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Abstract—Evolutionary algorithms used to solve 

complex optimization problems usually need to perform a 

large number of fitness function evaluations, which often 

requires huge computational overhead. This paper 

proposes a self-adaptive similarity-based surrogate model 

as a fitness inheritance strategy to reduce computationally 

expensive fitness evaluations. Gaussian similarity 

measurement, which considers the ruggedness of the 

landscape, is proposed to adaptively regulate the similarity 

in order to improve the accuracy of the inheritance fitness 

values. Empirical results on three traditional benchmark 

problems with 5, 10, 20, and 30 decision variables and on 

the CEC’13 test functions with 30 decision variables 

demonstrate the high efficiency and effectiveness of the 

proposed algorithm in that it can obtain better or 

competitive solutions compared to the state-of-the-art 

algorithms under a limited computational budget. 

Keywords—Fitness inheritance; Fitness estimation; 

similarity; Computationally expensive optimization; Particle 

swarm optimization 

I. INTRODUCTION  

Evolutionary algorithms (EAs) have much strength for 
optimization, for example, no requirement on differentiability 
of the objective functions, ease implementation, and better 
global search capability, compared to traditional single-point 
optimization algorithms. For these reasons, EAs have been 
applied to many real-world applications and have emerged as 
well-established and powerful optimization tools, especially in 
the field of engineering design. However, many real-world 
engineering optimization problems involve complex 

computational simulations, which may take a few minutes, 
hours or even days to perform one simulation [1-4], such as 
computational fluid dynamics [5], finite element method 
computations [6], and aerodynamic shape optimization [7], 
just to name a few. As EAs usually need a large number of 
fitness evaluations to obtain an acceptable solution, it is 
essential to reduce the number of fitness evaluations due to the 
constraint of limited computational resources. 

To tackle computationally expensive optimization 
problems, use of computationally cheap fitness approximation 
to replace the real expensive fitness evaluations is a common 
approach [8-10]. The most popular method of fitness 
approximation is surrogate models (also called meta-models) 
[11-14]. Commonly used surrogate models include the 
polynomial method [15], the kriging method (Gaussian 
process) [16], artificial neural networks (ANN) [17], radial 
basis functions (RBF) [2, 18], and support vector machines 
(SVM) [19]. A comprehensive description of these methods 
can be found in [8-10]. Among various fitness approximation 
methods, fitness inheritance techniques are a generic approach 
that does not rely on the use of surrogate models. One clear 
benefit of fitness inheritance is that its computational expense 
is much less than that of training a surrogate model [9]. In this 
paper, we propose to use a relatively simple fitness 
approximation method to determine which individual will be 
evaluated using the real objective function, and which one will 
be reliably estimated using fitness inheritance. The idea of 
fitness inheritance was originally proposed by Smith [20]. It is 
an intuitive idea assuming that the fitness of an individual can 
be derived from its parents. Two types of fitness inheritance 
strategies have been proposed, one is known as the averaged 
inheritance and the other weighted inheritance. Salami and 
Hendtlass [21] introduced a “fast evolutionary algorithm”, in 
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which a fitness value and an associated reliability value were 
assigned to each new individual, and the individual is 
evaluated using the real fitness function only when its 
reliability value is below a threshold. As mentioned in [22], in 
many real-world applications, the fitness of offspring cannot 
be reliably estimated from the fitness of their parents,  as 
they are not necessarily similar to their parents. Instead, a 
newly generated offspring individual may be similar to those 
in its vicinity. For example in a particle swarm optimization 
(PSO) algorithm, Cui [23] proposed a fitness inheritance 
model based on the similarity or credibility to an individual’s 
previous position. In [24], a fitness estimation strategy was 
proposed for particle swarm optimization, called FESPSO, 
based on the positional relationship between two individuals at 
same iteration. To further reduce the number of fitness 
evaluations for FESPSO, Sun et al [25] introduced a similarity 
in the fitness estimation strategy method later. Kim [26] used 
a clustering technique to group similar individuals and the 
individuals that are closest to cluster center will be evaluated 
using the real objective function, while the fitness of the rest 
individuals will be inherited from those with their fitness 
being evaluated using the real objective function.  

