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Abstract—In this paper, a simple structure of two-layer feed-
forward spiking neural network (SNN) is developed which is
trained by reward-modulated Spike Timing Dependent Plasticity
(STDP). Neurons based on leaky integrate-and-fire (LIF) neuron
model are trained to associate input temporal sequences with a
desired output spike pattern, both consisting of multiple spikes.
A biologically plausible Reward-Modulated STDP learning rule
is used so that the network can efficiently converge optimal spike
generation. The relative timing of pre- and postsynaptic firings
can only modify synaptic weights once the reward has occurred.
The history of Hebbian events are stored in the synaptic eligibility
traces. STDP process are applied to all synapses with different
delays. We experimentally demonstrate a benchmark with spatio-
temporally encoded spike pairs. Results demonstrate successful
transformations with high accuracy and quick convergence dur-
ing learning cycles. Therefore, the proposed SNN architecture
with modulated STDP can learn how to map temporally encoded
spike trains based on Poisson processes in a stable manner.

I. INTRODUCTION

Animals are receiving information of recognizing food or
danger during interaction with the environment. Then they
are taking proper actions after processing incoming signals.
Mimicking this mechanism of natural neuronal processing
into computational point of view is the paradigm known as
artificial neural networks (ANNs). Spiking Neural Networks
(SNNs) as the third generation of neural network models
inspired by features found in biology are able to encode and
process the information using timing of individual spikes
arriving at a neuron [1].

SNNs are bio-inspired, adaptive, computationally powerful
structures compared with conventional artificial neural
network [2]. They process information encoded in the timing
between neuron firings. As biological neurons communicate
by receiving and transmitting pulses known as ”spikes” to
indicate its short and transient nature then SNNs also carry
information across synapses between other neurons in the
network.
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The complexity and the computational power of artificial
SNNs are restricted compared with the abilities of biological
neural systems [3]. However, developing efficient learning
techniques and recognizing information codes in SNNs are
still open problems from a computational point of view.
Therefore, various characteristics of SNNs such as learning
algorithms and theoretical models could be considered to
understand the ability of SNNs.

Rate coding and temporal coding are two widely used
information encoding schemes in SNNs. In rate coding the
number of spikes within the encoding window is considered
regardless of their temporal pattern, while for the temporal
coding the precise timings of spikes are considered [4]. From
a biological perspective, precise spike timing of individual
spikes is common for neuronal information processing
[5]. Precise timing of spikes allow neurons to carry more
information than random spike timings with the paradigm of
rate-coding schemes; therefore, temporal synchrony might
play an important role in neural computation. For the optimal
efficiency of information computation, temporal synchrony
paradigm has been implemented here using a simple Poisson
process for generating input and output spike patterns.

The temporal order of presynaptic and postsynaptic firing
times can determine synaptic potentiation (Long Term
Potentiation-LTP) vs. depression (Long Term Depression-
LTD). A presynaptic spike arriving before a postsynaptic spike
leads to synaptic potentiation, arrival after the postsynaptic
spike activity is causing depression of the connection [5]. This
temporal relationship between pre- and postsynaptic activity
is a paradigm derived from neurobiological experiments
known as Spike Time Dependent Plasticity (STDP) which
is experimentally observed in hippocampal neurons [6].
Here we use STDP with time-dependent weight change as a
biologically plausible mechanism in order to map input spike
patterns into output spiking activity.

It is clear that multiple-spike timings in a pair of spike
trains is more suitable to empirically derived rules and is
more biologically realistic. However, only a few learning
rules to teach a SNN have been proposed which can tackle
precise input-output mappings of spike patterns with multiple
pulses on each train instead of single spikes in spatio-
temporal patterns. ReSuMe [3], is the supervised learning of
desired spike trains in response to input patterns. It uses a



combination of STDP plasticity and anti-STDP plasticity in a
single synapse. Although, this technique is ideal in classifying
input patterns by spatio temporally encoded patterns, it is
not reliable and stable enough for information processing
in the nervous system [7]. SpikeProp is a gradient-descent
learning algorithm similar to backpropogation for rate coding.
The euclidean distance between target and actual spiking
activity determines the synaptic weights to minimize the error.
However, applications of SpikeProp are mainly based on the
timing of a single output spike [8], [9]. Although [8] claims
that it could be applicable for multiple spikes, there is limited
evidence. Also, [7] explained that SpikeProp failed during
their preliminary experiments for multiple output spikes.

