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Abstract—In this paper, a two-stage automatic proportional-
integral-derivative (PID) tuning scheme based on the differential
evolution (DE) algorithm is developed for the trajectory tracking
control of quadrotor unmanned aerial vehicles (UAVs). Nonlinear
dynamics model of the quadrotor is established, based on which
the tuning scheme is conducted. In the first stage, the inner loop
attitude PD controllers are tuned separately with respect to the
roll, pitch and yaw channel to achieve a fast transient response.
In the second stage, the outer loop position PID controllers
are tuned upon the optimal attitude controllers to achieve a
smooth and precise trajectory tracking performance. In order
to deal with coupled dynamics between the x/y channel and
the altitude channel, time domain performance indexes of x/y
and altitude channels are both incorporated in the cost function
to be minimized. An adaptive mutation operator is utilized in
the DE algorithm to maintain the population diversity in the
early phase of the algorithm and accelerate convergence in the
later phase. Several maneuverings including take-off, smooth
translation, circular and spiral climb motions are carried out
to evaluate the effectiveness of the proposed scheme.

I. INTRODUCTION

Quadrotor unmanned aerial vehicles (UAVs) have attracted
great interest of researchers and developers in recent years.
Owing to their distinct characteristics such as agility and small
size, quadrotor UAVs can find various applications including
inspection of power lines, atmospheric analysis for weather
forecasts, traffic surveillance and military reconnaissance [1].
However, controlling a quadrotor is not an easy task because
of its non-linearity, coupled dynamics and commonly under-
actuated design configuration, which has led to several control
algorithms proposed in the literature. The majority of those
control algorithms focused on the stabilization problem which
is the first step towards successfully autonomous flights. Some
of them also tackle with position maintaining or velocity
holding in order to fulfill certain manoeuvrings or trajectory
tracking. For instance, a proportional-integral-derivative (PID)
controller and dynamic surface control (DSC) are used re-
spectively for the attitude control and altitude control of a
quadrotor in [2]. A linear quadratic regulator (LQR) controller
is developed in [3] to achieve trajectory tracking while a
nonlinear control system based on state-dependent Riccati
equations (SDRE) is presented in [4]. Both backstepping and
sliding-mode techniques are utilized in the quadrotor controller
design in [5] with their performance comparison presented.
Online iterative learning control (ILC) methods, which are
known to be powerful for tasks performed repeatedly, are
developed in [6] for trajectory tracking control of UAVs.

Several other techniques including adaptive control [7], robust
control [8] and fuzzy logic control [9] have also been applied
to quadrotor UAVs.

Among all the control methods mentioned above, PID
controllers, which are simple in architecture and widely used
in the process industry, have been shown to be robust, reliable,
efficient and cost effective for most applications. However,
sometimes their effectiveness can not be fully explored due
to poor tuning. In fact, tuning PID parameters can be a very
time-consuming and sometimes difficult task due to special
properties of process models. To address this difficulty, much
effort has been invested in developing effective PID tuning
methods. Ziegler-Nichols (Z-N) [10] and Cohen-Coon (C-C)
[11] are two classic approaches which have been used for years
especially when little information about the process model
under control is provided. Although they can guarantee the
stability and robustness of a system, the gains are not always
optimal since PID parameters are obtained for an operation
point where the model can be considered linear. Iterative
learning approach is used in [12] for the linear process to
obtain optimal PID parameters whenever the same control task
is repeated. Recently, intelligent optimization algorithms are
extensively studied and have been applied to the automatic
tuning of PID controllers. The genetic algorithm (GA) is used
in [13] to tune an optimal PID controller for nonlinear process
models while the artificial bee colony (ABC) algorithm is
adopted in [14] to carry out online PID gains optimization
for quadrotors.
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Fig. 1. Automatic PID tuning architecture

In this paper we will investigate the automatic PID tuning
problem for the trajectory tracking control of quadrotor UAVs.
A common architecture of automatic PID tuning based on
the step-response performance of the closed-loop system is
illustrated in Figure 1. Finding optimal gains for PID con-



trollers of the quadrotor is challenging due to its inherent
complex characteristics and the nonlinear mapping between
controller gains and performance indexes. In order to address
the problem and explore the full potential of PID controllers
and achieve high tracking performance, a two-stage optimal
PID tuning scheme based on the differential evolution (DE)
algorithm [15] is presented. The rest of this paper is organized
as follows. Description of the differential evolution algorithm
used in this problem and performance indexes of PID con-
trollers widely used in the literature are outlined in Section II.
Section III establishes a mathematical model for the quadrotor
based on which a detailed description of the proposed tuning
scheme as well as tuning results are presented in Section IV.
Trajectory tracking simulations are carried out in Section V
and this paper is concluded in Section VI.

