
Assessing the Effect of Self-Assembly Ports in
Evolutionary Swarm Robotics

Kazi Shah Nawaz Ripon∗, Eirik Jakobsen∗, Christopher Tannum∗, Jean-Marc Montanier†
∗Department of Computer and Information Science, Norwegian University of Science and Technology, Norway

†Protolab – Softbank Robotics Europe
Email: ksripon@idi.ntnu.no, eirikjak@gmail.com, christannum@gmail.com, montanier.jeanmarc@gmail.com

Abstract—Self-assembly in swarm robotics is essential for a
group of robots in achieving a common goal that is not possible
to achieve by a single robot. Self-assembly also provides several
advantages to swarm robotics. Some of these include versatility,
scalability, re-configurability, cost-effectiveness, extended reliabil-
ity, and capability for emergent phenomena. This work investi-
gates the effect of self-assembly in evolutionary swarm robotics.
Because of the lack of research literature within this paradigm,
there are few comparisons of the different implementations of
self-assembly mechanisms. This paper reports the influence of
connection port configuration on evolutionary self-assembling
swarm robots. The port configuration consists of the number
and the relative positioning of the connection ports on each of
the robot. Experimental results suggest that configuration of the
connection ports can significantly impact the emergence of self-
assembly in evolutionary swarm robotics.

Keywords—Evolutionary robotics, self-assembly, machine
learning, connection port configuration, docking mechanism.

I. INTRODUCTION

By drawing inspiration from social insects [1], [2] and other
self-organizing systems [3], [4], swarm robotics approaches
the coordination of a number of autonomous robots, which
need to interact and to cooperate to achieve a common goal
[5]. The core idea is to capitalize on simple interactions
among robots in order to solve complex problems by means
of emergent behaviour.

Among these behaviours, self-assembly is the autonomous
organization of components into patterns or structures [6]. It
can provide multiple advantages in robotics such as robustness
through redundancy and cost reduction through design of large
number of robots [7]. Another crucial benefit is the versatility
achieved when robots self-assemble into new structures based
on the specific task to solve [8]. For example, the movement
of robots is improved when they are able to overcome larger
obstacles in an environment. In order to foster most of this
advantage, it is crucial to learn when and how to self-assemble
to face the environmental conditions at hand. This is the
objective of functional self-assembly [9].

In order to achieve functional self-assembly, robots have to
learn autonomously the most suited behaviours. To date, au-
tonomous learning of self-assembly has been achieved through
reinforcement learning [10] and evolutionary algorithms [11].
This work will consider only the evolutionary algorithms. Evo-
lutionary Robotics (ER) studies how to automate the design of
control systems for autonomous robots, using algorithms based

on Darwinian evolution [9]. This approach has been already
successfully used in the design of swarm behaviours [12], [13].
Previous studies on self-assembly have shown the difficulty to
evolve such behaviour [14]. A key goal of this work is to study
the mechanisms that can promote the learning of functional
self-assembly through evolution.

Previous studies on the evolution of self-organization have
focused on using differing self-assembly mechanisms, such as
the architecture used by the self-assembly system, the actions
that are performed by the robots to achieve an organized
structure, or the docking mechanism hardware [9], [14], [15].
However, existing works do not provide any direct comparison
among the mechanisms in order to justify which is the
most suitable to promote the evolution of self-assembly. This
hinders further research on the topic. This work studies one
specific aspect of the self-assembly mechanism: the configura-
tion (number and relative positioning) of the connection ports.
Mainly, we studied the influence of ports configuration on the
emergence of self-assembly when the robots are given basic
learning capabilities.

For the experiment, we designed a simple predator/prey
scenario, where the evolved robots (prey) can self-assemble
to gain certain advantages over its predators. The experiments
are simulated with a heavily modified version of roborobo
platform [16].

The remainder of this paper is organized as follows. Sec-
tion II presents the state of the art. Section III contains the
system description and implementation, including modifica-
tions which were made to the existing roborobo framework.
Section IV describes the results of the experiment, as well
as an analysis and reasoning for their given state. Section V
concludes the work including scopes for future work.

