
Synthesis of Reactive Control Protocols for Switch Electrical Power Systems
for Commercial Application with Safety Specifications

Benson Christalin1, Michele Colledanchise2, Petter Ögren2, and Richard M. Murray1

Abstract— This paper presents a method for the reactive
synthesis of fault-tolerant optimal control protocols for a
finite deterministic discrete event system subject to safety
specifications. A Deterministic Finite State Machine (DFSM)
and Behavior Tree (BT) were used to model the system. The
synthesis procedure involves formulating the policy problem as
a shortest path dynamic programming problem. The procedure
evaluates all possible states when applied to the DFSM, or
over all possible actions when applied to the BT. The resulting
strategy minimizes the number of actions performed to meet
operational objectives without violating safety conditions. The
effectiveness of the procedure on DFSMs and BTs is demon-
strated through three examples of switched electrical power
systems for commercial application and analyzed using run-
time complexity analysis. The results demonstrated that for
large order system BTs provided a tractable model to synthesize
an optimal control policy.

I. INTRODUCTION AND MOTIVATION

In an effort to facilitate the increasing complexity and
automation of smart systems, there has been a growing
demand for reliable and efficient Electrical Power Systems
(EPS’s). Computational complexity theory provides the tools
to handle modeling, analyzing, and ensuring reliability of the
intricate circuitry and operation of these safety critical EPS’s.
These tools enable the synthesis of control protocols that
allow an EPS to quickly actuate to meet system objectives,
while maintaining safe operating conditions. The synthesis
of reactive control protocols involves modeling the system,
safety, and mission specifications in a tractable form, then
computing an optimal policy that accounts for the specifica-
tions. This paper details the construction of two independent
models of the EPS, provides an algorithm to synthesize
robust reactive controllers, evaluates the complexity of the
algorithm in relation to the models, and demonstrates the
realizability of the control protocols.

Synthesizing control protocols involves examining the
discrete event space, and constructing a finite subset of the
event space, subject to safety constraints. The finite subset of
the event space is used to compute the sequential decisions
necessary for power transfer under switching constraints.
There has been work conducted that implements correct-by-
construction control synthesis for power allocation and distri-
bution in aircraft electric power systems [1] [2]. These papers

1The authors are with the Department of Control and Dynami-
cal Systems, California Institute of Technology, Pasadena, CA, USA
bchrista@caltech.edu

2The authors are with the Computer Vision and Active Perception Lab.,
Centre for Autonomous Systems, School of Computer Science and Com-
munication, Royal Institute of Technology (KTH), SE-100 44 Stockholm,
Sweden {miccol|petter}@kth.se

use linear temporal logic (LTL) specifications to synthesize
a controller that is guaranteed, by construction, to satisfy
formalized properties. The LTL specifications accounted only
for safety and requires a GR(1) design. Using the collection
of mathematical tools afforded by dynamic programming,
this paper demonstrates the synthesis of a reactive controller
for an electrical power system modeled by a deterministic fi-
nite state machine (DFSM) diagram and a behavior tree (BT).
Furthermore, multiple electrical power system topologies are
discussed in this paper. The first example allow readers to
gain an intuition for the synthesis algorithm, the second
example is motivated by an experimental test fixture used to
validate automatically synthesized reactive control protocols
[3], and the last is an industrial application from [4], seen
in Figure 10, demonstrating feasibility and scalability of the
synthesis procedure.

The choice to model the electrical power system as a
discrete event system stems from the fact that the actuation of
an electrical power system occurs at finite time intervals, the
state of the electric power system is static unless triggered,
and the information is represented in discrete form. A DFSM
and BT was used to model the electrical power system. The
DFSM for the electrical power system induces a directed
graph known as a transition diagram. The nodes of the graph
are the states of the system and the edges are transitions. With
such an abstraction one can describe the necessary conditions
to reach certain states using modal logic [5]. Furthermore,
state transition diagrams are intrinsically sequential in nature,
which aligns with the assumptions for actuation of the elec-
trical power system. However, state transition diagrams can
be infeasible. The conventional DFSM diagram formalism
requires explicit representation of all states, and as the model
grows linearly, the number of states grows exponentially.

Dimensionality reduction techniques have been studied
in machine learning and statistic [6] to reduce the number
of states. Common approaches are based on the principal
component analysis [7] where it uses an orthogonal trans-
formation to convert a collection of correlated variables
into a collection of uncorrelated variables called principal
components. However, the DFSM derived by an electrical
power system has by nature uncorrelated variables. This is
due to the fact that each state is a possible combination
of closed/open switches (see Figure 5), hence a point in a
orthogonal basis.

An alternative to state transition diagrams are Behavior
Trees (BT). First introduced in the computer gaming in-
dustry [8] to meet their needs of compactness, modularity,
and reusability in the artificial intelligence for non player

characters [9], [10], BTs are a recent alternative to Controlled
Hybrid Systems (CHSs) for fault tolerant execution of tasks.
Different studies highlight the advantages of BTs over more
classical CHSs in various applications [11]–[15], in particular
robotic applications [16]–[18]. BTs are often used to describe
fully reactive systems in a convenient and compact way [18].
A comparison of behavior trees and transition diagrams is
provided, demonstrating the advantages of the compactness
of the BTs in reducing the synthesis process’s computational
complexity.

