Image Classification with Recurrent Attention
Models

Stanislau Semeniuta
Universitit zu Liibeck
Institut fiir Neuro- und Bioinformatik
Email: stas@inb.uni-luebeck.de

Abstract—In this work we apply a fully differentiable Re-
current Model of Visual Attention to unconstrained real-world
images. We propose a deep recurrent attention model and show
that it can successfully learn to jointly localize and classify objects.
We evaluate our model on multiple digit images generated
from MNIST data, Google Street View images, and a fine-
grained recognition dataset of 200 bird species, and show that
its performance is either comparable or superior to that of
alternative models.

I. INTRODUCTION

Convolutional Neural Networks (CNNs) have recently
achieved excellent results in various of visual recognition tasks
[1, 2, 3]. However, CNNs suffer from poor scalability with
respect to the input image size. Due to high computational
costs, despite the fact that images are almost always rescaled
to a smaller size, most of the current state-of-the-art CNNs
are trained either on multiple high-end GPUs or in a highly
distributed environment [4]. One way to overcome this issue is
to allow a network to dynamically attend to most informative
regions of an image. The dynamic attention approach has
received a lot of attention in recent years [5, 6, 7, 8, 9, 10]
and prior to CNNs achieving state-of-the-art results [11, 12].

This work continues the line of research directed towards
learning a Recurrent Attention Model (RAM). A RAM pro-
cesses an image sequentially, gradually collecting information
present in the image. The model achieves this by extracting a
glimpse from an image, extracting features from the glimpse and
updating its internal state. The most simple and straightforward
form of glimpse extraction is cropping an area from an image.
However, this procedure is not differentiable and thus prevents
end-to-end learning with backpropagation. There are two major
ways to overcome this issue. One is to use a different learning
approach [9, 6, 10] and the other is to define a differentiable
glimpse extraction procedure [13, 8]. Our work follows the
second approach.

Our contribution is twofold. Firstly, we describe a deep
differentiable Recurrent Attention Model, show that it can
consistently learn to jointly locate and classify objects in an
image, and demonstrate that it achieves performance superior
to that of reinforcement learning based RAM. Secondly, we
describe ways to increase the speed of learning, improve
generalization, and prevent the learning of bad attention policies.
We use these techniques to establish a new state-of-the-art on

Erhardt Barth
Universitit zu Liibeck
Institut fiir Neuro- und Bioinformatik
Email: barth@inb.uni-luebeck.de

the task of transcribing tightly cropped unsegmented house
numbers.

II. RELATED WORK

The computational efficiency of recognition algorithms has
always received a lot of attention. It is especially important for
object detection algorithms, since they usually need to perform
multiple inferences per image. The amount of computation is
mostly affected by the number of regions to be examined.
This number is the largest for the simple sliding window
approach and researchers have made a number of attempts
to find alternatives to the sliding window approach such as a
model that internally performs object detection step.

The most straightforward way to integrate object detection is
to enable a model to extract crops from an image and process
them subsequently. However, this approach poses a problem
to backpropagation based learning, since the cropping is not
differentiable. A number of attempts to overcome this issue
have been made. Mnih et al. [9] have shown that it is possible
to use reinforcement learning to successfully train an attention
model. Ba et al. [5] and Sermanet et al. [14] extended this work
and showed that RAM trained with reinforcement learning can
be effective in challenging real world applications. Their work
differs from ours in the training method: the authors have used a
Reinforcement Learning based algorithm, while our model can
be trained end-to-end with backpropagation. Ranzato [10] have
used a two phase algorithm that optimizes location estimation
and target predictions independently. Gregor et al. [8] have
proposed a generative model that creates an image in an iterative
fashion. Among other contributions, the authors have presented
a differentiable crop operation and thus completely removed
the need of dedicated attention learning algorithms. They have
demonstrated that their model outperforms the one by Mnih
et al. [9] on a synthetic classification task. Our work extends
the model and investigates the classification performance it
can achieve. Jaderberg et al. [13] have proposed a trainable
module called Spatial Transformer, that is very similar in
nature to a recurrent attention model. The authors use an affine
transformation matrix to parametrize grid sampling points and
a differentiable interpolation kernel to produce a crop from an
image. Sgnderby et al. [15] combine the Spatial Transformer
modules with a Recurrent Neural Network. This work is the
closest to ours in terms of the methodology, however the direct

comparison is difficult due to a limited amount of experimental
results in Sgnderby et al. [15].