II. RELATED WORKS

Multiple works have discussed and compare the various
self-reconfigurable robots [17]–[20]. Unfortunately, most of
them introduce new platforms without comparing their per-
formances to previous works [17]–[19]. To date, there exists
no such work justifying a self-assembly system as better than
others considering any specific property.

Latest articles for the design of self-reconfigurable robots
propose versatile robots able to emulate previously cited
robots [21], [22]. Nevertheless, their performance with regards
to the simulated counter-parts is not studied. [20] compares



various self-reconfigurable robots without the purpose of in-
troducing a new robot. The comparison is done based on
objective and measurable criteria such as number of degrees
of freedom. However, the properties of these robots are not
studied with relation to the performance of the robots towards
specific tasks. For example, the number of docking ports
with regards to the speed of reconfiguration is not studied.
Moreover, as in other articles cited, the challenges envisioned
do not take into account the possibility to learn autonomous
behaviours on robots. Therefore, the ease to learn when and
how to self-assemble is not taken into account.

Our goal is to study the influence of properties of self-
assembly mechanisms with regards to the ease with which
robots can learn to use them. In this article we will analyze
the influence of the number of docking ports as well as their
positioning.

III. METHODOLOGY

Experiments were implemented on an adapted version of the
roborobo simulator [16], enabling the self-assembly of robots.
This section includes the motivation for our experimentation,
the experimental environment, description of roborobo and the
modifications that were made to the existing software.

A. Experiment Motivation

Swarm behaviour found in nature displays how simple
agents can self-assemble for various tasks such as defending
against predators [23]. Our experiment takes inspiration from
these behaviours and involves two groups of robots: predator
and prey. In our experiment, there are nutrients which the
preys can feed on to replenish their energy. The predators are
larger than the preys and intend to feed on them. The preys
can protect themselves from a predator by forming a larger
structure which the predator is unable to eat. Moreover, when
the preys are assembled, they may eat the larger predator to
replenish energy as well. To gain an advantage the preys must
form a large enough structure to prevent them from being con-
sumed by the predators. Maintaining the assembled structure
costs energy, which gives the preys an incentive to disassemble
once the structure is no longer required. Therefore, in order to
achieve the best result possible, i.e. the highest rate of survival,
the preys should evolve an efficient functional self-assembly.

B. Experimental Environment

The environment is a rectangular box (Fig. 1), containing
the robots (preys and predators) and nutrients. Initially, all the
positions are random. When a nutrient is consumed, a new
one is placed at a random position in the environment. The
preys are endowed with a local communication module that
can be used to send an array of floating point numbers to its
neighbours in the self-assembly structure. The influence of the
communication module and the values that the communication
packets take are governed by a neural network, whose weights
are evolved. The focus of our work is to analyze how the
properties of the docking ports (number and angles between
ports) will influence the capacity for the preys to self-assemble.

Fig. 1: Initial configuration of the environment.

C. Roborobo Overview

Roborobo is a light-weight multi-platform simulator for
extensive robotics experiments, based on e-puck [24] like
robots: two wheels, distance sensors, local communication
module. Its programming interface is divided into three com-
ponents (World observer, Agent observers, Agent controllers).
Each robot in the simulation receives an instance of the agent
controller and the agent observer. The roborobo framework
enables programmers to implement the robot behaviour in the
agent controller, and use the agent observer and world observer
to access states about the given agent and the world. Each
robot in the simulation also receives a component called the
world model which contains an agent specific representation
of the current state of the outside world. This model also
includes states such as sensors readings and current velocity.
In each simulation step, the observers are run before any of
the agent controllers are run to have a stable snapshot of the
world between each update.

D. Roborobo Modifications

Roborobo does not support self-assembly out of the box.
Self-assembly support, therefore, requires adding additional
abstractions to roborobo. This section includes the different
modifications that were made to the roborobo framework to
support self-assembly. The modified version of roborobo that
we used in this work and the system configuration can be
found at https://github.com/christjt/ntnu-project-2016.