II. FOUNDAMENTALS
A. Differential Evolution

The differential evolution algorithm is an effective heuris-
tic approach for minimizing nonlinear and non-differentiable
continuous space functions [15]. It involves maintaining a
population of candidate solutions subjected to iterations of
recombination, evaluation and selection, which is very similar
to the genetic algorithm [16]. The recombination process
involves the creation of new candidate solution components
by adding the weighted difference between two randomly
selected population members to a third population member.
As a consequence, population members are perturbed relative
to the spread of the broader population. In conjunction with
selection, the perturbation effect self-organizes the sampling
of the problem space, gradually bounding it to known areas
of interest as the population evolves. The main procedure of
the differential evolution algorithm adopted in this paper is
depicted in Algorithm 1 while the sampling procedure of a
new candidate solution is described in Algorithm 2.

Note that in the pseudocode of differential algorithm, an
adaptive mutation operator is adopted to keep the weight
factor gradually changing from 2 x Weight;,; to Weight;,;
as the population evolves. This trick helps to maintain the
population diversity in the early phase of population evolution
and accelerate algorithm convergence in the later phase.

B. Performance Index

Similar to any other controllers, the objective of PID con-
trollers is to provide system stability as well as reference
tracking. Several indexes have been proposed to evaluate the
performance of a controller, among which the most common
ones are the integrated absolute error (IAE), integrated squared
error (ISE), integrated time squared error (ITSE), and integrat-
ed time absolute error (ITAE), which are normally calculated
under step input in the time domain as:
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Algorithm 1 Differential Evolution
Input: Problemyi,., Populationgi,., Weightinir, Pinit, Gmax
Output: Py
Initialize:
Population < InitPopulation(Problems;,., Populationgi,,)
EvaluatePopulation(Population)
Pyes; — GetBestSolution(Population)
G+ 1
while G < G, do
NewPopulation <:G®

operator <— eGmaxt1-G
Weight tacior <— Weightip;y x 2°0P€r0"
for i =1 to Populationsi;, do
PY « Population(i)
S0 NewSample(P(i), Population, Problemyiz,,
Populationgi,, Wejghtfucturs Perossover)
if Cost(S()) < Cost(P")) then
NewPopulation(i) < SV
else
NewPopulation(i) + P
end if
end for
Population < NewPopulation
EvaluatePopulation(Population)
Pyesy < GetBestSolution(Population)
G+ G+1
end while
Return P,

Algorithm 2 NewSample

Input: P(i>, Population, Problemy;,,, Populationgi,
Weightf[lcl()}:W Pcrossover

Output: S0

Initialize:

targetPop < {Population} — {P"}
perm < randPerm(Populationsi, — 1)
tempSample < targetPop(perm(1)) + Weightfactor %
(targetPop(perm(2)) —targetPop(perm(3)))
dimPerm < randPerm(Problemi,.)
for j =1 to Problemy,, do
if exceedBound(rempSample(j)) then
tempSample(j) < randGenerate()
end if
if rand() > P.rossover and dimPerm(1) # j then
SO(j) « PO(j)
else
SO (j) « tempSample(j)
end if
end for
Return S()




Besides, other indexes such as overshoot, settling time and
rise time in the time domain or bandwidth, damping ratio and
undamped natural frequency in the frequency domain are also
frequently used to evaluate the performance of a controller.
The goal of our automatic tuning scheme is to find PID
gains with the best performance defined by one or a weighted
combination of proper indexes via the differential evolution
algorithm. While weights and number of criteria are diversely
reported in the literature, it is generally accepted that time
weighted indexes are more appropriate as the error arising
early should be penalized less than the error occurring later
in the transient response. In this paper, we use a weighted
combination of ITAE, maximum overshoot, settling time and
amplitudes of gains as the cost function to search for the
optimal PID parameters. Detailed description with regard to
the selection of performance indexes will be discussed later.