III. RECURRENT ATTENTION MODEL

A Recurrent Attention Model is a model that processes
information in a sequential manner. Its processing consists of
three steps: choosing where to look, extracting features from

the chosen location, and updating the RAM’s internal state.

These steps form one iteration, which is then repeated for as
many times as required by the task at hand. This process is very
different from one-shot approach of CNNs and has a number
of potential advantages. It allows the model to ignore any kind
of unnecessary information present in an image, collect data
scattered over an image and naturally model object detection.

Figure 1 provides a graphical description of our model,
which mostly follows the iterative scheme described before,
with two notable differences. Firstly, we extract features from
the whole frame before iterations start. These features encode
a rough representation of an image and are used by the model
to guide its attention. Secondly, we explicitly split the hidden
state into two parts, one responsible for modeling attention

and the other for aggregating features over multiple iterations.

As shown in Figure 1, our model can be split into a number
of relatively independent modules. Most of these modules are
neural networks, each serving its distinct purpose. Now we
will introduce these modules and comment on their structure
and tasks they perform.

Context network. The context network receives the whole
image as input and outputs a feature vector. The job of the
context network is to provide clues on where to deploy the
model’s attention. We usually parametrize this network by a
CNN with two or three layers. In addition, it is possible to
downsample an image before processing it with the context
network to save computations.

Recurrent network. The core of our model is a two-layer
recurrent neural network that aggregates information over

multiple glimpses and controls the locations of the glimpses.

We initialize the states of both layers to zeros. In general, any
kind of recurrent function can be used to implement this module.
We use a Gated Recurrent Unit (GRU) [16] network for its

good trade-off between stable learning and computational costs.

There is a clear separation of tasks between the two recurrent
layers: the first aggregates data over multiple iterations and
is used as an input to the classification network, while the
second one only affects attention. In contrast to the widely
adopted bottom-up computation order, we compute activations
of the second layer before activations of the first layer. The
main reason for this top-down order of computation is that the
context network is only connected to the second layer. Since
we compute activations of the second layer prior to the first one,
the context network features are able to affect the first glimpse.
When the allowed number of iterations is small, i.e. 2 or 3,
having the location of the first glimpse fixed can use a large
portion of the allowed computations. We have experimented
with a variant of our model with a single recurrent layer, but
encountered severe with issues exploding gradients.

Glimpse extraction network. The extraction network maps
the hidden state of the second recurrent layer to attention
parameters and uses them to yield the current glimpse. We use
a linear mapping (y = Wx + b) from the hidden state of the
second recurrent layer to the attention parameters. The module
then extracts a NxN glimpse following the procedure described
by Gregor et al. [8]. The authors use a NxN grid of Gaussian
filters placed upon an image to create a glimpse. The grid is
parametrized by the location of its center ¢, and c,, the distance
between adjacent points §, the variance of Gaussian filters o
and the sharpening coefficient . We make two alterations to
the grid parametrization. First, we use rectangular attention
and replace the § parameter with a pair J, and d,. Second,
we make sure that the predicted center of the sampling grid is
always within the image by restricting ¢, and c, to be between
-1 and 1.

Glimpse network. The glimpse network is a function that
receives the current extracted glimpse and outputs a feature
vector. Its responsibility is to extract a set of useful features
that are later used by the recurrent network. In most of our
experiments this function is implemented with a CNN.

Classification network. The classification network produces
the prediction given a current state of the first recurrent layer.
In general it outputs a prediction on every step. However the
exact moments when to use supervision, i.e. only on last step,
can vary. We have observed very little influence of this module
on the final result, so we have used small networks, such
as logistic regression or a fully connected network with one
hidden layer.

