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Abstract—Parkinson’s disease is a progressive neurodegenera-
tive disorder. The biggest risk factor for developing Parkinson’s
disease is age and so prevalence is increasing in countries where
the average age of the population is rising. Cognitive problems
are common in Parkinson’s disease and identifying those with
the condition who are most at risk of developing such issues
is an important area of research. In this work, we explore the
potential for using objective, automated methods based around a
simple figure copying exercise administered on a graphics tablet
to people with Parkinson’s disease. In particular, we use a multi-
objective evolutionary algorithm to explore a space of regression
models, where each model represents a combination of features
extracted from a patient’s digitised drawing. The objectives are
to accurately predict clinical measures of the patient’s motor
and cognitive deficit. Our results show that both of these can be
predicted, to a degree, and that certain sub-sets of features are
particularly relevant in each case.

I. INTRODUCTION

In this work we investigate and describe the use of multi-
objective evolutionary techniques to explore predictive models
that can differentiate individuals with Parkinson’s disease (PD)
from healthy controls. Each subject was asked to trace a
pre-defined shape using a digitising tablet. Various features
were then extracted from the digitised drawings, and a multi-
objective evolutionary algorithm (MOEA) was used to explore
a space of linear and non-linear regression models in order to
identify combinations of features that are predictive of clinical
measures. We focus on two target measures: the Movement
Disorders Society Unified Parkinson’s Disease Rating Scale
(MDS-UPDRS) Part 3 [1], which is a measure of motor fea-
tures in PD, and the Montreal Cognitive Assessment (MoCA)
[2], a validated measure of global cognition in PD. PD is often
associated with motor dysfunction; however, cognitive aspects
are becoming increasingly recognised [3], [4]. After ten years
of PD diagnosis, half will have developed dementia [3], and so
identifying biomarkers that might predict those most at risk of

cognitive decline is an important research area. In addition, a
simple mechanism of diagnosing PD would itself be desirable
as some estimates place the misdiagnosis rate at 25% [5].

This paper is organised as follows: Section II gives a brief
introduction to PD and its clinical assessment. Section III
reviews related work. Section IV summarises the materials
and methods used in this work. Section V presents results.
Section VI concludes.

II. PARKINSON’S DISEASE

PD is a progressive neurodegenerative condition pathologi-
cally characterised by death of dopaminergic neurons in a part
of the basal ganglia called the substantia nigra pars compacta.
The cause of PD is unknown. Loss of dopaminergic neurons is
primarily responsible for the motor features of PD, which are
tremor, slowness (bradykinesia) and stiffness (rigidity). The
other pathological hallmark of PD is the deposition of abnor-
mal protein aggregates called Lewy bodies in the brain. Lewy
bodies are thought to progressively infiltrate upwards through
the brainstem towards the cortex, and the resultant damage to
multiple neurotransmitter systems (e.g. acetylcholinergic and
noradrenergic) is thought to drive the development of cognitive
impairment [3].

Accurate diagnosis of PD can be challenging, particularly
amongst non-specialists where high misdiagnosis rates have
been reported [5], [6]. In non-research settings the diagnosis
of PD is usually a clinical one, based on a history and exami-
nation for the pertinent motor features. The MDS-UPDRS Part
3 incorporates a full motor examination and is primarily used
in research settings to allow the severity of motor symptoms
to be objectively recorded. Each motor task is scored using
a five-point scale but this process is known to be subjective,
with considerable variance amongst clinicians [7]. A quick and
accurate way of diagnosing PD would be most welcome.



As well as Parkinson’s disease dementia (PDD), where
subjects are, by definition, unable to manage with activities of
daily living (ADLs), there is also a state where abnormalities
on cognitive tests can be identified in PD but a person is able
to manage independently with ALDs; this has become known
as PD-mild cognitive impairment (PD-MCI). In our study we
were able to classify subjects with PD into those with normal
cognition (PD-NC), those with PD-MCI and those with PDD
using recognised diagnostic criteria [8], [9].

