
Multiple Feature Construction in Classification on
High-Dimensional Data Using GP

Binh Tran, Mengjie Zhang and Bing Xue
School of Engineering and Computer Science

Victoria University of Wellington, PO Box 600, Wellington 6140, New Zealand
Email: Binh.Tran,Mengjie.Zhang,Bing.Xue@ecs.vuw.ac.nz

Abstract—Feature construction and feature selection are com-
mon pre-processing techniques to obtain smaller but better
discriminating feature sets than the original ones. These two
techniques are essential in high-dimensional data with thousands
or tens of thousands of features where there may exist many
irrelevant and redundant features. Genetic programming (GP)
is a powerful technique that has shown promising results in
feature construction and feature selection. However, constructing
multiple features for high-dimensional data is still challenging
due to its large search space. In this paper, we propose a GP-
based method that simultaneously performs multiple feature
construction and feature selection to automatically transform
high-dimensional datasets into much smaller ones. Experiment
results on six datasets show that the size of the generated
feature set is less than 4% of the original feature set size and it
significantly improves the performance of K-Nearest Neighbour,
Naive Bayes and Decision Tree algorithms on 15 out of 18 com-
parisons. Compared with the single feature construction method
using GP, the proposed method has better performance on half
cases and similar on the other half. Comparisons between the
constructed features, the selected features and the combination
of both constructed and selected features by the propose method
reveal different preferences of the three learning algorithms on
these feature sets.

I. INTRODUCTION

Quality of the input data is a key factor influencing the
performance of any machine learning method including classi-
fication [1]. Given a set of instances or examples described by
a set of features and the class labels, a classification algorithm
aims at learning a model that can correctly classify an unseen
instance [2]. According to the garbage in garbage out prin-
ciple, a good quality input data is a prerequisite for learning
algorithms to achieve this goal. Therefore, preprocessing data
is an important step in most machine learning applications
especially on high-dimensional data with thousands or more
features.

Feature selection (FS) and feature construction (FC) [3] are
popular methods to enhance the discriminating ability of the
feature set and at the same time keep the number of features
as small as possible. While FS selects relevant features from
the original feature set, FC selects informative features and
combines them to construct new high-level features with better
discriminating power. Therefore, FS can be considered a built
in process in a FC method.

FS and FC have been proposed as wrapper, filter or embed-
ded methods [4]. A FS or FC method is classified as wrapper
or filter depending on whether it uses a classification algorithm

to evaluate features or not. Wrappers usually achieve a high
classification performance at the expense of long computation
time. On the other hand, using the intrinsic characteristics of
the training data to evaluate features, filters are usually faster
than wrappers. However, the features selected or constructed
by filter methods usually achieve lower classification accu-
racy than those generated by wrappers. Therefore, a hybrid
approach that combines wrapper and filter is also proposed
in FS methods [5], [6]. Different from the above approaches,
embedded methods conduct FS or FC simultaneously within
the process of learning a classifier. They are typically faster
than wrappers.

Although FS and FC have been studied for decades, apply-
ing them to high-dimensional data is still challenging due to
its large search space. With n features, FS methods search for
good solutions from 2n possible subsets. On top of searching
for good features from this space, FC methods also need to
choose appropriate operators and a good way to apply these
operators on the selected features. Therefore, the search space
of FC is even larger than FS. Because of this complexity, FC
methods need a powerful search technique to construct better
high-level features.

Genetic programming (GP) is an evolutionary computation
technique that can automatically evolve solutions based on
the idea of the survival of the fittest. With a population-
based search and a flexible representation, GP can evolve any
mathematical model without any assumption such as linear or
non-linear. Therefore, GP has been used in feature construction
methods for biomarker identification [7], for image classifica-
tion [8], [9], etc. GP-based FC methods use either single-tree
representation [7] or multiple-tree representation [10].

A common practice of using constructed features (CFs) is
either forming a new feature set from the CFs [11] or adding
them to the original feature set [12]. While both approaches
are popularly used for datasets with tens of features, the latter
is not usually applied to high-dimensional data. However,
using only a small number of CFs may not be enough to
represent the original large feature set. Combining CFs with
some selected good features is expected to achieve better
performance.

Recently, we proposed an embedded method using single-
tree GP for both FS and FC in a single process [13]. For
presentation convenience, in this paper we call it GPFC. From
the best tree evolved by GPFC, we constructed one feature

from the entire tree (CF), multiple features from all possible
subtrees (subCFs) and selected all the features in the terminal
nodes. Six different combinations of the CF , subCFs and
the selected features were compared using four classification
algorithms on datasets with thousands to tens of thousands of
features. The results showed that among the six combinations
produced by GPFC, the combined set of the constructed fea-
ture and selected features achieve the highest performance on
most datasets. However, constructing only one CF may hinder
GPFC from achieving better results. In this study, we proposed
a multiple-feature construction method based on GP using
multiple-tree representation called MultGPFC. Furthermore,
using the embedded approach, GPFC may construct features
that are too overfitting to the training data since the constructed
feature is evaluated based on its performance as a classifier on
the whole training data. This problem is even worse when the
number of examples or instances given for training is small.
Therefore, in MultGPFC, we propose to use both wrapper and
filter measures to better evaluate the discriminating ability of
the constructed features.