1) Robot Groups: The high-level abstraction that encap-
sulates the behaviour for connected robots is called a robot
group. All robots that are capable of self-assembly are robot
groups. Single robots that are not connected are simply robot
groups with one member. The responsibilities of the robot
group are to take care of group movement, handling collisions,
connecting, and disconnecting.

a) Movement: The movement of a group is decided
by first converting the desired direction and velocity into a
translation vector. The combined movement of the group is
then decided by averaging the translation vectors from each
member in the group. Once the translation vector for the group
is computed, it can be applied to each member of the group
by converting it back to the format of direction and velocity
that roborobo uses.



Note that, in accordance with the philosophy of
roborobo (simplified 2d simulation), our aim is to compute
a simplified movement for the groups of robots. As a con-
sequence, these movements do not take into account the
alignment of the wheels of each robot, which in a more
complex simulation would slow down the group of robots.
Our simulation also discard any effect due to the position of
the docking ports around the robots.

b) Collisions: Roborobo already performs collision de-
tection for robots, but some additional logic is required in robot
groups. The collision behaviour for robots is that if they collide
with a solid object, they stop. This behaviour is a problem for
groups consisting of more than one robot; because if one robot
collides, it may get left behind by the rest of the group. This
issue is solved by backing up the position of each robot in
a group before applying the computed translation. If a robot
in the group collides with something, then the robots in the
group are reverted to their original position.

c) Connections: The connections between robots in a
group are considered as a graph, where the robots are nodes
and connections are edges. Connecting robots can then be
treated as simply adding an edge between the two nodes
representing the robots. Similar to connecting, disconnecting
consists of removing the edge between the nodes representing
the robots. In the case that a robot has multiple connections
in the group, extra care has to be taken. This is because,
removing one edge may split the graph into two smaller sub-
graphs. If this occurs, the two sub-graphs are treated as two
new separate groups. It can be determined if a robot can simply
be disconnected, or if we have to split the group by finding
the existence of a cycle that leads back to the disconnecting
robot. The existence of a cycle is determined by first removing
the edge representing the connection, and then performing a
depth first search.

2) Self-assembly Mechanism: As mentioned in Section I,
in this work, we will explore one specific property of the self-
assembly mechanisms: the number of connection ports. Within
our simulation, the robots can attempt a connection at any
time. This requires a procedure to make sure the attempted
connections are valid. Two requirements have to be met before
a connection can be established between robots. First, the ports
have to be spatially sound. Here, the distance between the ports
has to be less than a threshold value. Next, the position of the
ports has to be geometrically sound. Here, the angle between
the connection ports has to fit within a threshold range.

3) Local Communication: The robots are equipped with
a communication module that allows local communication
with their connected neighbours. The message format is very
simple – the robots can only broadcast message packets of
floating point numbers. The size of the packets is equal to the
number of connection ports. At the receiving end, the packets
sent by neighbours are aggregated into a single packet. The
aggregation is performed by adding the components of each
message packet with the corresponding components from the
other message packets. In the robot controller, messages from
the communication module are fed into dedicated message

input neurons, and the value of the message output neurons
are broadcast to the neighbours. Additional experimentation
has shown that communication modules are necessary for the
synchronisation of robots so as to form a self-assembled group.
The importance of communication modules is not within the
scope of this article and therefore not presented.

4) Predators: An important part of the simulation envi-
ronment is the predator robots. These robots are not under
the influence of the EA, rather uses a simple pre-programmed
controller. The predator robots have two basic actions that
can affect the system. They can either eat prey or explore the
environment.

Fig. 2: Screenshot of a simulation. The predators are marked
as red and the robots guided by the EA are marked as blue.

As seen in Fig. 2, the predators use six sensors to decide
if they are colliding with an object and what that object is.
Concerning exploration, the predator controller uses a simple
object avoidance strategy. If the predator robots sense an object
on any of its side sensors, it will change its rotational velocity
to avoid this object. A slight random rotational velocity is
added such that its movement becomes more dynamic in
the case where there is no collision. This object avoidance
behaviour is always employed as long as it does not sense
a single robot (prey not self-assembled). In this case, it will
have the opposite behaviour and turn towards the object, as it
intends to consume the prey.