Biomarkers to identify those with PD or PD-MCI most
at risk of developing PDD are urgently needed. One avenue
of investigation is to look for associations between motor
function and cognition, and our work was motivated by this.

III. RELATED WORK

Figure copying tests, such as clock drawing [10] and the
Rey-Osterrieth complex figure [11], have long been used
in the assessment of cognitive deficit in neurodegenerative
conditions. In most cases, a subject’s drawing is assessed by
a clinician using a standardised procedure that considers, for
example, the placement and sizing of different figure elements.
Automating this process is challenging, given that a subject’s
drawing may be quite different from the original template [12].
Nevertheless, there has been some success. Notably, Souillard-
Mander et al. [13] used machine learning techniques to analyse
the elements of digitised clock drawings, achieving reasonable
discrimination between PD subjects and age-matched controls.

A more effective approach may be to use figures that are
amenable to computational analysis. An example of this is
our previous work with the pentagon spiral figure, a relatively
simple drawing template that is nevertheless designed to
amplify the clinical symptoms of PD (if present) by requiring
the subject to repeatedly accelerate and decelerate. We have
previously had some success with applying evolutionary algo-
rithms to these recordings, by using them to train classifiers
that respond to over-represented patterns of acceleration [14].
However, a limitation of this approach is interpretability, since
it is challenging to understand how these evolved classifiers
reach a decision. This is important, since a classifier can
only be useful as a decision support tool if a clinician has
confidence in the basis of its decision.

The idea of automated, objective diagnosis for PD has also
been explored in the context of voice signals. For instance,
Tsanas et al. [15] recorded the speech of a number of PD
subjects and controls. They, and others, have since used
various machine learning algorithms to build predictive models
that discriminate between the vocal patterns of these two
groups. However, this system is yet to be used in practice,
perhaps due to the relatively small number of recordings in
the corpus and the frequent use of black box models.

In this work, we are not aiming to generate a specific
predictive model. Rather, we are using MOEAs to explore
a space of models, with the intention that these models
will be used to inform diagnosis and prognosis of PD more
generally. As such, we focus on relatively simple regression
models which are interpretable and also widely understood by

clinicians. The results reported in this paper build upon an
earlier feasibility study [16].

IV. MATERIALS & METHODS

A. Pentagon Spiral Figure

Following [14], we used the pentagon spiral figure (see Fig.
1a) as a means of capturing information about a subject’s
physiological state. This figure-copying task involves a subject
repeatedly copying a pentagon shape whilst moving steadily
outwards from a central point. Repeated movements are known
to cause fatigue in PD patients, and continual acceleration
and deceleration emphasises the presence of bradykinesia, the
cardinal motor feature of PD. As well as providing a measure
of motor dysfunction, the pentagon spiral figure also tests a
subject’s visuospatial abilities, which is a cognitive domain
that can be affected in PD-MCI and PDD.

B. Assessment Scores

We use two clinical assessment scores in this work: the
MDS-UPDRS Part 3 (referred to as UPDRS from now on)
[1] and the MoCA [2], [17]. Both are composite scores that
result from a series of tasks and observations administered by
a clinician, each of which is scored separately. UPDRS scores
have a composite value between between 0 and 132, with
higher scores indicating greater motor dysfunction. Composite
MoCA scores are ranged between 0 and 30, with lower
scores indicating worsening cognitive dysfunction. A MoCA
score below 26 is abnormal, although an assessment of ADLs
is required to further classify PD subjects with cognitive
impairment into PD-MCI and PDD.

C. Data Collection

After obtaining full ethical approval, 58 PD subjects and
29 age-matched healthy controls were recruited at the Leeds
General Infirmary. Each subject first underwent a standard
clinical assessment, during which their UPDRS and MoCA
scores were calculated. Of the PD subjects, 22 were classified
as PD-NC, 26 as PD-MCI and 10 as PDD. Of the controls,
19 had normal cognition, and 10 had impaired cognition
(MoCA< 26).