In behavioural learning paradigms, strength of a
behaviour is modified by receiving reward or punishment
as reinforcements. Reinforcement learning (RL) inspired by
behaviorist psychology is algorithmic approach to reward
learning in a machine learning discipline [10]. Recently,
several plasticity experiments, including STDP, demonstrated
that neuromodulators, particularly dopamine related to novelty
and reward prediction, have global mechanisms for synaptic
modification [11], [12]. In order to consolidate changes
of synaptic strength in response to pre- and postsynaptic
neuronal activity such another signal could be used. as
reward [13]. Inspired by these observations, two levels of
plasticities using STDP and reward have been hypothesised as
Reward-modulated STDP in several theoretical and practical
studies [14], [15], [16], [17], [18], [19], and [20]. Similar
to them, experiments in this paper are implemented using
Reward-modulated STDP mechanism.

Our motivation for the current study is that the precise
times of individual spikes might be fundamental for
efficient computation in capturing certain temporal dynamics.
This paradigm has also been demonstrated in various
Neurobiological research [6]. Therefore, the goal of current
spiking neural network is to modify the vector of synaptic
weights w to achieve desired Poisson spike patterns at the
training neuron’s output Soutd (t) in response to the given n
input Poisson sequences Sin1 (t), Sin2 (t), ..., Sinn (t). The reward
is provided by criticizing the actual and desired output neuron
activities at the end of each learning cycle, which is applied
into synaptic connections subject to an STDP learning process.

In this work, the reward-maximising STDP rule has been
implemented [18]. Hebbian plasticity is modulated by the
reward signal analogous to dopamine modulation. A transient
memory of synaptic events is stored at each synapse as
synaptic eligibility traces. Once the reward occurs, synaptic
weights are updated. Only delayed rewards have been taken
into account because of biological plausibility.
The novel aspect of this study is using multiple-spike timings
not only in each input pairs also in desired output train to
achieve biologically more realistic scheme. Also, a dopamin-
ergic inspired learning rule combined with STDP mechanism
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Fig. 1. The network structure for reinforcement learning of spiking
neural network. See text for a detailed explanation of the figure and notation
used.

is shown both analytically and through computer experiments
with rapid convergence in less than 30 learning cycles. The
development of reward-modulated STDP with its learning
speed helps generic learning tasks where a neuron is supposed
to respond to input spike patterns with specific output spikes.

II. METHODS AND EXPERIMENTS

A. Network Architecture

One of the common network topologies in biological
systems is a feed-forward structure where the data flow from
input layer to output neurons without recurrent connections.
In this paper, fully connected two layered feed-forward
spiking neural network architecture without hidden layer is
proposed. The network structure is inspired by the actor-critic
architecture [21] illustrated in Figure 1 with artificially
depicted input-output neuron spiking activity over a typical
simulation presentation Tpe = 120ms in Table II.

Our implementation of the actor-critic spiking neural
network contain k = 10 input neurons in the input layer.
Each neuron in this layer is fed with different spike train
pattern, Sin1 (t), Sin2 (t), ..., Sink (t), constructed by external
Poisson mechanism which is outlined in the Encoding section.
There is also bias input neuron layer as a reference with a
single neuron in order to force comparator neuron’s desired
spike pattern generation. In the output layer, there are two
neurons, one is generating actual outputs Souta (t), the other is
producing desired outputs Soutd (t). Furthermore, a critic unit
which criticizes actual cell activity and desired target cell
output in order to generate appropriate reward modulation of
weights between input-output layers.
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Fig. 2. Delay mechanism. i:index for input neuron, k is total delay connection
number per input-output neuron connection, n is the total number of input
layer neuron. with non-negative delays di,j ∈ R+.