A. Goals

The main goal of this paper is to combine filter and
wrapper measures in a multiple-tree GP-based method for
feature construction and selection in classification. The created
subsets include a set of CFs, a set of selected features and a
combination of both constructed and selected features. The
solutions evolved by the proposed method is expected to
improve the classification performance of common learning
algorithms including k-nearest neighbour (KNN), Naive Bayes
(NB) and Decision Tree (DT) on high-dimensional classifica-
tion problems. The proposed method (MultGPFC) will also
be examined and compared with GPFC [13]. Specifically, we
will investigate the following research objectives:
• Whether the constructed features by MultGPFC have

higher discriminating power than the original feature set
and the one constructed by GPFC.

• Whether the selected features by MultGPFC have a better
classification performance than the original feature set
and those selected by GPFC.

• Whether the combination of the MultGPFC constructed
and selected features performs better than the original
feature set and the one produced by GPFC.

• Whether the constructed, selected and the combination of
both feature sets have the same effect on the performance
of different classification algorithms.

II. BACKGROUND AND RELATED WORK

A. Genetic Programming

As a population based algorithm, GP [14] maintains a
pool of candidate solutions or individuals which are evaluated
based on a predefined fitness function. Fittest solutions will be
selected to create offspring solutions by applying genetic oper-
ators such as crossover or mutation. The process of evaluation-
selection-evolution will be continued until a stopping criterion
is met. It can be whether a predefined maximum number of

generations is reached or if the optimal solution is found.
When this criterion is met, GP will return the fittest individual
found so far as the best solution.

When using GP for feature construction, a constructed
feature is usually presented in a tree structure with various
sizes or depths. The internal nodes of the tree are operators or
functions with a different number of arguments. Leaf nodes
or terminal nodes can be constant values or variables/features.
A GP individual may contain a single or multiple trees to
construct one or multiple features forming single-tree GP
or multiple-tree GP methods, respectively. Since a GP tree
does not take all variables/features to construct a new feature,
there is an implicit selection process for relevant features in
the construction process. A GP tree can also be seen as a
program that applies functions on terminal values, and it can
be executed to produce an output value. With this ability, a
GP tree can be used as a classifier which returns a category
or a class label for a given example or instance. Therefore,
using GP for classification actually involves feature selection,
feature construction and classification.

B. Genetic Programming for FC and FS

Although GP has been used to evolve classifiers in many
different domains [15], we situate our work most closely with
the prior work relating to GP approach to FC and/or FS.
Broader and more comprehensive review can be seen in [15],
[16].

GP has been proposed to construct multiple high-level
features with different strategies. In [17], each GP individual
comprises of predefined numbers of new features and hidden
features. Hidden features are kept out of the evolutionary
process to avoid loosing good constructed features. They were
updated from features that had highest usage frequency in
the decision tree learned in the fitness function. The results
showed that constructed features improved the classification
performance of DT on five out of six datasets. Cooperative
coevolution GP is also proposed to construct m new features
in [18] using m populations. Another approach is to run a
single-tree GP FC method multiple times [19] to construct
multiple features, each for one class. The constructed feature
is evaluated based on the impurity (using Shannon entropy)
of the intervals which are formed by applying class dispersion
to the transformed datasets. The method was extended in [20]
by adding class-wise orthogonal transformed features to GP
terminal sets. Results of these methods showed that GP is
a promising approach in feature construction. However, the
datasets used in these studies are quite small with about tens
of features.

For high-dimensional data, Ahmed et al. [7] proposed
two GP-based wrapper FC methods, namely GPWFC1 and
GPWFC2. Multiple features are constructed from the best GP
tree. While GPWFC1 uses classification accuracy of random
forest (RF) classifier as the fitness value, GPWFC2 uses
entropy gain of RF and the p-value of an ANOVA test on
the selected features. Results showed that GPWFC2 achieves
better generalisation ability with a smaller number of features

than GPWFC1. However, the computational cost is quite high
when using RF for fitness evaluation.

Based on the implicit FS happened during the feature
construction process in GP, Neshatian et al. [21] proposed a
GP-based filter feature selection method. A binary relevance
measure was proposed to evaluate the relationship between
the constructed feature value and the class label. Features in a
GP tree that has its fitness better than a predefined threshold
will be used to form a new subset. For each subset size, the
best subset was archived over 50 independent runs. Then, a
wrapper approach was used to select the best subset from
these. Results on three datasets with tens of features showed
that using the selected features improved the performance of
common learning algorithms. However, the proposed method
required a long running time. A GP-based embedded approach
was also proposed for FS in [22]. GP was used to select
features from a combination set of 50 top ranked features se-
lected by Information Gain and ReliefF methods. Experiments
on high-dimensional data showed it achieves better results
than the based line methods. However, domain knowledge or
substantial trials are needed to choose a good number of top
ranked features. GP was also proposed as a FS method before
evolving classifiers in [23], [24].

Instead of conducting either FC or FS, Smith et al. proposed
a method for FC and FS in two separate stages [25]. First,
GP is used to construct as many new features as the original
feature set. Then, GA is used to select features from the
augmented feature set which is a combination of the original
and the constructed features. Experiments on datasets with tens
of features showed that the proposed method improved the
performance of DT, KNN and NB. However, on top of the
high computational cost, the GP representation of this method
is not suitable for problems with thousands of features. In
a previous study [13], we proposed a GP-based embedded
approach for both FS and FC in a single stage. Multiple
features are constructed and selected from the best GP tree.
Different combinations of feature sets are investigated. Results
on high-dimensional data showed that the combination of
the constructed feature and selected features gives the best
performance among the compared combinations.

In summary, with a very flexible representation and a global
search technique, GP has shown its high potential in FC and
FS. However, most GP-based FC methods are applied to small
datasets with tens of features. They may not scale well to
high-dimensional data due to high computational cost or large
memory demanding. Some other methods applied to high-
dimensional data are single FC. In this study, we will propose
one method that performs multiple FC.