The subjects were then asked to trace over a template of
the pentagon spiral figure on an A4-sized Wacom digitising
tablet using an inking stylus. As they carried out the drawing,
their movements were digitised and stored to a disk file as
a time series of < x, y > coordinates, alongside associated
pen pressure and orientation information (not currently used
in this study). The sampling frequency of the tablet was set at
200Hz. Each subject was asked to repeat the tracing process
three times using their dominant and non-dominant hands in
turn.

D. Feature Extraction

Table I summarises the list of features that were retrieved
from each drawing. These features were all selected in consul-
tation with PD experts, taking into account the PD literature
and insights from other standard clinical tests like finger



(a) The drawing template (b) Example of a control subject’s spiral pentagon
drawing overlaid on the template

(c) In this case, the concentric lines of the pentagon
and the corners are challenging to distinguish

Fig. 1: The pentagon spiral figure. On the left is the template presented to a subject. The other two images show digitised
recordings by study subjects overlaid on the template: the first from a control, the second a difficult case from a PD subject.

tapping, studies on grasp control and the gold standard clinical
definition of bradykinesia.

Most of the features, with the exception of 1 and 2, were
extracted automatically from the tablet recordings with the use
of a set of custom-written Matlab scripts. The data extraction

TABLE I: Features extracted from the digitised drawings.

ID Name Feature Description

1 dominant Dominant or non-dominant hand used
2 attempts Repeat number: between 1 and 3 for each hand
3 totalTime Total time: time taken to trace the entire figure
4 areaError Area error: Area between the template pentagon

and the pentagon drawn by the patient
5 distance Total distance travelled by the pen
6 leaveSurface Times the pen leaves the tablet surface: patients

are instructed to not remove the pen from the
tablet

7 timeContact Total time the pen was in contact with the tablet
8 zeroVel Duration of zero velocity during the whole task
9 zeroAcc Duration of zero acceleration during the whole

task
10 peakVel Maximum peak velocity
11 avgVel Average velocity
12 distPeakV Distance to maximum peak velocity
13 timePeakV Time to maximum peak velocity
14 timePeakV Maximum peak acceleration
15 peakDesAcc Minimum peak deceleration
16 avgAcc Average acceleration
17 avgDec Average deceleration
18 timePeakA Time to maximum peak acceleration
19 timePeakD Time to minimum peak deceleration
20 distPeakA Distance to maximum peak acceleration
21 distPeakD Distance to minimum peak deceleration
22 timeAAbs Time in acceleration. Absolute
23 timeARel Time in acceleration. Relative (% of movement

time)
24 timeDAbs Time in deceleration. Absolute
25 timeDRel Time in deceleration. Relative (% of movement

time)
26 totalNumPeaks Total number of peaks in acceleration-

deceleration
27 peakP Number of peaks until maximum peak
28 peakN Number of peaks until minimum peak
29 covV Coefficient of variance (COV) in velocity
30 covA COV in acceleration
31 covD COV in deceleration

started with the automatic alignment of each drawing with
respect to the template (Fig. 1a), focusing especially on
finding the corners with the use of the minimum eigenvalue
method [18]. In some cases the proper assignment of corners
was problematic even if the task was done manually (see Fig.
1c), and this is likely to introduce some error during feature
extraction.

E. Polynomial Regression

Regression modelling is one of the most widely used
tools for classification of samples and feature selection. The
method allows the identification of statistical associations and
causal relationships and may provide greater understanding
of the underlying data generating process. In multivariable
regression, a single dependent variable that is the outcome
is inferred with the use of multiple independent variables or
predictors. The formulation of a basic linear regression model
can be described as follows:

y = ↵+ �x+ ✏ (1)

where y is the dependent variable, x the independent one, ↵ is
the intercept, � is the predictor and ✏ is the error. This model
can be extended in order to include more than one predictor.
Then it is called multivariable regression modelling:

y = �0 + �1x1 + · · ·+ �nxn + ✏ (2)

where in this case �0 is the intercept, �1 � �n is a vector of
n predictors, x1 � xn a vector of independent variables and ✏
the error.