III. MATHEMATICAL MODEL

A non-linear model of the quadrotor is established in
this section to carry out the proposed automatic PID tuning
scheme. Figure 2 illustrates the coordinate system and config-
uration of rotors used in this paper.
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Fig. 2. Coordinate system of a quadrotor

By applying the Newton-Euler formalism [5], the dynamics
model of the quadrotor can be expressed as follows
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where
Q= +Q—Q; —Q3
U =b(Q7+ Q3+ 03+ 03)
Ur = b(~3+97) (3)
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Us=d(—Q1+ Q3 — Q3 +93)
The kinematics model is formulated as
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In above equations, ¢, 6 and y are roll, pitch and yaw
angles respectively. p, g and r are angular velocities. x, y and
z are positions with respect to the x, y and z axes of the earth-
fixed coordinate while u, v and w are velocity components
in the body-fixed coordinate. I, Iy, I, represent the mass
moments of inertia. J, is the rotor inertia while [ is the length
of the rotor arm from the origin of the coordinate system. In
Eq. (2), b and d are thrust and drag coefficients respectively.
Q1 ~ Qy are the angular velocities of four rotors. A simulation
environment, which serves as the basis of the proposed tuning
scheme, is established upon the nonlinear dynamics model Eq.
(2-4). It should be noted that since the quadrotor structure is
axisymmetric, attitude controllers in 6 and ¢ channels as well
as position controllers in x and y channels share the same
controller gains.

IV. TWO-STAGE TUNING SCHEME

In this section, the two-stage automatic PID tuning scheme
based on the differential evolution algorithm is discussed in
detail. The first part of this section concerns with the inner loop
attitude PD controller tuning while the second part focuses on
the outer loop position PID controller tuning, both of which
are of great importance to achieve high performance trajectory
tracking. Tuning results with respect to both inner and outer
loop controllers are illustrated in the third part. The control
architecture for the quadrotor is illustrated in Figure 3 where
the inner and outer loop are involved with attitude and position
controllers respectively.

A. Inner Loop PD Tuning

The goal of the inner loop controller tuning stage is to find
a set of optimal PD gains so that the quadrotor can achieve
fast transient response with regard to angular commands. In
our tuning scheme, PD controllers of the roll, pitch and yaw
channels are tuned separately using the step angular command.
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Fig. 3. Control architecture of the quadrotor

Performance indexes applied in the inner loop tuning involves
IAE, overshoot OS, settling time 7, and amplitudes of gains
K,,K;. The cost functions to be optimized regarding pitch/roll
and yaw channels are denoted separately as

tS (KP —‘r Kd)
tg/9 = 10 X IAE + ~ \p T Rd) 5
Costy/p = 10X IAE + 5 +0S+ = )
L K, +K,
C0stW:IAE+§S+IOXOS+W (6)
The fitness function is calculated as follows
1
Fit =
itness (17 Cost) 7

During the automatic tuning process, a step angular com-
mand is first fed into a specific inner loop channel. The
angular response of the quadrotor is then measured and used
to calculate performance indexes, based on which the cost
function and fitness value are calculated. Afterwards, the
differential algorithm searches in the solution space and drives
the population towards optimal PD gains based on their fitness
values. The automatic tuning procedure with respect to the
pitch channel is shown in Figure 4.
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Fig. 4. Tuning procedure of the pitch channel

B. Outer Loop PID Tuning

Procedure of the outer loop PID tuning is very alike to that
of the inner loop. In this stage, the PID controller of altitude
channel is first tuned with the following cost function

®)

Once having obtained optimal gains of attitude PD con-
trollers and the altitude controller, x and y position PID con-
trollers are tuned using the step position command to achieve a
smooth and precise trajectory tracking performance. The cost

Is
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Fig. 5. Tuning procedure of the x channel

function for tuning x and y PID controllers is calculated as

t,  OS
Costyjy =5 x IAE +10 x IAE, + gs +=

where IAE; is the integrated absolute error of the z channel.
This term is added to deal with the coupled dynamics of the
quadrotor between the x and z channel. The fitness function
in the outer loop PID tuning stage remains the same as that in
the first stage. The tuning process of the x channel is presented
in Figure 5. Note that the inner loop dynamics in the second
stage is optimal since the attitude PD controllers have been
assigned with the optimal gains.