III. THE PROPOSED METHOD

The aim of this study is to propose a multiple feature
construction and feature selection method that can form a
much smaller number of features than the original set with
thousands to tens of thousands of features. To achieve this
goal, GP with multiple-tree representation is used to construct
a number of new features which is proportional to the number

of classes of the problem we hypothesise that the more classes
the problem has, the more complex the solution space might
be. This section will describe the proposed representation, the
hybrid evaluation measure used to evaluate the constructed
feature set, and the overall structure of the system.

Max

+ *

F7 F2 F2F4

+

- *

F1 F4 F8F5

CF1 CF2 -

+ Max

F4 F2 F7F8

CF3

Fig. 1: MultGPFC Representation.

A. Representation

To construct m features, each individual in MultGPFC
method has m trees. Fig. 1 shows an example of an individual
which constructs three features:
• CF1 = (F1 − F4) + (F5 ∗ F8)
• CF2 =Max((F7 + F2), (F4 ∗ F2))
• CF3 = (F4 + F2)−Max(F8, F7)

Based on these evolved features, we construct three new
feature sets including the constructed and/or selected features.
For example, the three new feature sets generated from the
individual shown in Fig. 1 will be:
• The constructed feature set: CF1, CF2, and CF3.
• The selected feature set: F1, F2, F4, F5, F7, and F8.
• The constructed and selected feature set:
CF1, CF2, CF3, F1, F2, F4, F5, F7, and F8.

B. A New Fitness Function

Selecting relevant features from thousands of features to
build higher level features is not a trivial task especially when
the number of training examples is much smaller than the
dimensionality. Designing an objective or fitness function to
guide the search in this scenario is very challenging. While
a wrapper measure based on a learning algorithm can be a
good indicator for searching good feature sets, the resulted
feature set may not be general for other learning algorithms.
On the other hand, a filter measure is based on the intrinsic
characteristics of the data, its solutions may be effective for
many learning algorithms, however, with the price of lower
classification accuracy than wrapper approach. Therefore, we
propose a hybrid approach that combines both wrapper and
filter to synthesize their strengths. Decision Tree is used
to evaluate the classification performance of the constructed
feature set as it is a fast and efficient learning algorithm.
For filter approach, distance measure is chosen because it
is simple and multi-variate which means it can evaluate the
discriminating ability of a set of features at a time.

To evaluate an individual, its constructed features are used
to transform the training set into a new dataset with m
features. The discriminating ability of the transformed training
set will be used to determine the fitness of the individual.
Equation (1) describes the fitness function which combines

the classification performance and a distance measure using a
weighting coefficient α.

Fitness = α ·Accuracy + (1− α) ·Distance (1)

where Accuracy is the average accuracy of a learning al-
gorithm over K-fold (K=3) cross validation (CV) on the
transformed training set. To avoid overfitting, this K-fold CV
is repeated L times (L=3) with different data splitting similar
to [17]. Totally, K x L models was built to evaluate the set
of new constructed features. Because many high-dimensional
datasets are unbalanced, we use the balanced accuracy [26] as
shown in Equation (2) in which c is the number of classes,
TPi and Si are the number of correctly identified instances
and the number of total instances of class i.

balanced accuracy =
1

c

c∑
i=1

TPi
|Si|

(2)

The Distance measure [8] is calculated based on Equation
(3) which evaluates the discriminating power of the trans-
formed training set. It is used to maximise the distance of
instances between class (Db) and minimise the distance of
instances within the same class (Dw). Db is appropriated
by the average distance between an instance and its nearest
miss which is the nearest instance of other classes. Dw is
appropriated by the average distance between an instance and
its farthest hit which is of the same class. Let S be the training
set, Db and Dw are calculated based on Equations (4) and (5).

distance =
1

1 + e−5(Db−Dw)
(3)

Db =
1

|S|

|S|∑
i=1

min
{j|j 6=i,class(Vi)6=class(Vj)}

Dis(Vi, Vj) (4)

Dw =
1

|S|

|S|∑
i=1

max
{j|j 6=i,class(Vi)=class(Vj)}

Dis(Vi, Vj) (5)

where Dis(Vi, Vj) can be any measure used to approximate
the distance between two vectors Vi and Vj . In this method, we
use Czekanowski distance [27] to evaluate the dissimilarity of
two vectors because it is calculated based on the shared portion
between two vectors as shown in Equation (6). Therefore, its
value is bounded in the interval [0,1]. As a result, Db and Dw

values also fall in [0,1] interval and their difference (Db −
Dw) will fall in [-1,1]. To use this difference as the second
component in the fitness function, we use a logistic function
with coefficient −5 as shown in the right plot of Fig. 2 to
transform the difference into a value of [0,1] interval. It is
notice that the Czekanowski distance can only be used with
non-negative values. Therefore, the constructed features are
normalised before applying the formula.