In addition to movement, the predators can also consume
a robot when there is a collision between a prey robot and a
predator robot. If a robot is consumed, it is removed from the
environment and its lifetime is recorded to use in the fitness
function of the EA. For a predator to be able to eat a robot, the
robot must not be part of a robot group of a size less than some
configurable threshold. The default threshold is set to two for
the simulations run in this experiment. The reason for this is
to give the regular robots some advantage of self-assembling
in hopes of potentially evolving this behaviour.

5) Energy Drain: In addition to the environmental hazards
of predators, the robots also face the issue with having a
limited energy supply. If a robot loses all of its energy,
then it will die and be removed from the environment. We
added an energy hazard for the robots to give them a non-
trivial self-assembling scenario. If predators were the only
environmental obstacle, then the robots would most likely
develop a self-assembly strategy and hold this construction for
the remaining period of the simulation. It is intended that the



robots would have an environment which allowed strategies
such as dissembling the self-assembly structure to evolve or
perhaps not even self-assemble at all. This reasoning is also
the justification for giving the robots additional energy drain
when assembled.

Additional experiments not presented in this paper have
shown the validity of this approach. The absence of energy
drain leads to the evolution of a self-assembly strategy holding
for all the simulation.

E. Artificial Neural Network (ANN)

In the robot controller, the neural network is responsible
for making decisions. For this work, an ANN that has gained
popularity in regards to robotics known as Continuous-Time
Recurrent Neural Network (CTRNN) [25] was implemented.
The information that the network is provided with is sensor
readings, the connection status of each docking port, messages
from the communication module, and finally the current en-
ergy level of the robot. The number of hidden layers and the
number of neurons in each of them is configurable at run-time.
The robots have to be able to detect, and distinguish between
predators, other robots, food, and the environment. For this,
the robots are equipped with six sensors. The topology uses
24 nodes to represent the inputs where there is one node
per sensor for each of the four different objects that can be
detected. With this configuration, the robot can distinguish
between multiple types of objects at the same time.

F. Evolutionary Algorithm (EA)

In this work, a random initialization of genotype was
implemented. The genotype contains weights, gains and time
constants for the neural network used in the robot controller.
During run-time, the genotype size is fixed and depends on the
size of the neural network. The structure of the genotype is an
array of double precision floating point numbers in the range
[−1, 1]. Each number in the genotype represents a specific
weight, gain, or time constant in the neural network.

For mutation, an incremental mutation operator was imple-
mented, which re-rolls the selected double (x) to a new double
(x ∈ [−1.0, 1.0]), where a weight is chosen for mutation at
some percentage. However, instead of completely re-rolling
its value, it only differs from its original value by a certain
threshold to provide smoother results. For selection, we used
binary tournament selection. At the end of each generation,
the best 2 fittest individuals are allowed entry into the next
parent selection unchanged to implement elitism.

The lifetime of a robot was used as the fitness function. The
fitness score, f(G), of some genome (G) can be calculated as:

f(G) =

∑n
i=1 G(Li)

nLmax
(1)

where, Li represents the lifetime of robot i during simula-
tion, n is the total number of robots, and Lmax is the maximum
lifetime of a robot.

IV. RESULTS AND DISCUSSION

The simulations were done with different number of con-
nection ports. The goal of running these simulations is to
make correlations between its results to show how configuring
the hardware mechanism can affect a self-assembly system.
Snapshots of simulations using different number of ports can
be viewed in Fig. 3.

(a) 2-ports (b) 3-ports (c) 4-ports

Fig. 3: Three different port configurations used in simulation.

Statistical significance is tested thanks to the Mann-Whitney
Rank Test (as implemented in scipy version 0.13.3) applied
to the distributions obtained at the last generation of the runs.
Results are considered as statistically different if the p−value
is bellow 0.01. Common configuration parameters for the
simulations are as follows:

Parameter Value

Number of Robots 20
Iterations per Generation 10000
Scenarios 3
Generations 150
Mutation Rate 0.05

In more detail, the experiments were conducted to record
and analyze the following points:

• How the number of ports affects the general performance
of the system.