The model can be additionally enriched to include non-
linear relationships in order to improve the capability of
fitting more complex functions. In such a scenario, the final
polynomial expression could be formulated as:

y = �0 + �1x
✓1
1 + · · ·+ �nx

✓n
n + ✏ (3)

where ✓1�✓n depict the exponents to which the predictors �i

and independent variables xi are raised.



A general characteristic of regression modelling is that the
predictors derived using the final selected structure of the
regression model parameters are applied globally over the
problem under consideration assuming spatial non-stationarity.
This could be the major limitation of the technique if local
differences among areas of the study are significant.

This work uses a conventional ordinary least squared (OLS)
regression analysis. This is a typical metric applied to linear
regression problems to assess the suitability of a model. The
calculation can be mathematically defined as follows:

a = argmin
a

nX

j=1

⇣
yj � F (xj)

⌘2
(4)

where yj is the final score or dependent variable for the i-
th training example, xj is the predictor for the same training
example over the model and n is the total number of samples.

F. Pareto Archived Evolution Strategy

Multi-objective optimisation is an active research area, with
many options available for algorithm design. The available
techniques mainly differ in the details of the selection operator,
which determines why one solution is chosen rather than
another to be a progenitor of new candidate solutions. While
this step is a relatively straightforward decision in single-
objective optimisation, the area of multi-objective optimisation
is essentially defined in terms of precisely how this process is
handled.

Reflecting the variance and complexity of real-world ap-
plications, no single MOEA design approach has emerged as
dominant in the field. However there is a subset of commonly
used MOEAs that tend to perform well across the board. We
make the pragmatic decision to choose the Pareto Archived
Evolution Strategy (PAES) [19] from this commonly used
subset, in part because the application in this paper is relatively
compute-intensive, and PAES tends to perform well in terms of
the speed/performance trade-off, in part due to its maintenance
of a small population of solutions.

The disadvantage of a small population is the lack of
diversity, which may lead to premature convergence to a local
optimum. To avoid this, the algorithm was run multiple times
using the same problem configuration, with the archive of best
solutions shared and modified among these executions.

G. Model Training

A regression learning procedure aims at searching for the
best set of parameters that fits a determined real function. In
cases where a polynomial structure is required to capture the
essence of a non-linear system, the selection of the degrees
of each term that form the polynomial normally relies on
a personal decision. Since this is a crucial feature which
influences the effectiveness of the function approximation, a
more systematic approach should be considered.

In this regard, the traditional Anderson’s procedure [20]
proposes the discovery of the optimum degree in a polynomial
regression by testing in sequence the entire set of coefficients

from its maximum boundary to 0. However, if the system
under consideration is known to be non-linear and highly
complex, or characterised by a significant number of possible
features, an exhaustive search of all plausible combinations
quickly becomes infeasible.

Algorithm 1 PAES algorithm
Require: Max iter

Generate int sol and set it as Current sol
Evaluate fitness values of the Current sol
Add Current sol to archive
for i = 1 To Max Iter do

Randomly select one factor to mutate (power, feature);
Generate new sol by mutating Current sol;
Evaluate fitness values of the New sol
if New sol dominates Current sol then

Set New sol as Current sol
Update archive

else
if Current sol dominates New sol then

Discard New sol
else . Current sol and New sol do not dominate

each other
Update archive using New sol
if New sol dominates any member of the archive

then
remove them
add New sol to archive

else
add New sol to archive
randomly select a Current sol among

New sol and Current sol
end if

end if
end if

end for
return Non-dominated solutions

An alternative way of discovering the best structure is with
the use of metaheuristics like evolutionary algorithms. The
use of hybrid methods that merge both technologies were
successfully reported in different works [21], [22].