Reyes-Sierra and Coello [27] suggested a fitness 
inheritance model that also used the average method according 
to the Euclidean distances between individuals in multi-
objective particle swarm optimization, which was shown to 
have reduced the time of optimization and improved the 
performance in solving the classical test functions. Gomide 
[28] utilized a fuzzy clustering method with fuzzy adaptive 
clustering of c-means. In each cluster, the fitness of the most 
representative individual was calculated using the real fitness 
function and the fitness of the other individuals is estimated 
using a fitness inheritance method weighted by the Euclidean 
distance and the membership degree. Fonseca et al. [29] 
introduced a similarity-based surrogate model based upon the 
k-nearest neighbors method (KNN). The similarity proposed 
by Fonseca is also based on the Euclidean distance among 
individuals. Subsequently, Fonseca et al [30] applied three 
different types of adaptive value inheritance models, including 
the averaged inheritance model, weighted inheritance model, 
and parent inheritance model, in a real-coded genetic 
algorithm for comparisons. Jin and Sendhoff [31] also used 
the k-means method applied to group the individuals of a 
population into a number of clusters. For each cluster, only the 
individual which closest to the cluster center is evaluated and 
the fitness of other individuals are estimated using a neural 
network ensemble. 

The main issue that needs to be addressed when employing 
the fitness inheritance method is the accuracy. In most fitness 
inheritance strategies, the fitness of an individual is estimated 
based on that of other individuals according to the positional 
relationship of these two individuals in the decision space 
using the Euclidean distance, and the smaller Euclidean 
distance between two individuals’ positions is, the higher the 
degree of similarity between them. However, fitness landscape 
analysis proved that the distance metrics will become less 
meaningful when the dimensionality of the decision space 
significantly increases [32]. For example, the fitness distance 
correlation (FDC) [33] indicated  that there is no simple 

relationship between the fitness values of two individuals and 
the distance between two individuals. Different from the 
above-mentioned approaches, Davarynejad [34-36] proposed a 
method of adaptive fuzzy fitness granulation using the fitness 
of the individuals in the pool for fitness estimation. When the 
center of the granule has a high fitness, the radius of the 
granules will be small, and the new individual’s fitness is 
more likely to be computed in this granule. On the other hand, 
more individuals will be estimated using fitness inheritance in 
the granule when its center has a poor fitness. Nonetheless, for 
fuzzy granule rules, an individual may find itself in more than 
one granule, and granules with Gaussian measures of 
similarity was proposed to adjust its the width so that the new 
individual will inherit the fitness from a granule with a poor 
fitness yet far from this individual, while not inherit the fitness 
from a granule with good fitness but near the new 
individual[37]. Therefore, the above-mentioned approaches 
cannot guarantee the accuracy in fitness estimation. In order to 
obtain more accurate estimation using a fitness inheritance 
method, the impact of the fitness landscape on the similarity 
between two individuals must be considered. 

In this paper, an adaptive similarity-based surrogate model 
is proposed to reduce the computational cost for time-
consuming optimization problems, which takes into account 
the similarity on both smooth fitness landscapes (with small 
fitness changes in the neighborhood) and rough fitness 
landscapes (with high fitness variations in the neighborhood). 
The degree of similarity between individuals will be decreased 
when the local fitness landscape is believed to be rugged. By 
utilizing an adaptive similarity-based surrogate models in 
order to adjust the frequency of using fitness estimation, we 
aim to achieve a balance between the frequency and the 
accuracy of fitness estimation, thereby ensuring the estimation 
accuracy while reducing the required fitness evaluations using 
the real fitness function. 

The remainder of this paper is organized as follows. 
Section II gives a detailed description of the proposed self-
adaptive similarity-based surrogate model and the surrogate-
assisted PSO. Experimental results on two groups of test 
problems are presented and discussed in Section III. Section 
IV gives a summary of this paper and some discussions for 
future work. 

II. A SELF-ADAPTIVE SIMILARITY-BASED 

SURROGATE MODEL 

As previously discussed, the main issue with utilizing a 
fitness inheritance method is to enhance the accuracy of 
fitness estimation.  In the following, we first provide an 
illustrative example showing why most existing fitness 
inheritance methods using the Euclidean distance as a measure 
for similarity may fail. After that, we introduce a new fitness 
inheritance method.  