Full model. Lastly, we put all the discussed modules together.
Let fconte:l;t’ fewt, fylimp.se, fclu.ss and frec denote context,
extraction, glimpse, classification and recurrent networks
respectively. Given input image I, our model can be expressed
with the following equations:

h? = free([h}_y, feontext(I)] 07 ;))
9 = fear(I,17))

hy = free(fotimpse(9), 1) 3)

Yt = fetass(hyf))

where h, h? and y; are the hidden state of first and second
layers and the model’s output on step ¢ respectively. Note that
the second recurrent layer uses the hidden state of the first layer
from previous step as input. Since each module of our model is
differentiable, the whole model can be trained end-to-end with
backpropagation. The most important module in this regard is
the glimpse extraction network.

IV. EXPERIMENTS

First, our model is evaluated on synthetic tasks, derived from
the MNIST dataset. We show that it achieves either superior or
competitive results compared to a reinforcement learning based
alternative [5]. We then train it to read house numbers from
the publicly available Street View House Numbers (SVHN)
dataset [17] and show that our model achieves state-of-the-art

f context [,

A h

N

lrj \A 4
l_

[
s

f class

Image

Fig. 1: Illustration of one processing step of the proposed model. feontewts fewts fglimpses feiass and fre. denote context,
extraction, glimpse, classification and recurrent networks respectively. See text for details on their structure and tasks. The

blocks inside the dashed rectangle are iterated.

Model Error
Mnih et al. [9], 4 glimpses 9.41%
Mnih et al. [9], 8 glimpses 8.11%
Gregor et al. [8], 4 glimpses 4.18%
Gregor et al. [8], 8 glimpses 3.36%
Ours, without context 3.29%
Ours, with context 1.80%

TABLE I: Test classification errors on the single digit recogni-
tion task

performance on the task of reading full house numbers from
an image. Lastly, we demonstrate that the attention mechanism
is capable of learning a decent object localizer when trained
on the Birds-200-2011 dataset [18].

‘We have used Theano [19] and Caffe [20] frameworks to
implement our experiments. Unless otherwise noted, the Adam
[21] algorithm with an initial learning rate of 0.0001 was used
to determine the step size of the gradient descent. 31, B2 and €
hyperparameters were set to 0.9, 0.999, and 1e-8 respectively.

A. Cluttered MNIST

Data. The dataset is derived from the popular MNIST
benchmark by randomly placing one or two randomly selected
digits in a 100x100 image. In addition, to simulate clutter
present in natural images, 8x8 fragments of other digits are
randomly placed in the same image as well. We define three
subtasks based on this dataset: classifying an image with one
digit into 10 classes, classifying an image with two digits into
55 classes, each corresponding to a particular pair of digits
and classifying an image with two digits into 19 classes based
on the sum of the digits. In the last task we follow [5] and
use an empty background. Note that since digits are sampled
randomly, the distribution of classes is not uniform.

Setup. We have chosen the glimpse and classification
networks to be fully connected networks with one hidden layer
with 256 units. In this case the model’s performance directly
depends on its ability to discover a good attention policy. In
addition, it allows for a fair comparison with the work of [5].

Fig. 2: Examples of learned attention on digit recognition (first
row), pair recognition (second row) and digit summation (third
row). Best viewed in color.

Model Pair Sum
Baetal [5] 5% 2.5%
Ours 43% 2.55%

TABLE II: Test classification errors on the pair recognition
task

The number of glimpses was set to 4 in all experiments in this
section. We have used a three layer CNN as context network.

We have found that it is difficult for our model to learn on
weakly supervised images with two digits. There are two main
problems that prevent it from learning a good attention policy.
Firstly, the model tends to choose attention regions that include
both digits instead of focusing on one and then switching on
the other. This issue can be solved by imposing an upper
limit on the size of the attention regions. However, it does
not solve the problem completely, as in this case the network
focuses on only one digit and never switches to the other. We
have solved this issue by reparametrizing the reader’s sampling
grid and adding a regularization term to the cost function.

The extraction network, discussed in Section III, originally
regresses absolute values of locations of grid centers. We have
modified it to regress relative shifts Ac, and Ac, that are
added to the previous center location. We then use Gaussian
RBF depending on relative shifts as regularization term:

R— ae—(mﬁmﬁ)/b 5)
where a and b are hyperparameters that we set to 0.1 in our
experiments. This term promotes the model to choose locations
that are far from the current one. We use this term only on the
third processing step to force the model that after two steps it
should deploy its attention elsewhere.