• Is there any noticeable difference in the self-assembly
architecture.

• In what way the port configuration promotes self-
assembly, both regarding the sizes of the different robot
groups and the number of groups.

• How the port configuration affects the fitness of the
experiment, regarding convergence and the final result.

Fig. 4 presents the results for achieved fitness during sim-
ulations. The two and four connection port results are very
similar (p − value = 0.15) where the four connection port
performs slightly better with an average fitness of about 0.2
on generation 1 rising to about 0.5 on generation 150. The
three connection port simulation is highly different than the
two other configurations (p− value < 0.01 in both cases). It
performs worse, concerning fitness, in every aspect compared
to the other port configurations.

The distribution of group sizes formed during simulation is
shown in Fig. 5. The size of the circles indicates the number of



0 30 60 90 120 150
0

0.2

0.4

0.6

0.8

Generation

Fi
tn

es
s

(a) 2-ports

0 30 60 90 120 150
0

0.2

0.4

0.6

0.8

Generation

Fi
tn

es
s

(b) 3-ports

0 30 60 90 120 150
0

0.2

0.4

0.6

0.8

Generation

Fi
tn

es
s

(c) 4-ports

(d) Legend

Fig. 4: Fitness value during simulations.

0 30 60 90 120 150
1

2

3

4

5

6

7

8

Generation

G
ro

up
si

ze

(a) 2-ports

0 30 60 90 120 150
1

2

3

4

5

6

7

8

Generation

G
ro

up
si

ze

(b) 3-ports

0 30 60 90 120 150
1

2

3

4

5

6

7

8

Generation

G
ro

up
si

ze

(c) 4-ports

Fig. 5: Group distribution during simulations.

0 30 60 90 120 150
0

1

2

3

4

5

6

Generation

N
um

be
r

of
G

ro
up

s

(a) 2-ports

0 30 60 90 120 150
0

1

2

3

4

5

6

Generation

N
um

be
r

of
G

ro
up

s

(b) 3-ports

0 30 60 90 120 150
0

1

2

3

4

5

6

Generation

N
um

be
r

of
G

ro
up

s

(c) 4-ports

(d) Legend

Fig. 6: Number of robot groups formed during simulations.

groups formed. The two and four connection port simulations
have more groups of all sizes with the exception of a single
group of size five which was formed from the three connection
port simulation (p − value < 0.01 in both cases). The four
connection port simulation formed groups sizes similar to the
two connection port simulation (p− value = 0.36).

Fig. 6 shows the number of groups which are formed in
different simulations. The results for the two and four con-
nection port simulations are very similar (p− value = 0.21),
where the only notable difference is that the four connection
port seems to converge at a faster rate. The three connection
port results are quite poor, having few groups throughout the

trial. These results are highly different from the two and four
connection port results (p− value < 0.01 in both cases).

Fig. 7 presents the number of robots which are eaten by
predators during simulation. The four connection port simula-
tion performs the best, and is similar to the two connection port
robots (p−value = 0.47). Where as, the three connection port
results are quite poor where a lot more robots are consumed
by predators (p− value < 0.01 in both cases).

Fig. 8 shows the number of robots starved each generation.
The results for two and four connection port simulations
are similar (p − value = 0.10) where the average number
of robots starved is about 4 at the final generation (150).



0 30 60 90 120 150
0

5

10

15

20

25

Generation

N
o.

of
R

ob
ot

s
E

at
en

(a) 2-ports

0 30 60 90 120 150
0

5

10

15

20

25

Generation

N
o.

of
R

ob
ot

s
E

at
en

(b) 3-ports

0 30 60 90 120 150
0

5

10

15

20

25

Generation

N
o.

of
R

ob
ot

s
E

at
en

(c) 4-ports

(d) Legend

Fig. 7: Number of robots eaten during simulations.