Each individual connection from an input layer neuron i to
an output layer neuron j has a fixed number of m synaptic
terminals, where each terminal serves as a sub-connection
that is associated with a delay si,t inspired from [22]. In the
proposed network architecture, si,t with t ∈ [1, k] indicates
the sub terminal where i is the preysnaptic neuron index, t is
the sub-terminal index as it is drawn in Figure2. The number
of synaptic connections is m = 10 with non-programmable
delays between 1 − 10ms as si,t = t(ms). However,the bias
input neuron ni=0 has single connection without a delay as
si = 0ms. An exponential increase of input neurons and the
increasing dimensionality of the spike trains can be avoided
with this mechanism.

In this model, the actual output neuron is trained to respond
with spatio-temporally encoded input spike train sets. The
reward is calculated based on the timing difference between
action potentials of the actual neuron and desired neuron. The
synaptic connection w∗ between input layer and desired output
neuron is fixed and initially set to maximum weight value
as w∗ = wmax in order to force desired neuron to gener-
ate spikes at each target time. Other weights are initialised
uniformly with range [winitmin

, winitmax
] in Table II. They

have been chosen quite small so there will not be any spike
generation until the learning perform sufficiently or adjustment
of homoeostatic firing rate. Synaptic connections are allowed
to contain a mix of both positive and negative weight values.
Negative connection weights between the two neurons behave
like inhibitory synapse. Therefore, the initial weight range has
been set as %20 (inhibitory) and %80(excitatory) analogous
to observations in mammalian brains.

B. Neuron Model and Synaptic Model

In order to reconstruct the predefined target spike pat-
tern precisely on the networks output over training, Leaky
Integrate-and-Fire (LIF) neuron modelling has been used as
one of the most common simplified spiking neural models
[1].

TABLE I
PARAMETERS FOR THE NEURON MODELS AND SYNAPSES

Parameter Value Unit

V rest -60 mV

V reset -55 mV

V th -65 mV

τm 10 ms

R 10 MΩ

Cm 1 nF

trefract 0 ms

dV

dt
= − 1

τm
(Vm − Vrest) +

1

Cm
I (1)

where Vm represents the membrane voltage, Cm is membrane
capacitance, Vrest is resting potential, and I is the input
current to the neuron. τm = R ∗ Cm is the time constant
during integration. Immediately after reaching a defined
voltage, Vth the fixed voltage threshold, the potential is reset
to Vreset as the reset potential. This process emits a spike.
Also if there no input, the membrane potential decays to the
resting voltage Vm = Vrest. Parameters are summarized in
Table I.

Input layer neurons are dummy LIF neurons which transfer
the input from presynaptic to postsynaptic spikes. Whenever
those neurons have any spikes, they are directly emitting spike
without integration. This is achieved by increasing Vm by
Vth − Vreset when a spike receives.

C. Spike Train

The activity of neuron i could be described by a sequence
of times at which the neuron has emitted a spike,

ti = {t(1)
i , t

(2)
i , t

(3)
i , ..., t

(L)
i } (2)

where all t
′

i > 0 and L is the number of spikes. This abstract
representation of a spike sequence is referred to as a spike
train. Those impulses could also be written by a sum of Dirac
delta functions,

Si(t) =

L∑
l=1

δ(t− t(l)i ) (3)

with spike times ti by using the Dirac-delta form as

δ(t) =

{
1, if t = 0,
0, otherwise. (4)

D. Plasticity rules

The standard rule for STDP is used which adjusts each
connection strength in response to the time difference between
the spikes of pre- and postsynaptic neurons. Integral kernels
as τpre and τpost defines the shape of the STDP process [1].
It is modelled by
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Fig. 3. Simplified pre- and postsynaptic connection. The graph could
visualize the used notation in the paper. Single synapse sij with its strength
wij between input neuron with ni and output neuron nj . i is the presynaptic
neuron index and j is the postsynaptic index.
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Fig. 4. Illustration of the STDP process over simulation time steps
dt. A) The presynaptic firing times as the top row at tfj , green, and the

postsynaptic spike train as the bottom row at tfi , blue. B) LTP in blue and
LTD in green subwindows for excitatory connections can bee seen with apre
and apost trajectories based on presynaptic and postsynaptic spikes from
(A). The synaptic change ∆W (Y-axis) determines the amount of the weight
modifications. C) First weight modification as sharp decrease because of the
postsynaptic spike generation shortly before the presynaptic spike. Second
change scenario is slight weight decrease because of longer time difference
between pre-post spiking times. Increasing weight changes is induced by the
presynaptic spike followed by the postsynaptic spike nearly at the end of the
presentation.