9



Minimum cost in each iteration (6)

0.95 T T T T
DE
——— GA -
PSO
[}
= 4
©
>
k7]
2 4
o
05 1 1 1 1 1
0 5 10 15 20 25 30
iteration
(a) Cost values for tuning 6
Minimum cost in each iteration (z)
0.9 T T T T T
DE
08 TToe
’ PSO

0.7

cost value
o
D

o
3]

0.4

0.3

0.2 ! ! ! ! ! ! !
0 5 10 15 20 25 30 35 40

iteration

(c) Cost values for tuning z

Minimum cost in each iteration (y)
1.4 . . . :

——DE
- - -GA
PSO ]|

cost value

10 15 20 25 30
iteration

(b) Cost values for tuning y

Minimum cost in each iteration (x)
26 T T T T T

cost value

0 5 10 15 20 25 30 35 40
iteration

(d) Cost values for tuning x

Fig. 6. Tuning results for inner loop and outer loop controllers

C. Tuning Results

Amplitudes of the step commands in the first and second
tuning stage are 7rad and lm, respectively. A population size
of 20 and a maximum generation of 30 are used for the
inner loop PD controllers tuning while a larger population
size of 30 and a maximum generation of 40 are used for the
outer loop PID controllers tuning. For comparison, two other
algorithms including the genetic algorithm and the particle
swarm optimization are also implemented. The searching
space of three algorithms is assigned as [0.01,20] for the inner
loop and [0.01,30] for the outer loop. All three algorithms are
given with the same initial population in each tuning process.
The best fitness values of three algorithms in each iteration
are illustrated in Figure 6 while detailed tuning results are
presented in Table I-IV. From the figure, we can observe that

optimal controller gains obtained by the differential evolution
algorithm can achieve smaller cost values than that obtained
by the genetic algorithm and particle swarm optimization for
all channels. The results clearly show the superiority of the
differential evolution algorithm over the other two algorithms
with respect to this specific problem. We can also see from
the tables that even though optimal gains obtained by the
differential evolution algorithm can achieve the minimum cost,
performance indexes corresponding to these gains are not
necessarily the best. That is, we should always make a trade-
off among different performance indexes based on our goals.

V. SIMULATION

In this section, several maneuverings including take-off,
smooth translation, circular and spiral climb motions in three



TABLE I
TUNING RESULTS FOR THE PITCH/ROLL CONTROLLER

Method | K, K; | IAE | OS(%) | t5(s)
DE 18.016 | 11.78 | 0.015| 0.03 |0.477
GA 18.315 | 10.894 | 0.024 | 1.93 |0.399
PSO |19.254| 12.09 | 0.014| 0.05 | 0.47

TABLE 1T

TUNING RESULTS FOR THE YAW CONTROLLER

command
response

altitude(m)

Method | K, | K; | IAE | OS(%) | ts(s)
DE | 16964 |7.738 | 0.049| 026 |0.788
GA [16.904 |7.845| 0.05 | 0.09 |0.829
PSO | 18.2728.105|0.047 | 0.15 |0.784

TABLE 11

TUNING RESULTS FOR THE ALTITUDE CONTROLLER

Method | K, | Ki | Ky | IAE | OS(%) | 15(s)

DE {29.932/0.002| 9.19 | 0.073| 04 |0.779

GA |29.356 |0.014| 9.07 | 0.08 | 0.45 | 0.78

PSO | 28.48 |0.002 [8.928 | 0.075| 0.46 |0.789
TABLE IV

TUNING RESULT FOR THE X/Y POSITION CONTROLLER

Method | K, K; K; | IAE | IAEz | OS(%) | t5(s)
DE 11.39 | 0.0008 | 4.7889 | 0.21 | 0.034 | 0.67 |1.054
GA 29.118 | 0.016 | 9.963 |0.205|0.069 | 0.05 |1.396

PSO |10.515|0.0007 | 4.4941|0.216 | 0.031 | 1.33 |1.058

dimensions are carried out to evaluate the performance of
automatically tuned controllers. To ensure a smooth trajectory
that is continuous in positions, velocities and accelerations
[17], the following polynomial is used in each maneuvering
case

t t

I3 4 5
= —_ — —_ - ]
r(t) 10><(T) 15><(T) +6><(T) ,t€[0,T] (10)
with the boundary conditions given as
0 = 0’ T = 1
r(0) =0, (T )

7(0)=#HT)=¥0)=#T)=0
A. Take-Off Control

In the take-off simulation, the quadrotor is commanded to
take off smoothly and finally hover at a certain desired height
with certain time constraint. As a consequence, performance of
the altitude PID controller can be assessed during the process.
The desired take-off trajectory is designed as follows.