Following this approach, the present work is structured
as a two-stage method that searches for a model structure
that best fits two scores, UPDRS and MoCA. These scores
are conflictive in nature due their applicability to different
symptomatology areas of PD, cognitive and motor deficit.

By wrapping both a weighted polynomial regression analy-
sis and the conventional OLS that pursues the minimisation of
a given cost function which computes the difference between
the scores and the result of the polynomial solution, the EA
approach can provide a successful model to select the most
relevant set of features for both aspects of the disease. In
this regard, the EA is intended to estimate not only the most
significant set of parameters, but also the best structure within
the polynomial expression.



In this case this minimisation is multi-objective
(F1(x),F2(x)) = F(x). The set of optimal solutions,
also called the Pareto optimal front, is the set of non-
dominant solutions where no further Pareto improvements
can be made. The objective is to find a Pareto approximation
that is located as closer as possible to the true Pareto front.

The starting point of the process will be the execution of
the evolutionary algorithm PAES by the random generation
of a single individual solution. This solution, also called
a chromosome, represents a model composed by a subset
of features each linked with a corresponding degree with a
polynomial structure. A polynomial can be defined as an ex-
pression consisting of variables and coefficients. Consequently
the formal chromosome representation can be characterised by
two different vectors represented as follows:

f = (f1, f2 . . . , f8), fi 2 {1� 31} (5)

a = (a1, a2 . . . , a8), ai 2 {1� 6} (6)

where f is a vector of features and a denotes the vector of
exponents/powers of the predictors. If a polynomial evolves
to an expression that contains like terms, which means the
same features with the same exponent, these terms are not
combined.

Every time the algorithm finds a good non-dominated solu-
tion, this solution is stored in a repository, called an archive,
that for our purpose is defined with unlimited size. The archive
represents the current approximation of the Pareto front. For
each execution of the algorithm, the candidate solution is
evolved for 400 generations using selection and mutation
operators.

Mutation is defined twofold. Firstly it can be aimed at
producing a disturbance in the exponent value of a single
term. This type of mutation has the capability of adding and
removing terms in the equation. Secondly the mutation can be
intended to modify the feature selected within this formula.
Features can be repeated within an equation.

The algorithm is executed for each exponent a number of
times until achieving five consecutive runs without finding
a new non-dominated solution. These executions cover all
the range of exponents investigated in this work. Finally the
algorithm returns the solutions allocated in the archive with
the best prediction using the root-mean-square metric.

H. Model Validation

In order to assess the adequacy of a given model and to
avoid overfitting this work uses a division of the data into
three subsets: a training and validation set that are used to
fit each individual optimisation execution, and a hold-out test
that is used to measure the generalization error of the final
model [23]. Concretely, from the 50 subjects in the dataset,
35 of them are used to train the regression model, and 15 are
assigned to the hold-out set used for testing.

V. RESULTS

One wide-spread method used in the multi-objective com-
munity to evaluate the performance of the evolutionary algo-
rithm is the hypervolume indicator [24]. This indicator allows
the transformation of the problem into a single objective by
mapping a set of points into a scalar. This scalar is the result
of calculating the volume covered by the approximation of
the Pareto front P ⇢ Rd and a reference set R ⇢ R2. In this
work, the dimension of the multi-objective problem is d = 2
and the reference set is formed by two points called utopia
and anti-utopia ru, ra ⇢ R2, R = {ru, ra}. The calculation of
the hypervolume is formalised as follows:

I(H)A := �(H(P,R)) (7)

where H represents the set of objective vectors that are
enclosed in this front and � depicts the Lebesgue measure.
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Fig. 2: The set of the non-dominated solutions. Red points
show the solutions of the Pareto front, and blue points show the
best non-linear regression models. For visualisation purposes,
UPDRS errors are shown on a logarithmic axis.