W (∆t) =

{
+Apree

−∆t/τpre , if ∆t ≥ 0,
−Aposte+∆t/τpost , if ∆t < 0.

(5)

where ∆t = tfpost − tfpre is the difference between the pre-
and postsynaptic neuron firing times. τpre and τpost > 0
are the decay constants of the STDP learning kernel for
LTP and LTD. Also Apre and Apost > 0 are the starting
amplitudes of decays once presynaptic and postsynaptic
events happened, respectively. For the current plasticity
modelling, all determined parameters has been summarized
in Table II.

Although, various shapes of STDP windows have been
proposed in recent literature [23], [24], [25], [26], we will
use one of the most common learning window for the STDP
process as illustrated in Fig 4.

E. Spike Encoding

For input neurons, a spike train Sin(t) consists of
a homogeneous Poisson spike train with constant spike
probability rin = 0.4Hz and minimum Inter-Spike Interval
ISI = 10ms is created as in Table II. Sin(t) is divided into
n spike trains as Sin1 (t), Sin2 (t), ..., Sinn (t) with each spike

train duration with Tp = 100ms. n indicates the number of
neuron in the input layer. Each extracted spike train Sin1 (t),
Sin2 (t), ..., Sink (t) from Sin(t) will feed each neuron in the
input layer over each episode.

For output neuron, a spike train Soutd (t) consists of a
homogeneous Poisson spike train with constant spike prob-
ability rout = 0.06Hz and minimum Inter-Spike Interval
ISI = 10ms is created as in Table II. The same extraction
for input layer doesn’t need to be applied to Soutd (t) because
the network contains a single training output neuron as its
readout. The only restriction for the output spike extraction is
that those have no spiking activity in the first 2 ∗ τm = 20ms
over Tp = 100ms have been selected for simulations.

F. Spike Train Distance

One of the important metrics in order to compute
dissimilarity between spike trains is the van Rossum Distance
(vRD) method which is a dimensionless distance [27].
It takes into account additional and missing spikes. The
distance measure maps the two spike trains as actual spike
trian with Sa and desired spike train with Sd onto a profile
Sa, Sd → R(t) with 0 ≤ R(t) ≤ 1. The overall spike distance
value can be calculated by integration as DR =

∫
R(t)dt.

In this spike distance, the discrete spike trains sa and sd as
in Eq 3 are transformed into continuous function

f(t) = e−t/τvRDH(t) (6)

where τvRD is the time decay constant and f(t) is the
convolution of each spike ti by an exponential kernel with
the Heaviside step function as H(t),

H(t) =

{
1, if t ≥ 0,
0, otherwise. (7)

over the discrete convolution as

(f ∗ S)(t) =
∑

s:0≤t−s<Tpe

f(s)S(t− s), 0 < t < Tpe (8)

where Tpe is the fixed time of single presentation. Then the
van Rossum distance DR between sa and sd can be calculated
as

DR(Sa, Sd) =
∑

0≤t<Tpe

(
(f ∗ Sa)(t)− (f ∗ Sd)(t)

)2

(9)

Parameter selection : The decay constant τvRD parametrizes
the metric and should be selected in order to be sensitive
to temporal difference between spikes. Otherwise it will
be sensitive to rate relationship of spike trains. Taking into
account the ISI of input and desired output trains, we use
τvRD = 10ms, in Table II.
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Fig. 5. Illustration of van Rossum Distance measure. A) Two example
spike train have been illustrated. Top one (shown as green coloured with
spike train index 2) is desired spike activity and the following train (shown
as blue coloured with spike train index 1) is the actual spikes over a period.
B) Definition of the van Rossum Distance : Above two spike trains (actual
train flipped) are convolved with Heaviside function with time constant tc.
C) The van Rossum difference has been measured by the squared of differed
spike trains. Then, the spike train distance is determined by the bounded area
under the curve by the integration.