0 30 60 90 120 150
0

3

6

9

12

Generation

N
o.

of
R

ob
ot

s
St

ar
ve

d

(a) 2-ports

0 30 60 90 120 150
0

3

6

9

12

Generation

N
o.

of
R

ob
ot

s
St

ar
ve

d

(b) 3-ports

0 30 60 90 120 150
0

3

6

9

12

Generation
N

o.
of

R
ob

ot
s

St
ar

ve
d

(c) 4-ports

(d) Legend

Fig. 8: Number of robots starved during simulations.

0 30 60 90 120 150
0

28

56

84

112

140

Generation

E
ne

rg
y

C
on

su
m

ed

(a) 2-ports

0 30 60 90 120 150
0

28

56

84

112

140

Generation

E
ne

rg
y

C
on

su
m

ed

(b) 3-ports

0 30 60 90 120 150
0

28

56

84

112

140

Generation

E
ne

rg
y

C
on

su
m

ed

(c) 4-ports

(d) Legend

Fig. 9: Energy consumed by group of robots.

The three connection port simulation is statistically different
(p− value < 0.01 in both cases) and performs slightly better
on these results where the average number of starved robots
is slightly less than 3. The three connection port simulation
performs the best on this result because most of the robots have
been consumed by a predator before they die of starvation.

Fig. 9 presents the energy consumed by groups of robots
during simulation. Results from two and four connection ports
are statistically different (p−value < 0.01). Nevertheless, the
average for each is of about 60 energy items consumed at
generation 150. The three port configuration performs a lot

worse with a result of about ten energy items consumed at
generation 150 (p− value < 0.01 in both cases). The results
are correlated with the results obtained from the number of
groups formed in the simulation (Fig. 6).

Fig. 10 shows the total amount of energy that is con-
sumed by robots which are not self-assembled. The two and
four connection port simulations have similar results and
slopes (p − value = 0.05). The results for three connection
port is statistically different (p− value < 0.01 in both cases)
and relatively worse. The average values flatten out and do not
increase after around generation 30. This is because, more of



0 30 60 90 120 150
0

12

24

36

48

60

Generation

E
ne

rg
y

C
on

su
m

ed

(a) 2-ports

0 30 60 90 120 150
0

12

24

36

48

60

Generation

E
ne

rg
y

C
on

su
m

ed

(b) 3-ports

0 30 60 90 120 150
0

12

24

36

48

60

Generation

E
ne

rg
y

C
on

su
m

ed

(c) 4-ports

(d) Legend

Fig. 10: Energy consumed by robots which are not self-assembled.

0 30 60 90 120 150
0

1

2

3

4

5

Generation

N
o.

of
Pr

ed
at

or
s

E
at

en

(a) 2-ports

0 30 60 90 120 150
0

1

2

3

4

5

Generation

N
o.

of
Pr

ed
at

or
s

E
at

en

(b) 3-ports

0 30 60 90 120 150
0

1

2

3

4

5

Generation
N

o.
of

Pr
ed

at
or

s
E

at
en

(c) 4-ports

(d) Legend

Fig. 11: Number of predators eaten during simulations.

the robots are self-assembling and hence is not tracked as a
part of these results. As the energy consumed is not decreasing
because more robots are a part of groups, it can be deduced
that more energy is consumed on a per robot basis.

Fig. 11 tracks the number of predators that have been eaten
by robot groups. All results are statistically different from each
other (p − value < 0.01 for each). The four connection port
simulation performs the best and is correlated with having
larger group sizes than the other port configuration as shown
in Fig. 5c. As the robot groups must be of at least size 3 to
consume a predator, the results shown in this figure conform
with the other results shown earlier.

From the results, it can be observed that the simulations
running with a three port configuration are much weaker
concerning performance and promotion of self-assembly than
the simulations running with two and four connection ports.
The reason for this can not be deduced completely from the
empirical results. Despite, as the only difference in these simu-
lations are the number of connection ports and the alignment; it
is clear that the connection port configuration can significantly
impact the performance of the simulation. It can also be
deduced that it is not the number of connection ports that
has the primary impact on the solution, rather the placement
is. This is because the performance using two connection ports
and four connection ports are quite similar. If the number of
connection ports had a significant impact on the results, we

would find the simulation using either two or four connection
ports to yield even poorer results than the three connection port
simulation. This effect narrows the port configuration problem
down to the alignment of the connection ports.