Results. The results of our model on single digit recognition
task can be found in Table I. Our model achieves almost two
times smaller error than the model of [8]. It should be noted
that the authors did not strive to optimize the performance
of their model on the digit recognition task. To highlight the
importance of the context network, we note that errors in this
task are caused by either incorrect digit localization or errors
of classification network. When the context network is used
the percentage of errors caused by mislocalization is less than
1% in contrast to about 10% without the context network.

Results of our model on pair classification and digit summa-
tion are given in Table II. Our RAM outperforms the model
of [5] on the pair classification task. This is not the case for
digit summation and our model performs slightly worse on
this task. We find it somewhat surprising, since the images
are very similar for these two tasks. In fact, it is possible to
use a model trained on pair recognition to initialize weights of
all components of a model for digit summation except for the
last classification layer, and visa versa. Such model converges
orders of magnitude faster than a randomly initialized one.
Examples of learned attention mechanisms are presented in
Figure 2.

B. Street View House Numbers

Data. In this section we apply our model to the medium sized
dataset of house number images [17]. We follow Goodfellow
et al. [22] and form a validation set by randomly choosing
5000 images from train and extra partitions. We also follow the
same work in terms of data preprocessing and generate 64x64
tightly cropped images that contain all digits of a single house
number. To do that, we use the ground truth bounding boxes,
provided with the dataset, and compute a bounding box that
includes all digits present in an image. We then increase the
bounding box by 30% of its original size, crop the resulting
area and rescale it to 64x64. We also follow Ba et al. [5] and
generate 128x128 loosely cropped images by expanding the
bounding boxes that encloses all digits in an image by 130%.
In both cases we then convert the images to grayscale, divide
by 128 and subtract the mean image.

Setup. This task is different from the ones discussed in
Section IV-A since images contain variable numbers of objects.
To address this, we train our model to read the image and
output digits one by one. The model is trained to read an

image from left to right. We add an extra class to encode that
no more objects are present in an image and run our model
until we receive the terminal label. The model is allowed to
perform 3 glimpses per object. Since the dataset contains at
most 5 objects in one image, the maximum possible amount
of iterations is 18.

The SVHN dataset is more diverse than the one used in the
previous section, so it is no longer sufficient to use a simple
fully connected glimpse network. Following Ba et al. [5], we
use a three layer CNN. However, we have observed that it
leads to relatively slow convergence. We address this issue by
training our model in two steps: first, we use a very simple
glimpse network and train the model for a small number of
epochs. After that we switch the simple glimpse network with
the one that we actually would like to use. We have observed
that it significantly speeds up training of the full model. Figure
4 shows learning curves of models trained from scratch and
after 2 epochs of pretraining. Computational costs of pretraining
are negligible with respect to the amount of time required to
train the full model, so we use this approach in all experiments
presented in this section. Note that such curriculum approach
does not affect the final result, as the full model trained from
scratch achieves similar results but requires more iterations to
do so.

We regularize our model with 0.5 dropout in the outputs of
the glimpse network and 0.5 dropout in recurrent connections
[23]. Data augmentation does not provide satisfactory improve-
ments of the final result, so we do not use it and always feed the
network with the original 64x64 images. This can be explained
by the presence of the attention mechanism that focuses on
the same part of an image and effectively counteracts data
augmentation. To address this, we add noise to the sampling
grid parameters. We uniformly sample noise coefficient n from
[-a, @] and add it to the location of grid center (c, = c; + 7,
¢y = ¢y + n). This corresponds to small random shifts of
attention regions. In addition, we multiply the distance between
sampling points by 14+n (05 = 0z *(1+n), 6, = §,*(1+n)),
that results in either increase or decrease of corresponding
dimensions. We have used o = 0.1 in all our experiments
and sample noise independently for every parameter. This
modification can be viewed as the data augmentation applied
to attention regions instead of the full image. There are two
options of how to use noise during testing. One is to not
use corrupted attention parameters. The other is to allow
noise injection, run the model multiple times and average
the results over all runs. The second approach is similar to
MCMC averaging used by Ba et al. [5] and widely adopted
oversampling [3]. It allows to achieve lower error rate at the
cost of higher computational expenses when compared to the
first option.