In order to remove the dependence of the vRD on the
number of desired spikes, we used a normalized version of
the measure DR which has been calculated by

Dnorm
R = DR/D

d
R (10)

where normalized vRD, current vRD and vRD of desired spike
train, are respectively, Dnorm

R , DR and Dd
R. The measure is

illustrated in Figure 5.

G. Reward Mechanism

The normalized measure Dnorm
R between the actual and

desired spike trains for the output neuron as a function of time
t in the current presentation is mapped into a reward signal r
[14] as

r = exp(−αDnorm
R ) (11)

where Dnorm
R ∈ [0,∞] and r ∈ (0, 1]. Also, reward mapping

factor α is setted into 3 in order to ignore distances Dnorm
R > 1

as in Table II.

r =

 0, if no output spike,
1, if Dnorm

R = 0,
exp(−αDnorm

R ), otherwise.
(12)

r = 1 indicates a perfect match between actual and desired
spike train. We explicitly set r = 0 if there is not any output
spike generated in order to avoid network stagnation.

A Temporal-Difference (TD) technique tracks discounted
reward as it is defined in Reinforcement Learning [10]. How-
ever, an adapted version of TD rule will be applied in order
to track average reward as proposed in [14].

δR(n) = rcurrn − ravgn (13)

δR is the difference between the current reward received
rcurrn and the expected reward ravgn averaged over previous
trials is used to improve current policy on synaptic strengths.
Maximizing the average reward per presentation will maxi-
mize the total future reward in order to achieve an optimal
policy. The moving average of reward over presentations is
calculated as,

ravgn = γravgn−1(t) + (1− γ)rcurrn (14)

where n indicates the presentation number. Here, all future
rewards are discounted by discount factor, γ where 0 < γ < 1.
It is selected near to highest value to express sooner rewards
have higher utility than older rewards as γ = 9

10 and (1−γ) =
1
10 as in [14], [10]. This selection for γ also helps the learning
algorithm converge.

H. Learning Rule

The learning task is to map the timings of input and
target output spike patterns precisely. Main learning phenom-
ena relied on here is the framework of modulated STDP,
which modulates the outcome of STDP by a neuromodulator.
Dopamine (DA) is the neuromodulator often associated with a
reward signal. Synaptic eligibility traces based on theoretical
considerations store a temporary memory of the past Hebbian
coincidence events until a delayed reward is received. Inspired
from the essence of DA modulation of STDP in [16],

cij(t) = STDP (∆t)δ(t− tpre/post) (15)

where δ(t) is the Dirac delta function that step-increases the
eligibility cij . Firing times of pre- and postsynaptic neurons,
occurring at times tpre/post respectively, change cij by the
amount of STDP (∆t) with ∆t = tpost - tpre.

Moving average of eligibility is used by filtering with an
exponential function called synaptic eligibility trace Cij(Tpe)
of the synapse from neuron j to i is defined by

τc
dCij(t)

dt
= cij(t)− Cij(t) (16)

where τc decay time constant of the eligibility trace. τc
determines the maximal interval between the pre-post
coincidences and the reward signal. τc is the same as the
period of input pattern in our simulations.

The actual synaptic modification also requires the presence
of a neuromodulatory signal which was derived previously as
δR in Eq 13. Therefore, the multiplication of eligibility trace
with with reward defines the amplification formula of STDP
weights as

∆wij(n) = ηδR(n)Cij(Tpe) (17)

where ∆wij(n) is the weight change, α is the learning rate,
Cij(Tpe) is the eligibility trace over the nth presentation with
time t = Tpe. This learning paradigm was applied into all
synapses between input neurons and actual output neuron after
each presentation. The modification ∆wij has been applied to
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Fig. 6. Eligibility Trace and Weight Update during a Single Learning
Cycle. A) The presynaptic firing times as the top row at tfj with green coloured

and the postsynaptic spike train as the bottom row at tfi with blue coloured. B)
The eligibility trace cij with green coloured keeps past Hebbian events from
presynaptic and postsynaptic spikes in (A). At the end of the learning cycle
Tpe = 120ms, the current reward is receiving which is drawn in a yellow
colour. C) Weight change has been only applied once the reward recieved at
the end of the presentation.

a weight w according to an additive update rule as
wij(n+ 1)← wij(n) + ∆wij(n) [28]. Instead of feeding the
network by the reward at every time moment, we apply it only
at the end of each learning cycle as depicted in Fig 6.