In fact, the robots can rotate their connection ports as
a group. A standard strategy which is usually evolved is
to either constantly rotate the connection ports in hopes of
lining up the ports to another robot, or the robots start
rotating their ports when the sensors see another robot in an
effort to self-assemble. There are two main problems that the
three connection port robots have compared to the other port
configurations: (i) none of the port is in the “forward-axis” of
the robot, and (ii) the possible group formations by the robots.

It can be seen from Fig. 12 that the different connection port
configurations create various types of groups. With two and
four connection ports (Fig. 12a), the robot groups take either
a line or some square grid formation. Possible formations for
the three connection ports robot groups (Fig. 12b) break the
pattern of a square grid configuration which makes it hard
for other robots trying to connect to the group. The main
reason for this connection problem is the relative position a
connecting robot needs which is hard to attain because of the
large distance among the three connection ports.

There are not significant discrepancies between the results
for two and four connection ports. The only result which
differs significantly is “predators eaten” (Fig. 11). This is



(a) Two and four connection ports (b) Three connection ports

Fig. 12: Self-assembled robot groups with different assembly
combinations.

because, robots with four connection ports tend to form larger
groups (Fig. 5). The formation of a greater amount of larger
groups naturally agrees with eating more predators, as groups
need to be of at least size of 3 to consume a predator.
The four connection ports robots attain larger groups because
more connection ports allow more points of entry for other
robots trying to connect, which increases the probability of
succeeding self-assembly to the group. The results also suggest
that larger groups do not give rise to better fitness, rather
the number of groups (of minimum size 2) correlates with
the fitness. This is due to the fact that robots in the port
configuration simulations are not in a great need of energy.

V. CONCLUSION

This work discovers and tests the effects of connection
port configuration in a self-assembly system when robots are
given basic learning capabilities. The experiment has been
conducted using a heavily modified version of the roborobo
framework. The results justify that the configuration of the
connection ports can significantly impact the emergence of
self-assembly using an evolutionary algorithm. The port con-
figuration consists of the number of connection ports each
robot has available and the relative positioning of the connec-
tion ports on the robot. It is evident from the results that both
elements influence the size and frequency of self-assembling
robot groups. A possible exploratory point for future work
would be to challenge the static nature of the ports considered
in this work. Increasing the number of connection ports would
be helpful for further analysis. It could be interesting to
explore the application of advanced evolutionary algorithms
and other bio-inspired algorithms on promoting self-assembly
for evolutionary swarm robotics.

REFERENCES

[1] B. Hlldobler and E. O. Wilson, “The evolution of communal nest-
weaving in ants: Steps that may have led to a complicated form of
cooperation in weaver ants can be inferred from less advanced behavior
in other species,” American Scientist, vol. 71, no. 5, pp. 490–499, 1983.

[2] G. Vakanas and B. Krafft, “Regulation of the number of spiders
participating in collective prey transport in the social spider anelosimus
eximius (araneae, theridiidae),” Comptes rendus biologies, vol. 327,
no. 8, pp. 763–772, 2004.

[3] H. Ulrich and G. Probst, Self-organization and management of social
systems: Insights, promises, doubts, and questions. Springer Science
& Business Media, 2012, vol. 26.

[4] S. A. Kauffman, The origins of order: Self organization and selection
in evolution. Oxford University Press, USA, 1993.

[5] E. Şahin, “Swarm robotics: From sources of inspiration to domains of
application,” in International workshop on swarm robotics. Springer,
2004, pp. 10–20.

[6] G. M. Whitesides, “Self-Assembly at All Scales,” Science, vol. 295, no.
5564, pp. 2418–2421, Mar. 2002.

[7] V. Trianni, Evolutionary Swarm Robotics. Evolving Self-Organising Be-
haviours in Groups of Autonomous Robots, ser. Studies in Computational
Intelligence. Springer Verlag, Berlin, Germany, 2008, vol. 108.