Fig. 1 gives an illustrative example to show the problem in 
fitness estimation when a similarity degree is utilized in a one-
dimensional Michalewicz function. In this example, there are 
three solutions x1, x2 and x3, in which the fitness value of 
x1 and x3 are known and evaluated using the real fitness 
function. x2 is a new candidate solution whose fitness is to 



be estimated. The similarity between x1 and x2 is s1, and 
the similarity between x3 and x2 is s3. Given a similarity 
threshold s0, x2 will be estimated if and only if  s1 or s3 
is greater than s0. According to the Euclidean distance, a 
smaller distance between two points means a higher degree of 
similarity. If s1 <s0 <s3 , the fitness of x2(y2) can be 
inherited from that of x3. However, as we can see from Fig. 1, 
the fitness landscape is smoother between x1 and x2 than 
between x3 and x2. Therefore, in order to reliably estimate 
the fitness of x2, a new similarity metric is needed, which 
takes the ruggedness of the local landscape in addition to the 
Euclidean distance, so that the fitness of x1 will be used for 
estimating the fitness of x2, then the fitness estimation error 
will be smaller than the fitness of x3 used for estimating the 
fitness of x2 .  

 

Fig. 1.  An example of three solutions in a one-dimensional Michalewicz 

function 

To address the above issue in fitness estimation, this paper 
proposes a Gaussian similarity measure that is able to adjust 
the degree of similarity according to the local ruggedness of 
the fitness landscape. It is assumed that the similarity and the 
local ruggedness are negatively correlated. 

A. Self-adaptive similarity-based fitness approximation 

strategy 

Without loss of generality, we consider the following 
minimization problem: 

  
Minf(x)

Subject to : xl · x · xu
                   (1) 

where is the feasible solution set, n denotes the 
dimensionality of the search space. Below are the main steps 
of our proposed method for PSO algorithms. 

Step 1：Initialize a population, perform fitness evaluation 

using the real objective function for all individuals.  

Step 2：Determine the personal best position and global best 

position of PSO. If the fitness of the personal best position or 

global best position is estimated, then re-evaluate their fitness 

using real objective function.  

Step 3: Update the velocity and position of the swarm. For 

each individual i (i=1,2,…,n), set a neighborhood size of xi, 

and select k  neighboring individuals. If k = 0, evaluate the 

fitness of xi using the real objective function, and go to Step 

6; otherwise go to Step 4. 

Step 4：Calculate the Gaussian similarity ¹
r
i  between xi 

and its neighbor xr. 

Step 5：Estimate the fitness value of xi using the fitness 

inheritance strategy. 

Step 6：Repeat steps 2-5 if the stop condition is not satisfied, 

otherwise stop and exit. 

B. Gaussian Similarity 

Gaussian similarity, which uses a Gaussian function, is a 
similarity matrix that commonly be used as a clustering 
calculation method for similarity models,  

 s(i; r) = exp(¡
d2 (xi;xr)

2¾2
)      (2) 

In  (2), d2 (xi;xr) is the Euclidean distance between two 

samples i and r, and ¾ is the metric parameter. The most 
important issue in the Gaussian similarity is the selection of 
metrics. Different metric parameters will lead to different 
clustering results. In this paper, we incorporate the roughness 
of the local fitness landscape to help adjust the metric of the 
Gaussian similarity. The similarity will be self-adaptively 
calculated according to the changes in the local roughness, 
which will reduce the estimation errors in fitness inheritance. 
In the following, we will elaborate the proposed self-adaptive 
similarity-based surrogate model in detail.  

C. Defining a measure for local roughness ±  

It is conceivable that the local roughness where individual 
i is located will influence the accuracy of fitness estimation 

much more than the global roughness of the fitness landscape. 
In this paper, the local roughness will be considered when the 
fitness of individual i is to be estimated. 