In order to avoid either silencing or extreme network
activity by frequent firings of neurons, all synaptic weights are
bounded with a lower boundary wmin and an upper boundary
wmax.

I. Homeostatic firing rate and Scaling rules

Network must maintain its stable functionality in the face of
synaptic strength changes during training. This stabilization of
neuronal functions is handled by homeostatic plasticity mech-
anisms. One such mechanism is synaptic activity-dependent
scaling [29] which allows neurons to regulate their overall
firing rate without touching the stability of the trained weight
distribution. Simplified version of this synaptic scaling [30] is
applied into the current network as

dwij(t)

dt
= βwij(t)[Ndes −Nact] (18)

where wij indicated the synaptic weight from pre-synaptic
neuron i to post-synaptic neuron j as in Fig3, β is constant
determining the strength of the synaptic scaling. Post-synaptic
activity as generated spike number from the desired neuron
and actual neuron are Ndes, Nact, respectively.

Activity-dependent scaling of synaptic weights preserve sta-
bility of the network by preventing lower and over-activation
levels from all synapses during training runs.

J. Coincidence factor

The coincidence factor Γ as described by [31] between
two spike trains determines the rate of similarity/dissimilarity
between spike trains. The bound limits of this correlation
measure is [-1, 1] where 1 is exactly the same, 0 is not

TABLE II
MODEL PARAMETERS USED FOR THE COMPUTER SIMULATIONS

Parameter Type Parameter Names Values

Plasticity Window Apre, Apost 0.005, 0.005

τpre, τpost 10ms, 10ms

Scaling Factor β 0.001

Weight limits [wmin, wmax] [-3, +3]

[winitmin , winitmax ] [-0.02, 0.08]

Input-Output Firing Rate rin, rout 0.4Hz, 0.06Hz

Spike Train Length Tp 100ms

Presentation Time Tpe 120ms

Run Time Resolution dt 0.1ms

Input Layer Neuron Number n 20

Synaptic Terminal Number m 10

Eligibility Decay τc 10ms

vRD Decay τRD 10ms

Learning Rate η 500

Reward Mapping Factor α 3

Minimum Inter-Spike Interval ISI 10ms

correlated, and -1 is perfectly anti-correlated. It is formulated
as

Γ =
Ncoinc − E (Ncoinc)

1
2 (Ndes +Nact)− E (Ncoinc)

(19)

where Ndes are the number of spikes in the desired train as
a reference, Nact is the number of spikes in the actual output
as a comparing train, Ncoinc is the number of coincident
spikes within a time window ∆, E (Ncoinc) = 2rout∆Nref
is the expected number of coincident spikes generated by a
homogeneous Poisson process with its rate rout in Table II.

III. RESULTS

To simulate spiking neural networks in software, Brian
package [32] based on Python language has been used.
Brian simulation tool allows to define flexible models by
writing readable textual descriptions based on mathematical
expressions [33]. The Python code for all simulations
including neurons, synapses and network models based on
Brian architecture is also available on the authors web page
www.ozturkibrahim.com.

The magnitude and direction of synaptic update is
determined by the relative timing of pre- and postsynaptic
firings as STDP. However, one of the common problems for
Supervised Hebbian paradigms: Synaptic weights continue
to adjust their parameters although the desired spike timings
have been achieved by applying global modulator over the
reward signal. This issue has been eliminated and stable
solutions are experimentally demonstrated.

All simulations are carried out using a network of two-layer
with 20 input neurons, 1 bias input neuron, 1 desired output
neuron and 1 training output neuron. For each simulation,
both input data as a set of n = 20 different spike trains and
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Fig. 7. Reconstruction of the transformation from input patterns to
output spike timings. The current network is trained to map a spatio
temporally encoded input spike trains into another spatio temporally encoded
output pattern. tactout with blue colour converges to tdesout with green colour.

the desired spike pattern for output have been independently
prepared with the duration of each Tp = 100ms. Each run
has different random weight initialization. Each presentation
as learning cycle runs with Tpe = 120ms with simulation
time resolution dt = 0.1ms.