Results. The results of our model on transcribing house
numbers are given in Table III. Similarly to Ba et al. [5],
we have observed that our model tends to overestimate the
number of digits in an image. To address this, we train an
additional model that reads an image from right to left. We
show an example of a single run of both models in Figure

Fig. 3: Example of an image processed by forward (top row) and backward (bottom row) models. Computation proceeds from
left to right, i.e. the first step corresponds to leftmost image in each row. Image was taken from the test partition. Best viewed

in color.

1.0

with pretraining

0.8} without pretraining

0.6}

0.4}

0.2r -

0-00 10000 20000 30000 20000 50000

Fig. 4: Validation errors of full models with and without

pretraining for first 25 epochs. We omit training errors since
they follow the same pattern

TABLE III: Test classification errors on full sequence house
number recognition task

Model 64x64 128x128
Goodfellow et al. [22] 3.96% -
Ba et al. [5] 3.9% 4.46%
Jaderberg et al. [13] 3.6% 3.9%
forward, single pass 4.5% 5.5%
forward, average 4.3% 5.2%
both, single pass 3.9% 4.45%
both, average 3.65% 4.35%
5 layers, both, average 3.4% 4.34%

3. During testing we choose the smaller sequence length
from two models and average predictions from them. This
heuristic allows us to match the performance of the model
with MCMC averaging from Ba et al. [5] with our model
without averaging over multiple runs with sampling grid noise.
When we allow injection of noise during testing and average
over 10 runs, the performance of our model improves and
almost achieves the performance of a Spatial Transformer
based model [13]. All of the discussed models outperform
a conventional CNN with eleven layers [22] while requiring

TABLE IV: Test classification accuracies on the bird recogni-
tion task

Model Accuracy
Jaderberg et al. [13] 84.1%
CNN, w/o localization 78.57%
CNN, GT localization 79.63%
CNN, RAM localization 79.77%

y

[RI—{R}—{RE> Yy
2 layer CN Inception
T f
Image > 256x256 crop

Fig. 5: Illustration of our approach to fine grained classification.
R blocks denote one iteration of the model.

much less computation. Lastly, we have found that our model
with the three layer glimpse network slightly underfits training
data due to regularization. This allowed us to add two more
convolutional layers. The resulting five layer model yields a
result better than that of Jaderberg et al. [13] and achieves
state-of-the-art performance. However, it should be noted that
the result of [13] is achieved with a single pass of a single
model, while we use model averaging. In the case of loosely
cropped house numbers our model achieves a better result than
that of [S] by a similar margin. Interestingly, in this case the
model with a 5 layer glimpse network achieves only marginally
better result. However, the Spatial Transformer based model of

Jaderberg et al. [13] is still superior to both RAMs on loosely
cropped images.

C. Fine-Grained Bird Recognition

Data. In this section we apply our model to the CUB-200-
2011 dataset [18]. The dataset contains 12k images of various
bird species split into train and test partitions of approximately

the same size. We preprocess images by resizing to 256x256
and subtracting per-channel mean values.

Fig. 6: Examples of learned attention policy. Computation proceeds from top to bottom, i.e. the first step corresponds to topmost
image in each column. Since in this experiment our model acts on a convolutional image, shown bounding boxes are expanded
to approximately cover the corresponding area of the raw image. Note that the attention region on the first step is always the
same, since we do not use the context network. Images were taken from the test partition. Best viewed in color.

Setup. We consider an Inception architecture with Batch
Normalization [24] as our baseline model. We train it on the
ImageNet1000 dataset and finetune it on the CUB-200-2011
dataset. We use the standard data augmentation during training
and randomly crop 224x224 areas of an image and mirror them
with a 0.5 probability. We do not use multiscale augmentation.
During testing we average outputs of the model applied to
ten crops as described by [3]. The baseline Inception network
achieves 78.57% accuracy.