Suppose the radius of neighborhood of individual i is Ri, 
the neighboring U(xi;Ri) is defined by [xi ¡Ri;xi +Ri]. 
Apparently, the size of radius Ri will directly affects the 
number of individuals in the neighborhood. If the 
neighborhood is too small, there might not be enough 

neighboring individuals around individual i ， and the 

Gaussian similarity cannot be constructed. If the neighborhood 
is appropriately set, there will be sufficient neighbors and the 
fitness of individual i will be inherited from its neighbors. 
At the earlier generations, the global search ability is 
paid more attention to the algorithm, so a relatively large 
radius Ri is adopted. Then, Ri will be decreased to improve 
the accuracy of fitness estimation at later generations. In this 
paper, an adaptive radius is proposed according to the number 
of the individuals distributed in the neighborhood of  
individual i . The upper and lower bounds of the 
neighborhood on j-th dimension of individual i are defined 
as cxjmax and cxj min, that is: 

cxjmax =max (fxij; i= 1; ;2; :::;ng )         (3) 

cxj min =min (fxij; i= 1; ;2; :::;ng )          (4) 

where n is the population size. Correspondingly, the value of 
Ri on j-th dimension is set as： 

Rij = ® jcxj max ¡ cxj minj       (5) 
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In(5), ®  is called the convergence factor. Apparently, 
Ri = fRij; j = 1;2; : : : ; lg is different on each dimension, l 
is the number of variables. 

Suppose that there are individuals whose fitness is 
evaluated using the real objective function, we save their 
positions and corresponding fitness into an archive 
XE= fxev; f(xev); ev = 1;:::;mg , which will enable 
individuals to find their neighbors in their neighboring space 
U(xi;Ri). The neighbors of each individual i will be also 

saved in an archive Xir = fxr; f(xr); r = 1; :::; kg. xr and 

f(xr) represent the position and fitness of r-th neighbor of 
individual i , respectively. Eq.(6) defines the method to 
calculate the local roughness ±  around individual i . 
Obviously, if the fitness variation among the neighbors is 
large, the local roughness ±  will be relatively large, and vice 
versa. 

± =

max
r2f1;;2;:::;kg

(f (xr))¡ min
r2f1;;2;:::;kg

(f (xr))

max
ev2f1;;2;:::;mg

(f (xev))¡ min
ev2f1;;2;:::;mg

(f (xev))
 (6) 

We can easily find that ± 2 [0;1].  

D. Defining metric parameter ¾ 

The metric parameter ¾ plays an important role in the 
Gaussian similarity. We firstly consider the value of the 
proper metric parameter ¾  on one-dimensional problems 
when the fitness of an individual will be estimated. The 
similarity ¹

r
i  between the interested individual i  and its 

neighboring individuals r is defined according to  (2). 

 ¹r
i = e¡

(xr¡x
i)

2

2¾2 ; r = 1; :::; k  (7) 

The next step is to select those neighbors with their 
similarity ¹

r
i  higher than the threshold µ . All neighbors, 

which are called estimation neighbors, will be used to estimate 
the fitness of xi using the inheritance method. The values of 
both parameters, ¾  and µ , are key factors in selecting 
estimation neighbors. 

We divide individuals around individual i into three parts. 
According to the 3σ principle of Gaussian function and the 
similarity defined in (7), the position of xi is the center of the 
neighborhood, and individuals in the range [xi ¡¾;xi +¾] 
are called core neighbors, individuals located in the range 
[xi ¡2¾;xi +2¾] are called outskirt neighbors, and those 
located in the range [xi ¡3¾;xi +3¾]  are called weak 
outskirt neighbors. When the core neighbors are used to 
estimate the fitness of individual i , the threshold for the 

similarity level is set to µ = e¡
1
2 ¼ 0:6. Then the value of ¾ 

will directly affects the range of the core neighbors 
[xi ¡¾;xi +¾] . Therefore, the value of ¾  value will 
correspondingly affects the similarity among individuals. In 
this paper, a local roughness of the fitness function ±  is 
proposed to be incorporated in the setting of metric parameters, 
which aims to adjust the size of the neighborhood the core 
neighbors are located. The size of this space will be shrunken 
as the local roughness increases. Obviously, if the roughness 
is low, the core neighbors will be selected from a wide range 
of individuals around individual i, as a result, the fitness of 

individual i will be more likely to be estimated; otherwise, 
the fitness of individual i will be more likely to be evaluated 
using the real objective function. Eq. (8) gives the definition 
of ¾  proposed in this paper: 

 ¾ =
¯

±
Ri    (8) 

where ¯  is the convergence factor, and ±  represents the 
local roughness of the fitness function. Because ± 2 [0;1], we 
can deduce that when the variation on fitness of neighbors is 
small in the neighboring space, it is possible for ±  to be near 
zero with ¾ approaching the infinity. Therefore, we give an 
upper bound of ¾, ¾ ·Ri, to set ¾ in a limited range. Then 

we can get ¾ = ¯
±
Ri · Ri which we can derive that ± ¸ ¯; 

as a result, when ± · ¯ , we have ± = ¯，and ± 2 [¯;1], and 

subsequently, ¾ 2 [¯Ri;Ri]. 