Czekanowski(Vi, Vj) = 1−
2

n∑
d=1

min(Vid, Vjd)

n∑
d=1

(Vid + Vjd)

(6)

−5 −3 −1 1 3 5

0.2

0.4

0.6

0.8

x

1
1+e−x

−5 −3 −1 1 3 5

0.2

0.4

0.6

0.8

1

x

1
1+e−5x

Fig. 2: Logistic function f(x) = 1
1+e−x , f(x) = 1

1+e−5x

C. The Overall Algorithm

Algorithm 1: The pseudo code of MultGPFC
input : Training set, CF Ratio
output: The best constructed and selected features

1 begin
2 m← CF Ratio×Nbr Classes ;
3 Randomly initialise individuals, each has m trees;
4 while Maximum generations is not reach do
5 for i = 1 to Population Size do
6 transf train← Transform training set based on the

constructed features in individual i;
7 Apply learning algorithm on transf train to get

average accuracy;
8 Calculate distance on the normalised transf train data

using Eq. (3);
9 Calculate fitness of individual i using Eq. (1);

10 end
11 Select parent individuals using tournament;
12 Create offspring individuals by applying crossover or mutation

on the selected parents;
13 Place new individuals into the population of the next

generation;
14 end
15 Return the constructed and selected features in the best individual;
16 end

The overall algorithm as shown in Algorithm 1 returns a
set of constructed features and selected features for a given
training set and a constructed feature ratio. GP starts by ran-
domly initialising individuals having m trees using the defined
function set and terminal set. Each individual corresponds to a
new candidate solution which is m constructed features. These
features are used to transform the training set where accuracy
and distance will determine the fitness of the corresponding
individual (lines 6 to 9). After evaluation, a normal selection
and evolutionary process is conducted. This is repeated until
the maximum number of generations is reach. Then the set of
constructed and selected features in the best individual will be
returned as the final solution.

IV. EXPERIMENT DESIGN

This section describes the datasets used to test the perfor-
mance of MultGPFC as well as the parameter settings used in
the experiments.

A. Datasets

In the experiments, six high-dimensional datasets
with thousands to tens of thousands of features are
used. These datasets are gene expression data and
publicly available at http://www.gems-system.org, and

TABLE I: Datasets

Dataset #Features #Ins. #Class Class-
Distribution

Colon 2,000 62 2 35% - 65%
DLBCL 5,469 77 2 25% - 75%
Leukemia 7,129 72 2 35% - 65%
CNS 7,129 60 2 35% - 65%
Prostate 10,509 102 2 50% - 50%
Ovarian 15,154 253 2 36% - 64%

http://csse.szu.edu.cn/staff/zhuzx/Datasets.html. Details about
these datasets are shown in Table I. It can be seen that
these datasets have a small number of instances compared
to their number of features. The last column shows the class
distribution of the data which is the percentage of instances
in each class. The big difference between these percentages
shows that these datasets are unbalanced data.

Since gene expression data are generated in laboratory with
substantial noise, discretisation is applied to reduce noise as
suggestion in [28]. Each feature is first standardised to have
zero mean and unit variance. Then its values are discretised
into -1, 0 and 1 representing three states which are the under-
expression, the baseline and the over-expression of gene. Val-
ues that fall in the interval [µ−σ/2, µ+σ/2] are transformed
to state 0. Values that are in the left or in the right of this
interval will be transformed to state −1 or 1, respectively.

B. Experiment Configuration and Parameter Settings

To test the effectiveness of MultGPFC, we compared the
classification accuracy of the constructed and/or selected fea-
tures with those produced by GPFC as well as the original
feature set. Since the number of instances in each dataset is
small, all comparisons are made upon the average test accuracy
of 10-fold CV [29] in which one fold is kept as the test set
and the rest is used for training. During the FC process, 3-fold
CV within the training set is used to evaluate the constructed
features (see Section III-B). As GP is a stochastic algorithm,
30 independent GP runs with 30 different random seeds were
conducted for each dataset to eliminate statistical variations.

TABLE II: GP Settings

Function set +, −, ×, max, if
Terminal set Features values
Population Size #feature x β
Generations 50
Initial Population Ramped Half-and Half
Maximum Tree Depth 8
Selection Method Tournament Method
Tournament Size 7
Crossover Rate 0.8
Mutation Rate 0.2
Elitism Size 1
CF Ratio 2
Fitness weighting µ 0.8

Table II describes the parameter settings of GP. Basically,
MultGPFC uses the same settings as GPFC except that Mult-
GPFC has a smaller function set, terminal set and maximum
tree depth. The main purpose of these changes is to reduce the
complexity of the search space. In MultGPFC, the function set
comprises of 3 arithmetic operators (+, −, ×), max function
which returns the maximum values from the two inputs and
if function which returns the second argument if the first

argument is positive and returns the third argument otherwise.
No constant values are used in terminal set for simplicity.
The tree maximum depth is set to 8. The remaining parameter
settings are the same as in [13]. The population size is set
proportional to the dimensionality of the problem using a
coefficient β which is set 3 for Colon dataset and to 2 for
others due to memory limitation.

V. RESULTS AND ANALYSIS

Results shown in this section are the average test results
of the 30 independent GP runs on each dataset. To maintain
a consistent presentation, all the result tables have the same
format. Column “#F” shows the average size of each feature
set. The following columns display the best (B), average
accuracy and standard deviation (A±Std) obtained by KNN,
NB and DT using the full feature set (Full), the feature set
produced by GPFC and MultGPFC. The Wilcoxon significant
test results (with significant level of 0.05) of the corresponding
method over MultGPFC are also displayed in the average
accuracy column. “+” or “-” means the result is significantly
better or worse than MultGPFC and “=” means their results are
similar. In other worse, the more “–”, the better the proposed
method.

The name of each dataset is displayed along with the
number of instances (in the parenthesis) and the running time
(in minutes) used to complete one GP run on a training set for
feature construction. It can be seen from Table III that although
the proposed method uses a hybrid approach of wrapper and
filter, the running time on these problems is reasonable small,
ranging from 2 minutes for the smallest dataset to 44 minutes
for the largest. One of the main reasons is that the transformed
dataset is small with a small number of constructed features
and a small number of instances. Furthermore, a simple
learning algorithm and a distance measure are used in the
evaluation method.