In this case, the object of interest is relatively easy to locate
and usually occupies a large portion of an image. Hence,
we do not use the context network for these experiments. In
contrast to our previous experiments, in this case we apply
the attention mechanism to convolutional images. In particular,
we first process an image with two sets of convolution-relu-
pooling operations and only then use attention. Parameters of
convolutional layers are pretrained on the ImageNet1000 dataset
as part of a larger CNN with five convolutional layers and kept
fixed throughout all experiments on this dataset. Our initial
experiments have shown a substantial amount of overfitting.
Therefore, we have changed the input of the classification
network to be the output of the glimpse network instead
of the hidden state of the first recurrent layer. In addition,
we have hypothesized that the main source of overfitting is
the classification network and that the full model does not
have enough time to learn a good attention policy before the
classification network overfits to the data. To address this issue,
we have reset the weights of the last 200-way classification
layer after every 10 epochs. We reset the weights of the
classification network 10 times and then allow the model to
converge. Indeed, this simple procedure reduces the validation
error. However, while these modifications substantially reduce
overfitting when compared to the original model, the baseline
CNN still achieves a superior result. Thus, we use our model
for an object localization step before baseline CNN.

To do that, we compute the attention region selected by
the network on the last processing step and expand it to

approximately cover the corresponding area of the raw image,
extract this area from the image and resize it to 256x256 size.
We process the whole dataset in this manner and train our
baseline CNN on extracted images following exactly the same
procedure as described before. This approach is schematically
depicted in Figure 5. Note that the purpose of this experiment
is to demonstrate that our model is capable of learning attention
mechanisms on natural images. We do not achieve the current
state-of-the-art results [13] in these experiments.

Results. Results of our experiments are presented in Table
IV. The CNN that uses our model for localization achieves
1.2% improvement with respect to the baseline model trained on
whole images. Examples of localizations are presented in Figure
6. To put performance of localization into context, we use the
provided ground truth (GT) bounding boxes as a "perfect"
localizer. Interestingly, CNN with RAM localization slightly
outperforms the one with GT localization. The difference
between these two is rather small, however.

V. DISCUSSION

In our experiments the Recurrent Attention Model consis-
tently learns good attention policies, although in some cases it
requires some extra built-in knowledge. Reinforcement learning
based RAM is superior to ours in this regard, since it can learn
to switch between two digits based on the classification error
only. This issue deserves further attention, since objects in
natural scenes are very likely to appear at different locations
of an image.

Ba et al. [5] have observed that their model does not benefit
much from dropout regularization. In contrast, we have found
that our model does not achieve the results of alternative models
when we do not use regularization. We speculate that this is
due to a certain amount of stochasticity built in into the model
of Ba et al. [5], while ours is fully deterministic.

Our model has a number of further applications. While it
shows reasonable results on image classification, CNN based
models are already very well suited for this task and we do

not expect RAM to significantly outperform them in terms of
classification accuracy. RAM can rather yield an improvement
for tasks that have some dependencies between predicted labels,
such as optical character recognition or object detection. In
addition, our model is easily extendable to temporal data. Some
of our early experiments suggest that RAM trained on static
images can learn to follow an object in a video with its attention
region.

VI. CONCLUSIONS

We have presented a deep recurrent model based on recent
advances in fully differentiable RAMs and have experimentally
shown that it achieves competitive results on the MNIST based
synthetic benchmark and state-of-the-art result on transcribing
house numbers from an image. We have shown that it can
operate on outputs of convolutional layers and learn object
localizers from image labels only. We have demonstrated that
learned attention can be used subsequently in a recognition
pipeline to boost the final result. Lastly, we have shown a set
of procedures that decrease the testing error of our model and
improve convergence speed. The two most important techniques
are pretraining with a simple glimpse network and injection
of noise into attention parameters.

ACKNOWLEDGMENTS

This project has received funding from the European
Union’s Framework Programme for Research and Innovation
HORIZON 2020 (2014-2020) under the Marie Sklodowska-
Curie Agreement No. 641805. Stanislau Semeniuta thanks
the support from Pattern Recognition Company GmbH. We
gratefully acknowledge the support of NVIDIA Corporation
with the donation of the Titan X GPU used for this research.

REFERENCES

[1] R. B. Girshick, “Fast R-CNN,”
abs/1504.08083, 2015.