When the individuals are in multi-dimensional space, ¾ 
and Ri are n dimensional vectors with the same number of 
dimensions as xi, and in the jth dimension: 

¾j =
¯

±
Rij            (9) 

The similarity ¹
r
ij between individual i and its neighbor 

r on j-th dimension is given in the following: 

 ¹r
ij = e

¡
(xrj¡x

ij)
2

2¾j
2

; r = 1; :::; k       (10) 

The similarity ¹
r
i  between xi and xr, then, will be the 

average of the similarity on all dimension: 

 ¹r
i =

P
l
j=1¹

r
ij

l
; r = 1; :::; k  (11) 

If the core neighbors are used for estimating the fitness of 
xi in a weighed manner, the similarity threshold should be 
µ = e¡

1
2 ¼ 0:60. We suppose that individuals with a higher 

fitness value are commonly surrounded by more individuals, 
so when the average fitness value of the neighboring 
individuals is relatively high, the individual of interest is more 
likely to have a higher fitness value. Especially at the end of 
evolution, the population converges gradually, and the 
individual whose fitness is to be estimated is often located in 
an area of high fitness. As a result, the number k0 is relatively 

high in the core neighbors’ archive Xkr = fxkr; f(xkr); r = 1; :::; k0g. 
Therefore, the fitness of the neighbors should be also 
considered when selecting neighbors for fitness estimation. In 
this paper, the threshold of similarity µ is constructed based 
on the averaged fitness value of the core neighbors, denoted as 
mean (f (xkr)), and the threshold µ is adapted according to 
the value of mean (f (xr)):  

mean(f(xkr)) =

P
k0

kr=1f(xkr)

k0
; kr = 1; :::; k0    (12) 

µ = 0:9¡ 0:3 ¤

mean (f (xkr))¡ min
ev2f1;;2;:::;ng

(f (xev))

max
ev2f1;;2;:::;ng

(f (xev))¡ min
ev2f1;;2;:::;ng

(f (xev))
  (13) 



From (13) we can see that µ 2 [0:6;0:9]. By neighboring 
clusters from the core individuals, those neighbors used for 
fitness estimation are selected based on their merits according 
to mean (f (xkr)). When the average fitness mean (f (xkr)) 
of the individuals is weak in the neighborhood, the fitness of 
the neighbors of xi is undesirable overall, and µ  will be 
reduced accordingly, making the interested individual more 
likely to be estimated. On the other hand, when the average 
fitness mean (f (xkr)) of the individuals is large in the 

neighborhood, the value of µ  will be increased, thus 
increasing the likelihood for the individual’s fitness to be 
evaluated using the real objective function.  

E. Fitness inheritance strategy 

The individuals in the set Xr  that satisfy ¹r
i > µ 

constitute the set SN = fsn1; :::sntg. The similarity between 
i and individuals from the set SN  is f¹1; :::¹tg. Suppose 

that there are potentially more good individuals around the 

current best individual, there should be the historically best 

individuals found previously in the set SN , the new 

individual i is also considered to potentially locate at the best 

position. Thus, the fitness of individual i is obtained with the 

following procedure: 

 If the historically best individuals are in the set SN，
the fitness of individual i is evaluated using the real 
objective function.  