A desired output signal Soutd (t) and the convergence of
the actual output Souta (t) over training cycles are depicted in
Fig 7. In this simulation, the desired pattern has 3 spikes.
Early trials had less spiking activity or no activity in the
network output. Once the training continues the number of
generated spikes at the output of network becoming closer
to desired activity. After less than 30 episodes the network
produce 3 desired spikes within 3 ms of target. With this
configuration, it could be clearly seen that the network
reliably learned the given pattern within 25-35 cycles with
η = 500 as in Table II.

The learning trajectory for Reward Modulated STDP frame-
work is shown in Figure 7 over a single simulation. It demon-
strates that actual and desired spike trains eventually converge
to the desired spike train by decreasing the mismatch of firing
times between them. Furthermore, the stability preservation of
the network by keeping frequencies of neuronal activity in a
range could be seen over the entire simulation.

Convergence speed and error trajectory can be seen over 4
different simulations in Figure 8. Learning curves for various
simulations are very similar, four are demonstrated here. The
figure is clipped after 50 learning cycles because the con-
vergence behaviour and error measure does not change after
that. The depicted number of trial number as 50 is sufficiently
enough to learn input spike patterns in a stable manner. The
trend of averaged reward, applied during the learning, has
smoother convergence compared to current reward which is
not directly applied. The level of reward signal is converging
its maximum value of 0.85 during learning cycles. The dis-
tance between desired and actual activity are converging lower

Fig. 8. The trajectory of current and averaged reward versus vRD(van
Rossum Distance) during 4 randomly selected simulations. A)A snapshot
of averaged rewards with running average of current rewards. B) The evolution
of mismatch between the desired and the actual output signal, DR(Sa, Sd)
based on van Rossum Distance. For each simulation, the input/output firing
patterns are different.
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Fig. 9. Illustration of Coincidence Factor. Coincidence factor for four
different simulations have quite similar behaviour with windowing ∆ = 3ms.
See text for a detailed explanation of the figure.

values. Reward has inverse relation with van Rossum distance
as it is depicted in Figure 8.

To characterise learning performance, coincidence factor has
been used. The coincidence factor over 4 different simulations
is illustrated in Figure 9. For each presentation, desired spike
train is compared with generated actual spike pattern with the
value of windowing 3ms. This indicates that all individual
spikes generated within the [tfd , t

f
d +3]ms of the desired spike

times tfd are accepted as correctly fired at tfd . After 25 learning
cycles, Γ achieves its maximum value as 1 which shows
desired and trained activity perfectly correlated and entire
spike pattern with the 3 ms window is generated precisely.



IV. CONCLUSION AND FUTURE WORK

One of main aspects in this work is becoming closer to
biologically plausible approaches with reinforcement learning
techniques. We derived a learning framework for feed-forward
spiking neural networks by Reward modulated STDP. Reward
modulated STDP is used which relies on both Hebbian
plasticity modulated by reward and synaptic eligibility traces
as transient memory of past Hebbian events in each individual
synapses. The reward signal for each episode is derived from
the between the outputs of the actual neuron and desired
spiking times.

In this study, we proposed a two-layer SNN with multiple
delays between the neurons. Using delayed synapses requires
less spiking neurons and less set of input patterns than direct
connection without delays. Experiment results demonstrated
its learning capability and performance with high accuracy
for temporal sequences of spikes. Furthermore, it can been
seen that such reward modifications of the STDP do indeed
significantly speed up convergence compared with other
gradient descent techniques such as ReSuMe. The introduced
learning mechanism is able to learn to map input patterns into
output pattern with multiple timings in less than 50 learning
cycles which compares favourably with ReSuMe which needs
around 1000 training steps [7].

Future work will investigate learning of multiple pairs of
input-output spike patterns, which could be performed in
different learning tasks such as classification or real life task
of navigation problem. Those could give chances to mapping
from the patterns of neural activity to events and actions from
real tasks. Furthermore, a non-linear problem such as the XOR
problem with taking into account hidden units in multi-layered
feed-forward architecture, and navigation task in a maze will
be performed.
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