[2] A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Suk-
thankar, and L. Fei-Fei, “Large-scale video classification
with convolutional neural networks,” in CVPR, 2014.

[3] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet
classification with deep convolutional neural networks,”
in NIPS, 2012.

[4] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. E. Reed,
D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabi-
novich, “Going deeper with convolutions,” CoRR, vol.
abs/1409.4842, 2014.

[5] J. Ba, V. Mnih, and K. Kavukcuoglu, “Multiple ob-
ject recognition with visual attention,” CoRR, vol.
abs/1412.7755, 2014.

[6] J. Ba, R. R. Salakhutdinov, R. B. Grosse, and B. J. Frey,
“Learning wake-sleep recurrent attention models,” in NIPS,
2015.

[71 S. M. A. Eslami, N. Heess, T. Weber, Y. Tassa,
K. Kavukcuoglu, and G. E. Hinton, “Attend, infer, repeat:
Fast scene understanding with generative models,” CoRR,
vol. abs/1603.08575, 2016.

CoRR, vol.

[8] K. Gregor, I. Danihelka, A. Graves, and D. Wierstra,
“DRAW: A recurrent neural network for image generation,”
CoRR, vol. abs/1502.04623, 2015.

[9] V. Mnih, N. Heess, A. Graves, and K. Kavukcuoglu,
“Recurrent models of visual attention,” CoRR, vol.
abs/1406.6247, 2014.

[10] M. Ranzato, “On learning where to look,” CoRR, vol.
abs/1405.5488, 2014.

[11] L. Itti, C. Koch, and E. Niebur, “A model of saliency-
based visual attention for rapid scene analysis,” IEEE
PAMI, 1998.

[12] H. Larochelle and G. E. Hinton, “Learning to combine
foveal glimpses with a third-order Boltzmann machine,”
in NIPS, 2010.

[13] M. Jaderberg, K. Simonyan, A. Zisserman, and
k. kavukcuoglu, “Spatial transformer networks,” in NIPS,
2015.

[14] P. Sermanet, A. Frome, and E. Real, “Attention for fine-
grained categorization,” CoRR, vol. abs/1412.7054, 2014.

[15] S. K. Sgnderby, C. K. Sgnderby, L. Maalge, and
O. Winther, “Recurrent spatial transformer networks,”
CoRR, vol. abs/1509.05329, 2015.

[16] K. Cho, B. van Merrienboer, D. Bahdanau, and Y. Bengio,

“On the properties of neural machine translation: Encoder-

decoder approaches,” CoRR, vol. abs/1409.1259, 2014.

Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu,

and A. Y. Ng, “Reading digits in natural images with

unsupervised feature learning,” in NIPS Workshop on

Deep Learning and Unsupervised Feature Learning 2011,

2011.

C. Wah, S. Branson, P. Welinder, P. Perona, and S. Be-

longie, “The Caltech-UCSD Birds-200-2011 Dataset,”

Tech. Rep., 2011.

F. Bastien, P. Lamblin, R. Pascanu, J. Bergstra, 1. J.

Goodfellow, A. Bergeron, N. Bouchard, and Y. Bengio,

“Theano: new features and speed improvements,” Deep

Learning and Unsupervised Feature Learning NIPS 2012

Workshop, 2012.

Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long,

R. Girshick, S. Guadarrama, and T. Darrell, “Caffe:

Convolutional architecture for fast feature embedding,”

arXiv preprint arXiv:1408.5093, 2014.

[21] D. P. Kingma and J. Ba, “Adam: A method for stochastic
optimization,” CoRR, vol. abs/1412.6980, 2014.

[22] 1. J. Goodfellow, Y. Bulatov, J. Ibarz, S. Arnoud, and

V. D. Shet, “Multi-digit number recognition from street

view imagery using deep convolutional neural networks,”

CoRR, vol. abs/1312.6082, 2013.

S. Semeniuta, A. Severyn, and E. Barth, “Recur-

rent dropout without memory loss,” CoRR, vol.

abs/1603.05118, 2016.

S. Ioffe and C. Szegedy, “Batch normalization: Accelerat-

ing deep network training by reducing internal covariate

shift,” in ICML, 2015.

(17]

(18]

[19]

(20]

(23]

(24]