 If 1· t· T , 

f (xi) =

P
t
l=1(¹l)

2
f(snl)

P
t
l=1(¹l)

2
;1 · t · T        (14) 

 If t > T ， the similarities between individuals and 

current individual are ranked according to a decreasing 
order of their fitness, and T  individuals were selected 

to assign f (xi) value in a weighted manner. T  is the 

maximum number of neighboring individuals used for 
fitness estimation. 

f (xi) =

P
T
l=1(¹l)

2
f(snl)

P
T
l=1(¹l)

2
; t > T            (15) 

III. EXPERIMENTAL STUDIES 

In order to examine the performance of the proposed self-

adaptive similarity-based fitness approximation for particle 

swarm optimization, called SS-Based FAPSO, for 

computationally expensive problems, the algorithm is tested 

on two sets of widely used benchmark problems. In addition, 

the efficiency and effectiveness of SS-Based FAPSO is also 

demonstrated by comparing to a few existing fitness 

inheritance strategies proposed for PSO. 

A. Traditional Optimization Benchmark Functions 

To investigate the efficiency of our proposed approach, 
three traditional optimization benchmark functions suggested 
in [35] and 28 CEC functions are adopted. Four sets of 
dimensions are utilized for three traditional optimization 
benchmark functions:D= 5;10;20and30. The characteristics 

of the three benchmark functions （Griewank, Rastrigin and 

Ackley）, referring to [35] for more details. These three 

benchmark functions are scalable and are commonly used to 
assess the performance of optimization algorithms. They have 
some intriguing features which most optimization algorithms 
find hard to deal with. All the compared algorithms are run for 
10 independent times on each test problem in Matlab R2014a. 
The code for the traditional PSO is provided by [38].   

In this paper, The PSO and the k-nearest neighbors method 
for PSO, called KNNPSO, are adopted to compare on the 
performance with SS-Based FAPSO under the same fixed 
fitness evaluations. In KNNPSO, we select k as the number 
of the closest neighbors to the individuals to be estimated for 
performing the calculation of fitness inheritance. The 
parameters for the KNNPSO method are set as follows: k  is 
the number of the closest neighbors in radius R, which is the 
same as the radius set for SS-Based FAPSO. From (5) and (6) 
with ® = 0:5 , fitness inheritance is performed for the 
individual of interest when10À k ¸ 1, but only the 10 closest 
neighbors to xi are selected for estimating the fitness of 
individual i using the inheritance strategy when k ¸ 10. The 
parameters of KNNPSO and SS-Based FAPSO are set as 
follows in the experiment: The size of the swarm is 20, the 
cognitive and social parameters are both set to 2.05, the 
velocity v has the same range as the position x on each 
dimension, and the maximum number of real fitness 
evaluations is set to ME=100¤D, which is the same as 
those used in [35].  

Figs. 2-4 shows the results obtained by PSO, KNNPSO, 

and SS-Based FAPSO with the same number of fitness 

evaluations. The algorithm stops when the fitness evaluations 

reach the maximum value of fitness evaluations using the real 

objective function. A number of experiments were conducted 

and showed that if the value of ® in (5) is set too small, the 

size of the neighborhood will be small too, resulting in an 

insufficient number of the neighboring individuals. If the 

value of ¯  in (9) is set too small, the number of the core 

individuals will be small too, which will then greatly reduce 

the number of fitness estimations. However, if the value of ® 

is too large, there will be an excessive number of neighboring 

individuals involved in fitness evaluations, which will increase 

the  time of fitness approximation. In this paper,  

¾ 2 [¯Ri;Ri] was derived when defining ¾, if the value of 

¯  is set too large, the range of ¾’s variation will be much 

small, and it will not be able to properly reflect the impact of 

the local roughness on the selection of neighboring individuals 

used for fitness estimation. In addition, if the range for 

selecting core neighbors is too large, it will lower the accuracy 

of the fitness estimation. The values of the parameters ® in  

(5) and ¯  in (9) are both set by trials and errors. Therefore, in 

this experiment, ® = 0:5, and ¯ = 0:3. Fonseca [29] chose 

the different largest neighboring number of individuals 
T =1;2;5;10;15 to verify the results. The results obtained 

when T =10;15  are superior to those obtained when 
T =1;2;5. To improve the accuracy of fitness inheritance 

and the computational efficiency, the maximum number of 

neighboring individuals involved in fitness estimation T  is 

set to be 10. 
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Fig. 2. CPSO,KNNPSO and SS-based FAPSO Box plot of the best fitness in the final 

generation for Ackley function 
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Fig. 3. CPSO,KNNPSO and SS-based FAPSO Boxplots of the best fitness in the final 

generation for Rastrigin function 

CPSO KNNPSO SS-based FAPSO

10

20

30

 F
it
n

e
s
s
 V

a
lu

e
 (a) Rastrigin, (5-D)