In the remaining of this section, we will examine the
performance of MultGPFC by comparing it with Full and with
GPFC based on the three resulted feature sets: the constructed
features, the selected features, and the combination of both
constructed and selected features. Then we compare the effect
of the three feature sets produced by MultGPFC on the three
learning algorithms.

A. The Constructed Features

Table III shows the results of the MultGPFC constructed
features versus Full and those constructed by GPFC. It can be
seen that the number of features constructed by MultGPFC
is obviously negligible compared with the original number
of features. However, when using the constructed features,
KNN obtains a significantly better accuracy with 2% to 8%
higher than using Full on four datasets. Its performance on
the other two datasets, namely Colon and CNS, are similar on
average. However, the best accuracy obtained by KNN on the
transformed Colon and CNS datasets are still 9% and 15%
higher than the Full, respectively.

TABLE III: Results of constructed features

Dataset Subset #F B-KNN A±Std-KNN B-NB A±Std-NB B-DT A±Std-DT
Colon (62)
2.3(min.)

Full 2000 74.28 74.28 ±0.00 = 72.62 72.62 ±0.00 = 74.29 74.29 ±0.00 +
GPFC 1 79.28 71.40 ±4.46 = 78.81 69.64 ±4.17 = 79.28 72.25 ±4.07 =
MultGPFC 4 85.47 72.48 ±5.95 85.48 71.10 ±6.32 85.48 71.42 ±5.82

DLBCL (77)
3.7(min.)

Full 5469 84.46 84.46 ±0.00 – 81.96 81.96 ±0.00 – 80.89 80.89 ±0.00 –
GPFC 1 96.07 86.65 ±3.76 – 92.32 86.27 ±4.28 – 94.64 86.51 ±4.08 =
MultGPFC 4 97.32 89.50 ±3.23 97.32 89.01 ±3.55 94.82 87.47 ±4.34

Leukemia (72)
4.5(min.)

Full 7129 88.57 88.57 ±0.00 – 91.96 91.96 ±0.00 = 91.61 91.61 ±0.00 =
GPFC 1 94.46 89.03 ±2.71 – 93.21 87.26 ±4.44 – 95.89 88.97 ±2.96 –
MultGPFC 4 95.89 92.71 ±1.89 95.89 92.45 ±1.88 95.89 90.99 ±2.76

CNS (60)
6(min.)

Full 7129 56.67 56.67 ±0.00 = 58.33 58.33 ±0.00 = 50.00 50.00 ±0.00 –
GPFC 1 70.00 57.56 ±5.87 = 70.00 58.44 ±5.94 = 70.00 57.78 ±6.05 =
MultGPFC 4 71.67 58.00 ±8.27 71.67 58.67 ±7.88 78.33 58.00 ±8.93

Prostate (102)
13(min.)

Full 10509 81.55 81.55 ±0.00 – 60.55 60.55 ±0.00 – 86.18 86.18 ±0.00 =
GPFC 1 90.18 83.72 ±3.18 – 90.18 83.18 ±3.68 – 90.18 83.82 ±2.85 –
MultGPFC 4 92.18 86.44 ±3.08 92.18 85.89 ±2.73 91.27 85.29 ±3.04

Ovarian (253)
44(min.)

Full 15154 91.28 91.28 ±0.00 – 90.05 90.05 ±0.00 – 98.41 98.41 ±0.00 –
GPFC 1 99.62 97.86 ±1.22 – 99.62 97.22 ±1.48 – 99.62 97.89 ±1.18 –
MultGPFC 4 100.00 99.23 ±0.40 100.00 99.23 ±0.52 99.60 98.82 ±0.50

Similarly, NB and DT improve their performance when
using the MultGPFC constructed features on three datasets.
The largest improvement that NB achieves is on Prostate
dataset with 25% on average and 32% in the best case. DT also
has an impressive increase on CNS with 8% on average and
28% in the best solution. Both learning algorithms have similar
results in the remaining datasets except for a degradation of
DT on Colon with 2.9% drop. However, the best accuracy of
DT on this dataset is still 11% higher than the Full.

When compared with the GPFC constructed feature, the
MultGPFC constructed features help KNN and NB obtain a
significantly better results on four datasets, and DT on three
datasets. Similar results appear on the remaining datasets. The
construct features by MultGPFC obtain a similar performance
as GPFC on these datasets, but its best accuracy always higher
than the best accuracy obtained by GPFC. For example, the
best accuracy of DT on Colon and CNS increase 6% and 8%,
respectively.

In summary, over the 36 pairs of comparisons of MultGPFC
against Full and GPFC using three learning algorithms on six
datasets, the constructed feature set by MultGPFC wins 18,
draw 17 and lose 1. It obtains the best accuracy for NB on all
datasets, KNN on five and DT on three. The results indicate
that combining wrapper and filter measure in evaluation enable
GP to construct a significant small number of new features
with better discriminating ability than the original feature set
and the one constructed by GPFC which uses an embedded
approach.

B. The Selected Features

It can be seen from Table IV that the number of selected
features by MultGPFC is about 3.5% of the original features
in Colon, 1.2% in CNS and less than 1% in the other datasets.
Using this aggressive smaller number of features, NB improves
its performance on all datasets with the largest increase of
21% on Prostate dataset. KNN and DT achieve significantly
better results on four out of the six datasets with up to 8%
improvement.

