 1195 1.50691
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Fig. 6. Musical chairs.

in the original policy graph. Generating such a simpler graph
without losing solution quality is attractive when considering
to use them into some devices with limited resources.

B. Musical Chairs

The second tested problem is the so-called musical chairs
task (see Fig. 6). There are three chairs (C0, C1 and C2) in the
classroom. A robot and two people play this game. Obviously,
the robot could always find an empty chair. The distance from
each chair to the robot is the same. At the beginning, each
person randomly chooses whether or not to select a chair to
sit down. As a result, there will be one to three chairs empty.
The robot’s target is to find one empty chair to sit down as
fast as it can. There are eight actions the robot can take: move-
east, move-north, move-west, move-south, checkC0, checkC1,
checkC2 and sit-down. The robot spends no cost when it moves
around the classroom or checks the chairs. When the robot
takes the action sit-down, it receives a reward +10 when it is
very close to an empty chair. In other cases, it gets a penalty
−10 and the game is over. If the robot moves out of the room,
it will receive a penalty −100 and the game is over. Each
motion action is stochastic. The real position of the robot is a
two-dimension Gaussian distribution around the real position
of the deterministic one.

The observations of the robot are good and bad. Only when
the robot takes the action checkCi and the checked chair is
not empty, it would receive the observation bad. Otherwise,
it receives good. The observation of a chair is independent of
other chairs (it only depends on the robot position). Because
of the noise of the sensors, the robot may receive the wrong
perception when it checks a chair. The probability that the
robot receives the correct perception is related to the distance
from the robot to the chair. Due to the independence of
the observations, the complexity of computing Pr(z|b, a) is
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Fig. 7. The percentage of optimized nodes in Algorithm 1 on musical chairs.
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Fig. 8. The average total reward computed by Algorithm 1 on musical chairs.

greatly reduced. The computation of Pr(z|b, checkCi) reduces
to: Pr(z|b, checkCi) = Pr(accurate|xp, checkCi) · Pr(xCi =
z) + (1 − Pr(accurate|xp, checkCi) · (1 − Pr(xCi = z))).
Pr(accurate|xp, checkCi) =

1+η(xp,i)
2 is the accuracy of the

probability that the robot receives the true observation about
chair Ci, where η(xp, i) = e−(d(xp,i)·ln(2))/d0 . d(xp, i) is the
Euclidean distance between position xp and the position of
chair Ci, and d0 is a constant which specifies the half efficiency
distance. Pr(xCi = z) is easily obtained from the probability
whether the chair Ci is empty or not. The discount factor γ is
0.95 and the half efficiency distance d0 is 30. The deviation of
each motion action is 0.01 in the Gaussian distribution without
covariance. The robot starts from the position S0. If Ci is
empty, the robot can sit in Ci when it is in the circle of Ci.

Fig. 7 and 8 show the percentage of the optimized nodes
and the average total reward of musical chairs obtained by
Algorithm 1, respectively. Here, we used 350 particles and 350
samples. We found that the percentage of optimizable nodes
is about 40% initially, because the number of observations
were at most two and there are not many nodes in the graph
at the beginning stage. We obtained an optimal policy graph
within 100 seconds with high accuracy sensors (Fig. 8) and
the number of pruned nodes due to its redundance accounts
for 96% of the whole nodes in the original graph.

To summarize, by using our pruning and optimization tech-

niques in the MCVI algorithm, more compact policy graphs
have been empirically constructed with comparable qualities
on the two tested continuous-state POMDP problems.

V. RELATED WORK

Most real world POMDP problems are naturally modeled
by continuous-state spaces. In this case, the dimensionality of
the belief space is infinite; expected values over states are
defined by integrals, for which in general no closed form
exists. Thus, simple generalizations of known approaches and
complexity results for discrete-state models to continuous-state
domains are not appropriate or applicable. To find approximate
solutions to continuous-state POMDPs, existing approaches
first approximately represent beliefs in the infinite-dimensional
space by a low-dimensional discrete representation. In [25]–
[27], sufficient statistics are used to reduce the dimension of
the belief space automatically. Porta et al. [25] represented the
beliefs using Gaussian mixtures or particle sets to guarantee
that the belief update and Bellman backup can be computed in
closed form. Brooks et al. [26] used finite vectors of sufficient
statistics to approximate the belief space. Zhou et al. [27]
approximated the belief space by a parameterized density and
solved the approximate belief MDP on the parameter space.
These approaches share the idea to represent beliefs in the
infinite-dimensional continuous belief space by a parametric
form and solve the approximate POMDP on the parametric
space.

The algorithm recently proposed in Brechtel et al. [28]
automatically learn a low-dimensional, discrete representation
of the continuous-state space during the process of solving.
The insight exploited in [28] is that states which are close
in the continuous-state space will usually lead to similar
outcomes and thus have similar α-vectors in most problems.
They used decision trees to represent the space partitioning.
Bai et al. [21], [22] avoided the discretization of the continuous
spaces and computed an approximation to an optimal policy
by updating a policy graph. Backups were performed on
the policy graph, which was a finite-state controller with
continuous input and discrete output.

Note that some points in our pruning and optimization
techniques are inspired by the work of Grześ et al. [29]. One
main difference between the two is that our techniques are
designed for problems with continuous state spaces.

VI. CONCLUSION AND FUTURE WORK

As a state-of-the-art continuous-state POMDP algorithm,
MCVI computes an approximate solution represented as a
policy graph by combining Monte Carlo sampling with dy-
namic programming. However, no pruning and optimization
techniques have been used into the policy graph obtained by
MCVI. As a result, its graph size grows rapidly over time
and has no upper bound. This makes the graph inapplicable
for mobile and embedded devices with limited resources. In
this paper, we present three techniques to reduce the graph
size with few sacrifice in the solution quality, and thus make
the graph representation much more compact. Specially, we



optimize the internal structure at the time of adding a new
node into the policy graph G; evaluate the value of each node
in G and prune the dominated nodes; and prune the nodes
that are not reachable from the initial action node through any
optimal policy graph. Our experiments are performed in both
the corridor task, a classic continuous-state POMDP bench-
mark problem, and the so-called musical chairs task, a more
challenging task designed to test our proposed techniques.
Preliminary experimental results show that these new pruning
and optimization techniques appear to be useful in constructing
more compact policy graphs with comparable qualities through
pruning lots of dominated and abundant nodes.

We leave the following problems as future topics. First, we
would like to explore ways of reducing the computational time
spent in sampling states and simulating with few accuracy loss
of α-functions when pruning dominated nodes. Second, we
are interested in the possible ways (e.g., linear programming,
bounded policy iteration [30]) of pruning the jointly dominated
nodes [29] to further reduce the policy graph size. Finally, we
would like to extend our method to continuous observation
spaces [31] and use macro-actions to further improve its
efficiency in handling long planning horizon problems [32].
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