CPSO KNNPSO SS-based FAPSO
20
40
60
80

 F
it
n

e
s
s
 V

a
lu

e
 

(b) Rastrigin, (10-D)

CPSO KNNPSO SS-based FAPSO
20
40
60
80

 F
it
n

e
s
s
 V

a
lu

e
 (c)  Rastrigin, (20-D)

CPSO KNNPSO SS-based FAPSO
20
40
60
80

 F
it
n

e
s
s
 V

a
lu

e
 (d)  Rastrigin, (30-D)

 
Fig. 4. CPSO,KNNPSO and SS-based FAPSO Box plot of the best fitness in the final 

generation for Griewank function 

To further demonstrate the performance of fitness 

inheritance proposed in our method, Figs. 2-4 give the boxplots 

of the best fitness in the final generation of CPSO, KNNPSO 

and SS-based FAPSO on the three functions. Fig. 5 plots the 

convergence profile of PSO, KNNPSO, and SS-Based FAPSO 

on benchmark problems （Griewank, Rastrigin and Ackley）. 

As we can see from Figs. 2-4, the proposed SS-Based FAPSO 

method has fewer outliers compared to the other two methods in 

10 independent runs, indicating that it performs more robust 

than the other two algorithms. It can be see that our proposed 

SS-Based FAPSO method obtained best results nearly in all 

instances in terms of the best, the worst and the mean results of 

the optimal results averaged over ten independently runs on 

three functions of different dimensions compared to PSO and 

KNNPSO.  From Fig. 5, we can see that the proposed SS-

Based FAPSO method converges much faster than the other 

two methods. Although, initially, the SS-Based FAPSO method 

showed slightly worse or comparable performance on converge 

(e.g., in the Rastrigin function in 30 dimensions), it shows much 

better convergence capability as the number of fitness 

evaluations increases (i.e. in the later stages). 
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Fig. 5. Convergence profiles of the CPSO,KNNPSO and SS-Based FAPSO on the three 

benchmark problems 

B. CEC’ 13 Function Tests 

TABLE I.  THE DETAILS OF FUNCTIONS ON WHICH FESPSO AND SS-
BASED FAPSO HAVE YIELDED BEST PERFORMANCE. 

Function number Detail 

F1 Sphere Function(f1) 

F2 Rotated Bent Cigar Func Function(f3) 

F3 Rotated Rosenbrock’s Function(f6) 

F4 Rotated Schaffers F7 Function 

F5 Composition Function (n=5,Rotated)(f21) 

F6 Composition Function 8 (n=5,Rotated) 

To further compare the performance of these different 
methods, the fitness estimation strategy for particle swarm 



optimization proposed by Sun et al. (2013), called FESPSO, 
was adopted for comparison. Table II presents the experimental 
results on CEC’13 testing functions of a dimension of 30 
obtained by PSO, KNNPSO, and FESPSO, with a maximum of 
10,000 real fitness evaluations. Table I lists the details of the 
test functions, where we can see that F1 to F2 are unimodal 
functions, F3 to F4 are multi-modal functions, and F5 to F6 
are complex combinations of unimodal and multi-modal 
functions. 