Compared with GPFC, MultGPFC selects more features
as expected because its individual includes more constructed

features than GPFC’s. However, using the larger subsets se-
lected by MultGPFC, KNN and DT have significantly better
results than using the features selected by GPFC on half of the
datasets and maintain the same performance on the others. The
average accuracy obtained by MultGPFC selected features is
the best on five out of the six datasets with an improvement
up to 3% and 6% by KNN and DT, respectively. NB also
maintains or improves its performance over those obtained by
GPFC on all datasets except the Prostate dataset.

In general, the MultGPFC selected features win 22, draw 13,
and lose 1 out of 36 comparisons, reaching the best accuracy
on at least four datasets.

C. Combining Constructed and Selected Features

Table V shows the average results obtained by using the
combination of the constructed and selected features. The
significant test results show that using this combination, KNN
and NB achieves significantly better results than using full on
all datasets. The highest improvement of these two learning
algorithms are 8% on Ovarian and 27% on Prostate datasets,
respectively. Compared with this combination produced by
GPFC, KNN obtains up to 4% higher accuracy on four datasets
and NB also has significantly better results on two datasets
namely Leukemia and Ovarian. MultGPFC maintains a similar
accuracy as GPFC on the remaining datasets.

In contrast to KNN and NB, DT does not gain much from
this combination. It can be seen in Table V that the results of
DT using the combination set is almost the same as its results
when using only the constructed features. This means that the
constructed features have the highest information gain among
all features in this combination set; therefore, DT always use
them to build classifiers, resulting in the observed results.

In summary, the combination set of the constructed and
selected features by MultGPFC help the three learning algo-
rithms achieve even higher improvement resulting in 24 wins
and 11 draws and 1 lose in totally 36 comparisons.

D. Comparison Between Different MultGPFC Feature Sets

To see which subset among the created feature subsets is the
best subset for each learning algorithm, we plot the difference

TABLE IV: Results of selected features

Dataset Subset #F B-KNN A±Std-KNN B-NB A±Std-NB B-DT A±Std-DT
Colon (62)
2.3(min.)

Full 2000 74.28 74.28 ±0.00 = 72.62 72.62 ±0.00 – 74.29 74.29 ±0.00 =
GPFC 22 85.47 76.40 ±4.82 = 85.48 75.81 ±3.95 = 80.95 73.32 ±4.18 =
MultGPFC 69 84.28 75.44 ±5.29 79.05 74.64 ±3.43 82.86 74.57 ±4.18

DLBCL (77)
3.7(min.)

Full 5469 84.46 84.46 ±0.00 – 81.96 81.96 ±0.00 – 80.89 80.89 ±0.00 –
GPFC 15 95.00 86.36 ±4.13 – 96.25 88.49 ±3.49 = 98.75 85.04 ±5.45 =
MultGPFC 29 98.57 88.77 ±4.38 93.57 88.95 ±2.53 93.57 87.33 ±3.10

Leukemia (72)
4.5(min.)

Full 7129 88.57 88.57 ±0.00 – 91.96 91.96 ±0.00 – 91.61 91.61 ±0.00 –
GPFC 12 95.89 89.39 ±3.53 – 96.07 92.24 ±2.69 – 98.75 89.85 ±4.32 –
MultGPFC 17 98.75 92.54 ±2.68 97.50 94.65 ±1.56 97.32 95.37 ±1.31

CNS (60)
6(min.)

Full 7129 56.67 56.67 ±0.00 = 58.33 58.33 ±0.00 – 50.00 50.00 ±0.00 –
GPFC 30 70.00 57.56 ±6.09 = 70.00 59.89 ±3.86 = 73.33 57.78 ±5.63 =
MultGPFC 85 73.33 58.39 ±5.40 65.00 60.56 ±2.78 70.00 56.22 ±5.69

Prostate (102)
13(min.)

Full 10509 81.55 81.55 ±0.00 – 60.55 60.55 ±0.00 – 86.18 86.18 ±0.00 =
GPFC 22 90.36 83.05 ±3.77 = 90.27 87.04 ±2.06 + 90.18 82.32 ±3.39 –
MultGPFC 53 89.18 83.69 ±3.03 86.36 81.88 ±2.87 92.18 86.38 ±2.88

Ovarian (253)
44(min.)

Full 15154 91.28 91.28 ±0.00 – 90.05 90.05 ±0.00 – 98.41 98.41 ±0.00 –
GPFC 9 100.00 98.15 ±0.96 – 98.82 97.75 ±0.68 – 100.00 97.87 ±1.08 –
MultGPFC 10 100.00 99.70 ±0.39 99.62 98.69 ±0.52 100.00 99.56 ±0.41

TABLE V: Results of constructed and selected features

Dataset Subset #F B-KNN A±Std-KNN B-NB A±Std-NB B-DT A±Std-DT
Colon (62)
2.3(min.)

Full 2000 74.28 74.28 ±0.00 – 72.62 72.62 ±0.00 – 74.29 74.29 ±0.00 +
GPFC 23 87.38 76.90 ±5.21 = 87.14 75.96 ±4.03 = 79.28 72.25 ±4.07 =
MultGPFC 73 84.28 75.91 ±4.80 80.71 75.38 ±2.97 85.48 71.15 ±5.89

DLBCL (77)
3.7(min.)

Full 5469 84.46 84.46 ±0.00 – 81.96 81.96 ±0.00 – 80.89 80.89 ±0.00 –
GPFC 16 95.00 86.80 ±4.83 – 96.07 89.36 ±4.00 = 94.64 86.51 ±4.08 =
MultGPFC 33 97.32 90.47 ±4.33 97.32 89.81 ±3.42 94.82 87.47 ±4.34

Leukemia (72)
4.5(min.)