[8] R. Gross, M. Bonani, F. Mondada, and M. Dorigo, “Autonomous self-
assembly in swarm-bots,” Robotics, IEEE Transactions on, vol. 55, no. 6,
pp. 1115–1130, 2006.

[9] V. Trianni, E. Tuci, and M. Dorigo, “Evolving functional self-assembling
in a swarm of autonomous robots,” From Animals to Animats, vol. 8,
pp. 405–414, 2004.

[10] P. Varshavskaya, “Distributed reinforcement learning for self-
reconfiguring modular robots,” Ph.D. dissertation, Massachusetts
Institute of Technology, Sep. 2007.

[11] R. Groß, “Self-assembling robots.” KI, vol. 22, no. 4, pp. 61–63, 2008.
[12] E. Haasdijk, B. Weel, and A. E. Eiben, “Right on the MONEE:

combining task-and environment-driven evolution,” in Proceeding of the
fifteenth annual conference on Genetic and evolutionary computation
conference. ACM, 2013, pp. 207–214.

[13] N. Bredeche, J.-M. Montanier, W. Liu, and A. F. T. Winfield,
“Environment-driven Distributed Evolutionary Adaptation in a Popu-
lation of Autonomous Robotic Agents,” Mathematical and Computer
Modelling of Dynamical Systems, Special Issue: Modelling the swarm
analysing biological and engineered swarm systems, vol. 18, no. 1, pp.
101–129, 2012.

[14] J.-M. Montanier and P. C. Haddow, “Adaptive self-assembly in swarm
robotics through environmental bias,” in 2014 IEEE International Con-
ference on Evolvable Systems (ICES). IEEE, 2014, pp. 187–194.

[15] H. Li, H. Wei, J. Xiao, and T. Wang, “Co-evolution framework of
swarm self-assembly robots,” Neurocomputing, vol. 148, pp. 112–121,
Jan. 2015.

[16] N. Bredeche, J.-M. Montanier, B. Weel, and E. Haasdijk, “Roborobo! a
fast robot simulator for swarm and collective robotics,” arXiv preprint
arXiv:1304.2888, 2013.

[17] S. Murata and H. Kurokawa, “Self-reconfigurable robots,” Robotics &
Automation Magazine, IEEE, vol. 14, no. 1, pp. 71–78, 2007.

[18] M. Yim, Y. Zhang, and D. Duff, “Modular robots,” Spectrum, IEEE,
vol. 39, no. 2, pp. 30–34, 2002.

[19] D. Rus, Z. Butler, K. Kotay, and M. Vona, “Self-reconfiguring robots,”
Communications of the ACM, vol. 45, no. 3, pp. 39–45, 2002.

[20] M. Yim, W.-M. Shen, B. Salemi, D. Rus, M. Moll, H. Lipson, E. Klavins,
and G. S. Chirikjian, “Modular self-reconfigurable robot systems [grand
challenges of robotics],” Robotics & Automation Magazine, IEEE,
vol. 14, no. 1, pp. 43–52, 2007.

[21] J. Davey, N. Kwok, and M. Yim, “Emulating self-reconfigurable robots-
design of the SMORES system,” in 2012 IEEE/RSJ International
Conference on Intelligent Robots and Systems. IEEE, 2012, pp. 4464–
4469.

[22] Y. Zhu, D. Bie, S. Iqbal, X. Wang, Y. Gao, and J. Zhao, “A Sim-
plified Approach to Realize Cellular Automata for UBot Modular
Self-Reconfigurable Robots,” Journal of Intelligent & Robotic Systems,
vol. 79, no. 1, pp. 37–54, Jul. 2015.

[23] C. Anderson, G. Theraulaz, and J.-L. Deneubourg, “Self-assemblages in
insect societies,” Insectes sociaux, vol. 49, no. 2, pp. 99–110, 2002.

[24] “e-puck Education Robot,” http://www.http://www.e-puck.org/, ac-
cessed: 2016-06-30.

[25] R. D. Beer, “The dynamics of adaptive behavior: A research program,”
Robotics and Autonomous Systems, vol. 20, no. 2, pp. 257–289, 1997.

http://www.http://www.e-puck.org/