TABLE II.  COMPARATIVE RESULTS ON THE 28  CEC’13 TEST FUNCTIONS 

Func Approach Best_fit Worst_fit Fit_mean std_fit opt 

F1 

PSO 7.3442E+02 4.1341E+03 2.1467E+03 1.1623E+03 
-

1.4000

E+03 

KNNPSO 1.6618E+03 3.9159E+03 2.7568E+03 7.4661E+02 

FESPSO 6.7716E+02 2.1454E+04 8.5867E+03 7.4134E+03 

SS-Based FAPSO -1.3730E+03 -1.1468E+03 -1.2947E+03 6.7340E+01 

F2 

PSO 1.1036E+10 3.3524E+10 1.7215E+10 6.5599E+09 
-

1.2000

E+03 

KNNPSO 1.2686E+10 4.0761E+10 2.0541E+10 9.3043E+09 

FESPSO 4.3694E+10 2.1760E+14 2.1891E+13 6.8765E+13 

SS-Based FAPSO 1.3160E+09 1.7470E+10 7.7893E+09 4.6107E+09 

F3 

PSO -6.0964E+02 -4.2390E+02 -5.0822E+02 5.1481E+01 
-

9.0000

E+02 

KNNPSO -6.4413E+02 -3.8613E+02 -5.4236E+02 8.3366E+01 

FESPSO -7.1181E+02 7.2392E+02 1.7961E+02 4.6235E+02 

SS-Based FAPSO -8.3849E+02 -7.1419E+02 -7.9001E+02 3.8836E+01 

F4 

PSO -6.9753E+02 -5.7398E+02 -6.6374E+02 3.5328E+01 
-

8.0000

E+02 

KNNPSO -7.0807E+02 -6.0298E+02 -6.6711E+02 2.7688E+01 

FESPSO -5.0243E+02 7.0854E+04 6.8009E+03 2.2507E+04 

SS-Based FAPSO -7.1658E+02 -5.5708E+02 -6.5522E+02 6.3001E+01 

F5 

PSO 1.5673E+03 2.1877E+03 1.8976E+03 2.1048E+02 

7.0000

E+02 

KNNPSO 1.5416E+03 2.6750E+03 2.0670E+03 4.2450E+02 

FESPSO 1.0019E+03 1.5132E+03 1.2173E+03 1.7606E+02 

SS-Based FAPSO 9.9914E+02 1.2192E+03 1.1298E+03 6.6561E+01 

F6 

PSO 2.9499E+03 3.8629E+03 3.3923E+03 2.7246E+02 

1.4000

E+03 

KNNPSO 3.2284E+03 4.1382E+03 3.5554E+03 3.2631E+02 

FESPSO 4.0730E+03 5.4601E+03 4.7597E+03 4.5402E+02 

SS-Based FAPSO 1.8140E+03 3.1845E+03 2.0548E+03 4.0516E+02 

As the results shown in Table II indicate, SS-Based FAPSO 
method has obtained better results than the compared 
algorithms on both unimodal and multi-modal test functions. 
SS-Based FAPSO shows significantly better overall 
performance on F1. In F4 and F6, the standard deviation 
obtained by SS-Based FAPSO was slightly inferior to the 
compared methods. 

IV. CONCLUSION AND FUTURE WORK 

This paper proposed a new self-adaptive similarity-based 
surrogate model for fitness estimation in PSO to solving 
computationally expensive problems. In this model, the radius 
of the neighborhood to be selected for estimating the fitness of 
the individuals is self-adaptive. The proposed method requires 
a lower number of fitness calculations using the real fitness 
function while a high accuracy in fitness estimations. Our 
future work includes the development of a more accurate 
method in evaluating local roughness of the fitness landscape. 
Furthermore, the adaptive similarity-based surrogate model 
proposed in this study can be seen as a local surrogate model. 
Hence, our future work will consider the situations where the 
condition for fitness inheritance is not satisfied. In these cases, 
we could combine global surrogate models with the local 
estimation method proposed in this work to provide more 
reliable fitness estimations.  

V. APPENDIX 

In the canonical PSO, when searching in a D-dimensional 
hyperspace, each particle i has a velocity Vi = [vi1; vi2; :::; viD] 
and a position Xi = [xi1;xi2; :::;xiD]. The vectors Vi and Xi 
are initialized randomly and then updated by (16) and (17) 
through the guidance of its personal best position Pi, and the 
global best position Pn: 

V
(t+1)

i = !V
(t)

i + c1r1(P
(t)

i ¡X
(t)

i ) + c2r2(Pn
(t) ¡X

(t)

i ) (16) 

 X
(t+1)

i = X
(t)

i +V
(t+1)

i
                    (17) 

where X
(t)

i
 and V

(t)

i
 are the position and velocity of i 

particle at generation t  respectively., The Coefficients !  is 

called the inertia weight, 1c  and 2c  are acceleration 

parameters which are commonly set to 2.0. r1 and r2 are two 
diagonal matrix whose diagonal elements are random numbers 
uniformly generated within the range of [0, 1].   
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