Full 7129 88.57 88.57 ±0.00 – 91.96 91.96 ±0.00 – 91.61 91.61 ±0.00 =
GPFC 13 97.32 90.28 ±3.58 – 97.32 91.46 ±2.91 – 95.89 88.97 ±2.96 –
MultGPFC 21 95.89 93.33 ±1.66 96.07 93.38 ±1.56 95.89 90.99 ±2.76

CNS (60)
6(min.)

Full 7129 56.67 56.67 ±0.00 – 58.33 58.33 ±0.00 – 50.00 50.00 ±0.00 –
GPFC 31 73.33 57.33 ±6.25 = 70.00 60.22 ±4.85 = 70.00 57.78 ±6.05 =
MultGPFC 89 71.67 59.61 ±6.68 73.33 61.33 ±5.31 76.67 57.94 ±8.66

Prostate (102)
13(min.)

Full 10509 81.55 81.55 ±0.00 – 60.55 60.55 ±0.00 – 86.18 86.18 ±0.00 =
GPFC 23 90.36 84.09 ±3.71 – 90.36 87.07 ±2.52 = 90.18 83.82 ±2.85 –
MultGPFC 57 91.27 86.35 ±2.90 92.18 87.22 ±2.79 91.27 85.36 ±3.04

Ovarian (253)
44(min.)

Full 15154 91.28 91.28 ±0.00 – 90.05 90.05 ±0.00 – 98.41 98.41 ±0.00 –
GPFC 10 100.00 98.42 ±0.99 – 99.62 98.20 ±0.89 – 99.62 97.89 ±1.18 –
MultGPFC 14 100.00 99.55 ±0.36 100.00 99.36 ±0.46 99.60 98.82 ±0.50

Fig. 3: Comparison between the constructed features (S1), selected features (S2), and the combination of both (S3).

in test accuracy between pairs of feature sets over all datasets.
Fig. 3 shows the box plots of these differences using KNN,
NB, and DT respectively. In this figure, S1 is used to represent
the constructed feature set, S2 for the selected features, and
S3 for the combination of both. Each sub-figure has three
box plots in which “S2-S1” shows the subtraction result of
S1 from S2. If this value is positive, the selected features
would perform better than the constructed features and vice
versa. Similarly, “S3-S1” and “S3-S2” reveal how good the
combination set over the constructed and the selected features,
respectively.

The different patterns shown in Fig. 3 reflect that the
created feature sets have different effect on different learning

algorithms. For KNN, the combination of constructed and
selected features achieves better results than using either of
them. For NB, although the effect of this combination set is
not as high as in KNN, it still obtains slightly better results
than either the constructed features or the selected features. On
the other hand, using the selected features, DT obtains slightly
better results than using the other two feature sets. To explain
this phenomenon, we compared the training and test accuracies
of DT. The comparisons (not shown here due to the page limit)
reveal an overfitting problem since S3 performs better than S2
on training data. This indicates that the constructed features are
too overfit to the training data. Therefore, the selected features
used to construct these new features can be more general than

the constructed features.
It is noticed that the difference between S3 and S1 are

positive in KNN and NB. This means that when combined
with the constructed features, the selected features have some
contribution to the improvement of KNN and NB. In contrast,
this difference in DT is almost zero indicating that the selected
features in S3 are hardly used in the learned classifiers, which
is shown in the results. This phenomenon also shows that the
information gain of the constructed features is higher than all
the selected features.

VI. CONCLUSIONS

The goal of this study was to propose a feature construction
and selection method that can produce much smaller feature
sets to improve the performance of common learning algo-
rithms on high-dimensional data. The goal was successfully
achieved by proposing a new multiple feature construction
method called MultGPFC that constructs a few high-level
features which are evaluated by a hybrid method of wrapper
and filter approach. MultGPFC is designed so that it can be
applied to high-dimensional data within a reasonable time.

Experiment results on six high-dimensional datasets show
that by combining the strengths of wrapper and filter ap-
proaches, MultGPFC can construct a few features that can
significantly improve the performance of the three learning
algorithms on the original feature sets. Compared with GPFC,
the MultGPFC produced feature sets either obtain significantly
better or similar results almost all datasets. Comparisons
between different feature sets produced by MultGPFC show
that using the combination of the selected and constructed
features, KNN and NB obtain slightly better results than using
either of them. On the other hand, the selected features are
more effective for DT than the other two feature sets.

In this study, the combination of wrapper and filter measure
is static, predefined and applied to all datasets. A dynamic
combination of wrapper and filter approach that can be au-
tomatically tuned during the evolutionary process may boost
the performance of the algorithm to a better result. Further-
more, testing the performance of MultGPFC on multiple-class
problems is also included in our future work. Finally, applying
local search to balance the exploration and exploitation in the
evolutionary search is also a promising approach.

REFERENCES

[1] P. N. S. J. Russell, “Artificial intelligence: A modern approach (second
edition),” Pearson Education, 2003.

[2] L. Breiman, J. Friedman, R. Olshen, and C. Stone, Classification and
Regression Trees. Wadsworth and Brooks, 1984.

[3] H. Liu and H. Motoda, Feature Extraction, Construction and Selection:
A Data Mining Perspective. Norwell, MA, USA: Kluwer Academic
Publishers, 1998.

[4] G. Chandrashekar and F. Sahin, “A survey on feature selection methods,”
Computers & Electrical Engineering, vol. 40, pp. 16–28, 2014.