The model training process was repeated for maximum
regression exponents from 1 (linear models) to 5. Fig. 2 shows
both the overall Pareto front and the front comprised of non-
linear models (i.e. those containing exponents greater than
1), showing that the Pareto front is comprised exclusively of
linear models. This is further highlighted in Fig. 3, depicting
the hypervolumes achieved when using models of different
complexity, and showing that runs where only linear models
were evolved achieved the highest accuracy. This is perhaps
surprising, given the limited expressiveness of linear regression
models. However, more complex models (i.e. polynomial
models in this case) are more likely to overfit data, and this
effect is likely to be more pronounced when using a small data
set. The instability of higher order solutions is reflected in the
non-linear Pareto front, which is relatively sparse, presumably



1 1.5 2 2.5 3 3.5 4 4.5 5

Power

0

1

2

3

4

5

6
H

y
p

e
rv

o
lu

m
e

×10
-3

Fig. 3: The relationship between the performance of the
MOEA, calculated by means of the hypervolume, and the max-
imum exponent allowed in the construction of the polynomial
regression models.

-30 -20 -10 0 10 20 30 40

MoCA

-70

-60

-50

-40

-30

-20

-10

0

10

20

U
P

D
R

S

Control MoCa<26

PD-NC

PD-MCI

PDD

Fig. 4: Visual representation of the residuals resulted from
taking the best model found for each of the scores, UPDRS
and MoCA, in the archive of best solutions. The scatter
plot illustrates regression errors from each subject where
colours represent different cognitive conditions that are used
to classify the disease: patients without cognitive impairment
(PD-NC), mild cognitive impairment (PD-MCI) and patients
with dementia (PDD).

because many solutions decreased in fitness when re-evaluated
on the hold-out set. The linear front, by comparison, maintains
a reasonable spread of solutions.

Although the regression errors (see Fig. 2) are similar for
UPDRS and MoCA, both < 10 on average, when taking into

Fig. 5: Clustering dendrogram (generated using the R package
pvclust) showing how the different extracted features correlate.
Lower branches indicate higher correlations. Approximately
unbiased p-values (AU) are shown in red text; branches with
values greater than 95% are strongly supported by the data.
Feature used in the evolved regression models shown in Table
II are circled.

account the MoCA range the errors on this cognitive score
are comparatively larger. This may suggest that motor deficit
is easier to predict than cognitive deficit. It may also be the
case that the drawings contains less cognitive information
than motor information, or that MoCA is a less reliable
regression target (since clinical scores are subjective and liable
to different error rates). Nevertheless, it is apparent from Fig. 4
(which shows the per-subject error rates) that error rates are not
uniform across the cohorts. For example, the UPDRS error rate
for the PDD group is relatively low. For cognitively-normal
controls, UPDRS scores are consistently under-predicted. This
may be a limitation of using linear models, since the UPDRS
scores for this cohort are much higher than the other cohorts
and may be outside the range of the predictor.

Table II and III describe the solutions in the Pareto front.
As noted, these are all linear solutions (hence powers of 1
for each feature). It is notable that the solutions include only
a subset of the available features, and each has only a small
number of terms. Again, this may be required to avoid over-
learning in a small data set. However, it is quite advantageous
from an interpretability perspective.

The features that are used across all solutions (including
both the UPDRS and MoCA ends of the Pareto front) are
the area error (f4), the average rate of deceleration (f17,
avgDec) and the percentage of time spent in deceleration
(f25, timeDRel). The use of area error is unsurprising, since
the accuracy of the drawing would expect to be lessened



Power MoCA UPDRS Features Powers
1 1 102.763 9.044 4,9,25,4,21 1,1,1,1,1
2 1 110.893 7.202 17,4 1,1
3 1 100.339 15.005 17,4,27,19 1,1,1,1
4 1 153.575 7.055 17,4,29 1,1,1
5 1 105.010 7.247 25,25,25 1,1,1
6 1 103.129 8.520 25,25 1,1
7 1 115.359 7.106 25 1
8 1 101.589 13.735 20,25 1,1
9 1 108.737 7.216 30,25 1,1

TABLE II: Content of the archive with the non-dominated polynomial regression models gathered from all the sub-archives
generated by the different exponents. These solutions constitute the Pareto front approximation. Columns of the table show
maximum power/exponent of the polynomial, residual errors for both scores (UPDRS and MoCA), features selected and powers
of the corresponding terms.