Zc(t) = hd X r(t)a
X.(t) =0,
Y.(t)=0,1r€[0,T]

(12)

2 I I I I I I I

0 0.5 1 1.5 2 25 3 35 4
t(s)
Fig. 7. Altitude tracking in the take-off process

where the hover height A, is set to 10m and the time interval
is chosen as T = 4s. The simulation result is illustrated in
Figure 7, from which we can notice the tracking performance
is rather satisfying despite of the small error occurred at the
end of the take-off process.

B. Smooth Translation Control
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Fig. 8. Position tracking in three channels (slow translation motion)

In order to evaluate the maneuverability of the quadrotor in
the x-y plane, a smooth translation trajectory is designed as
follows

X (1) =Cxr(t),

Ye(t) = Cxr(r),
Z(t) =2,t €10,T]
Two simulations including a slow translation motion with
C =10m, T = 10s and a fast translation motion with C = 50m,
T = 10s are conducted separately. The quadrotor is assumed

to hover at a constant altitude of 2m when the simulation
begins and maintain this altitude until the end of simulation.

13)
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Simulation results can be seen in Figure 8 and Figure 9.
Through comparison of two figures, we can observe that
tracking performance with regard to x and y channels in two
cases are satisfying. However, tracking performance of the
altitude channel in the fast translation is a little bit worse
than that in the slow translation, which is caused by highly
coupled dynamics of the quadrotor between the x/y channel
and the altitude channel in drastic maneuverings. It should be
noted that coupled dynamics between the x/y channel and the
altitude channel is the inherit characteristic of the quadrotor
that can only be impaired but can not be eliminated. The
tracking error of the altitude channel in the fast translation
is relatively small and thus acceptable.

C. Circular Motion Control
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Fig. 10. Position tracking in three channels (circular motion)
In the circular motion, the quadrotor rotates around a central

point by adjusting its attitude and the yaw angle remains zero
during the whole process. Similar to the smooth translation

mentioned above, the quadrotor is assumed to hover at a con-
stant altitude of 2m when the simulation begins and maintain
this altitude all along the simulation. The circular trajectory is
calculated as

X:(t) =R x sin(2mw X r(1)),
Y. (1) =R x cos(2m x r(t) + ) + R,
Z.(t)=2,t€10,T]
where the circular radius R = 20m and the simulation duration
T = 30s. Result of this simulation is presented in Figure 10,

from which we can see that high tracking performance has
been achieved for all three position channels.

(14)

D. Spiral Climb Control

Different from that in the circular motion, the yaw command
in the spiral climb process changes dynamically to ensure the
nose of the quadrotor pointing to the rotation center at anytime.
As a result, gains of both the inner and outer loop controllers
are evaluated. The spiral climb trajectory is designed as

X.(r) = R x sin(% 1),

Yo(t) :Rxcos(% 1),
Z.(t) =10 x r(t),

5)

n
w(t):ﬁxt,te [0,T]

where the turning radius R is set as 10m and a simulation
duration of T = 40s is chosen. Quadrotor trajectory in the
spiral climb motion and tracking results with regard to three
position channels and the yaw channel are illustrated in Figure
11 and Figure 12, respectively. Through the simulation results
we can see that the quadrotor spirals up around a specific
axis for two rounds with regard to the reference inputs with
almost no error. Since the range of the yaw angle is [0,27],
a discontinuous point appears in the yaw channel when the
quadrotor finishes one circle as displayed in Figure 12.

command
response

z(m)

y(m) -30 _15
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Fig. 11. Quadrotor trajectory in spiral climb
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VI. CONCLUSION

In this paper, we have investigated the problem of automatic
PID controller tuning for the trajectory tracking control of
quadrotors. Our contributions are twofold. First, a two-stage
automatic tuning scheme which optimizes PID parameters as
design variables in a multi-objective manner via the differential
evolution algorithm is proposed. Second, in order to deal
with coupled dynamics between the x/y channel and the
altitude channel, IAEs of both x/y and altitude channels are
incorporated in the cost function to be minimized. Nonlinear
dynamics model of the quadrotor is also established, based
on which tuning performance of the differential evolution
algorithm is compared with that of the genetic algorithm and
the particle swarming optimization. Comparison results show
the superiority of differential evolution over the other two
algorithms. The effectiveness of the proposed tuning scheme
is verified through different trajectory tracking simulations.
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