[5] H.-H. Hsu, C.-W. Hsieh, and M.-D. Lu, “Hybrid feature selection by
combining filters and wrappers,” Expert Systems with Applications,
vol. 38, no. 7, pp. 8144–8150, 2011.

[6] P. Saengsiri, P. Meesad, S. N. Wichian, and U. Herwig, “Comparison of
hybrid feature selection models on gene expression data,” in Conference
on ICT and Knowledge Engineering. IEEE, 2010, pp. 13–18.

[7] S. Ahmed, M. Zhang, and L. Peng, “A new gp-based wrapper feature
construction approach to classification and biomarker identification,” in
IEEE Congress on Evolutionary Computation, 2014, pp. 2756–2763.

[8] H. Al-Sahaf, A. Al-Sahaf, B. Xue, M. Johnston, and M. Zhang,
“Automatically evolving rotation-invariant texture image descriptors by
genetic programming,” IEEE Transactions on Evolutionary Computa-
tion, vol. PP, no. 99, pp. 1–1, 2016.

[9] L. Shao, L. Liu, and X. Li, “Feature learning for image classification
via multiobjective genetic programming,” IEEE Transactions on Neural
Networks and Learning Systems, vol. 25, no. 7, pp. 1359–1371, 2014.

[10] K. Krawiec, “Evolutionary feature selection and construction,” in Ency-
clopedia of Machine Learning, 2010, pp. 353–357.

[11] K. Neshatian, M. Zhang, and P. Andreae, “A filter approach to multiple
feature construction for symbolic learning classifiers using genetic pro-
gramming,” IEEE Transactions on Evolutionary Computation, vol. 16,
no. 5, pp. 645–661, 2012.

[12] M. Muharram and G. Smith, “Evolutionary constructive induction,”
IEEE Transactions on Knowledge and Data Engineering, vol. 17, pp.
1518–1528, 2005.

[13] B. Tran, B. Xue, and M. Zhang, “Genetic programming for feature
construction and selection in classification on high-dimensional data,”
Memetic Computing, vol. 8, no. 1, pp. 3–15, 2015.

[14] J. R. Koza, Genetic Programming: On the Programming of Computers
by Means of Natural Selection. MIT Press, 1992.

[15] P. Espejo, S. Ventura, and F. Herrera, “A survey on the application of
genetic programming to classification,” IEEE Transactions on Systems,
Man, and Cybernetics, Part C: Applications and Reviews, vol. 40, no. 2,
pp. 121–144, 2010.

[16] B. Xue, M. Zhang, W. N. Browne, and X. Yao, “A survey on evolutionary
computation approaches to feature selection,” IEEE Transactions on
Evolutionary Computation, vol. 20, no. 4, pp. 606–626, 2016.

[17] K. Krawiec, “Genetic programming-based construction of features for
machine learning and knowledge discovery tasks,” Genetic Program-
ming and Evolvable Machines, vol. 3, pp. 329–343, 2002.

[18] B. Bhanu and K. Krawiec, “Coevolutionary construction of features for
transformation of representation in machine learning,” in Proceedings of
Genetic and Evolutionary Computation Conference. Press, 2002, pp.
249–254.

[19] K. Neshatian, M. Zhang, and M. Johnston, “Feature Construction and
Dimension Reduction Using Genetic Programming,” in Advances in
Artificial Intelligence, 2007, vol. 4830, pp. 160–170.

[20] K. Neshatian and M. Zhang, “Genetic programming for performance
improvement and dimensionality reduction of classification problems,”
in IEEE Congress on Computational Intelligence, 2008, pp. 2811–2818.

[21] ——, “Pareto front feature selection: Using genetic programming to
explore feature space,” in Conference on Genetic and Evolutionary
Computation, 2009, pp. 1027–1034.

[22] S. Ahmed, M. Zhang, and L. Peng, Feature selection and classification
of high dimensional mass spectrometry data: a genetic programming
approach. Springer, 2013.

[23] D. Muni, N. Pal, and J. Das, “Genetic programming for simultaneous
feature selection and classifier design,” IEEE Transactions on Systems,
Man, and Cybernetics, Part B: Cybernetics, vol. 36, no. 1, pp. 106–117,
2006.

[24] K. Nag and N. Pal, “A multiobjective genetic programming-based
ensemble for simultaneous feature selection and classification,” Cyber-
netics, IEEE Transactions on, vol. 46, no. 2, pp. 499–510, Feb 2016.

[25] M. Smith and L. Bull, “Genetic Programming with a Genetic Algorithm
for Feature Construction and Selection,” Genetic Programming and
Evolvable Machines, vol. 6, pp. 265–281, 2005.

[26] G. Patterson and M. Zhang, “Fitness functions in genetic programming
for classification with unbalanced data,” in Advances in Artificial Intel-
ligence. Springer, 2007, pp. 769–775.

[27] S.-H. Cha, “Comprehensive survey on distance/similarity measures
between probability density functions,” International Journal of Mathe-
matical Models and Methods in Applied Sciences, vol. 1, p. 300, 2007.

[28] C. Ding and H. Peng, “Minimum redundancy feature selection from
microarray gene expression data,” Journal of bioinformatics and com-
putational biology, vol. 3, no. 02, pp. 185–205, 2005.

[29] A. Statnikov, C. F. Aliferis, I. Tsamardinos, D. Hardin, and S. Levy, “A
comprehensive evaluation of multicategory classification methods for
microarray gene expression cancer diagnosis,” Bioinformatics, vol. 21,
pp. 631–643, 2005.