Weights UPDRS Weights MoCA
1 24.219,-0.778,0.098,-0.415,0.195,-0.166 21.329,4.722,3.079,1.505,1.386,1.480
2 24.219,-0.765,-0.225,0.181 21.329,2.915,-3.742,0.937,1.386
3 24.219,-0.790,-0.852,0.181,0.195,-0.162 21.329,3.033,4.864,0.937,1.386,1.516
4 24.219,-0.805,-0.870,0.181,0.195,-0.162 21.329,3.161,5.356,0.937,1.386,1.516
5 24.219,-0.127,-0.137,-0.169 21.329,1.760,1.397,3.494
6 24.219,-0.162,-0.169 21.329,1.397,3.494
7 24.219,-0.143 21.329,1.397
8 24.219,-0.132,-0.169 21.329,1.397,3.487
9 24.219,-0.137,-0.172 21.329,1.286,3.345

TABLE III: The weights of each polynomial depicted in II. During evaluation, each polynomial is fitted separately to each
regression target, hence two sets of weights are shown.

with either motor or cognitive impairment. The importance
of deceleration is more interesting, and may relate to a
recent observation that deceleration and acceleration are not
coordinated by the same brain region [25]. Hence, it is possible
that PD particularly affects the brain region responsible for
control of deceleration, and this could be a potential biomarker.
The importance of observing deceleration during diagnosis
also reflects our previous work on analysing finger tapping
in PD subjects, where we identified the closing deceleration
of a tap cycle to be particularly discriminative between PD
patients and controls [26].

The predictors for MoCA additionally make use of the
following features: the distance or time until peak deceler-
ation or acceleration (f19 timePeakD, f20 distPeakA, and f21
distPeakD), the number of peaks until peak acceleration (f27,
peakP), and (to a lesser extent) the duration of time spent
at zero acceleration (f9, zeroAcc). This suggests that the
presence of multiple bursts of acceleration may particularly
be an indicator of cognitive dysfunction. This may further
relate to the problem of under-scaling of movements seen
in many PD subjects, where a subject under-estimates the
amount of acceleration required to reach a target (in this case
a corner) and consequently must perform further accelerations
to compensate. It is quite plausible that this behaviour is over-
represented in those with cognitive variants of the disease, i.e.
PD-MCI and PDD.

Fig. 5 depicts more general relationships observed between
the features, derived using bootstrap hierarchical clustering of
their correlation matrix. The features selected for inclusion in
the evolved regression models (circled in the figure) appear

to be spread across the feature space. However, there are
some measures that do not appear to be useful, including
gross metrics such as the total time and distance travelled,
and the overall peak and average velocities. This may point
to the importance of considering more subtle features when
carrying out diagnosis, and likewise the importance of using
computational techniques to measure these subtle features.

VI. CONCLUSIONS

This study aims to use multi-objective evolutionary tech-
niques to explore the space of diagnostic models associated
with PD. In this paper, we applied this approach to studying
predictive regression models that capture a patient’s degree
of motor and cognitive dysfunction. Our results suggest that
clinical measures of motor and cognitive decline can be pre-
dicted, although to varying degree within different patient sub-
populations. Analysis of the resulting Pareto front of solutions
is informative, suggesting that patterns of deceleration are
particularly diagnostically significant. In addition, the presence
of multiple bursts of acceleration may be especially significant
for predicting cognitive dysfunction. From a modelling per-
spective, linear models appear to be more predictive, though
this may be an indication of their relative stability on small
data sets in comparison to polynomial models.

In future work, we aim to look at a wider range of diagnostic
objectives, for example the ability to predict PD in its early
stages. It would also be interesting to look at different kinds
of predictive model, for example regression trees. More work
is also required to fully understand the medical significance
of our findings.
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