The remainder of the paper provides: an exposition of
the mathematical setting, followed by a formal problem
statement, a description of the EPS and problem description,
a demonstration of the synthesis procedure through three
examples used to compare the transition diagram and be-
havior tree model, and concluding remarks with suggestions
for future work.

II. PRELIMINARIES

This section summarizes the mathematical background
needed for the formulation of the control synthesis problem
and solution.

A. EPS → Graph → DFSM→ Transition Diagram

The EPS is a network of components used in the genera-
tion and flow of power, and its inherent topological properties
allows for a graphical representation.

Definition 1. Let G = (V,E) denote a directed graph. V is a
nonempty set of vertices of the graph, denoted by v ∈ V . E
is a subset of the Cartesian product V ×V known as the edges
of the graph, and denoted using set notation, {v, w} ∈ E or
{w, v} ∈ E, where v and w are nodes and the ordering
indicates direction.

Definition 2. A path is a finite sequence of nodes
〈v0, v1, . . . , vκ〉. The set of paths of G is Paths(G).

Table I shows the circuit symbols and their corresponding
graphical representation.

TABLE I. Symbols used and their graphical representations

Symbol Description Graphical Symbol

ACGen ⊆ V AC Generators
C ⊂ E Switches

DCLoad,ACLoad ⊆ V DC, AC Loads

RU ⊆ V Rectifier Units

A single path on the graph denotes a connection between cir-
cuit components and the flow of power. Paths(G) represents
all configurations/states of the EPS.

The states and transitions of the EPS can be represented
with a deterministic finite state machine.

Definition 3. A deterministic finite state machine is a
quadruple (X,Σ, f, Y) where:
• a finite set of states, X

• a finite set called the input alphabet, Σ
• a transition function mapping pairs of a state and an

input symbol to the corresponding next state, f : X ×
Σ→ X

• a finite set of final states, Y ⊂ X

Remark 1. The DFSM induces a graph known as a transi-
tion diagram.

Definition 4. The information provided by the transition
function mapping, f , can be represented as a transition
matrix denoted by F , and is equivalent to an adjacency
matrix for the transition diagram. The entries of the transition
matrix are assigned values from zero to infinity based on
safety requirements and configuration preferences. These
values are also the weights on the edges of the transition
diagram.

B. Behavior Trees

This subsection presents a digest of behavior trees (BT),
describing the execution of the nodes used throughout the
paper. Refer to [10] for a more detailed description.

Definition 5. A BT is a directed tree where the internal
nodes are classified as control flow nodes and the leaf nodes
as execution nodes, using the usual definition of parent and
children for each connected nodes. Graphically, the children
of a control flow node are sorted from its bottom left to its
bottom right, as depicted in Figures 1-2. The execution of
a BT starts from the root node (i.e. the control flow nodes
with no parents), which sends ticks to its children. When
a node in a BT receives a tick, its execution starts and it
returns to its parent a status of running if its execution is
under completion; success if its execution is accomplished;
or failure if the execution cannot be accomplished. Here
we describe the execution of the two control flow nodes
(selector, sequence) and the execution nodes (action and
condition).

Definition 6. Fallback node (also known as Selector or
Priority) When a fallback node receives a tick, then it ticks its
children in succession from left to right, until a child returns
the status of success or running. Then this status is returned
to the parent of the fallback node. A fallback node returns
failure only when all the children return a status failure. The
purpose of the fallback node is to carry out a task that can
be performed using different approaches (e.g. powering a
bus can be either done by switching the generator on or by
plugging the external battery). A fallback node is graphically
represented as a box with a “?”, as in Fig. 1.

?

Child 1 Child 2 · · · Child N

1

Fig. 1. Graphical representation of a fallback node with N children.

Definition 7. When a sequence node receives a tick, then it
ticks its children in succession from left to right, until a child
returns the status of failure or running. Then this status is
returned to the parent of the sequence node. A sequence node
returns success only when all the children return a status
success. The purpose of the sequence node is to carry out
a task that is defined as a strict sequence of sub-tasks (e.g.
powering a load need to have the load connected and rhe
generator on) A fallback node is graphically represented as
a box with a “→”, as in Fig. 2..

→

Child 1 Child 2 · · · Child N

1

Fig. 2. Graphical representation of a sequence node with N children.

Action

1

(a) Action node.

Condition

1

(b) Condition node.
Fig. 3. Graphical representation of action and condition nodes.

Definition 8. When an action node receives a tick, it returns
the status of success if the action is completed or failure if
the action cannot be completed. Whit it is performing the
action, it returns the status of running. An action node is
graphically represented as in Fig. 3(a)

Definition 9. When a condition node receives a tick, it
returns the status of success if the condition is satisfied or
failure otherwise. A condition node never returns running. A
condition node is graphically represented as in Fig. 3(b).

C. Dynamic Programming: Shortest Path Problem

Definition 10. A control policy for DFSM is a sequence of
control vectors

{u0, u1, . . . , uN−1} ∈ Σ

where the subscript 0 and N − 1 denotes the initial control
input and final control input, respectively.

Therefore a DFSM system can be denoted by

xk+1 = f(xk, uk)

where xk+1, xk ∈ X , and fk is the transition function for
k = 0, 1, . . . , N − 1.

Interested in finding an optimal control policy, let us
denote the cost of transition from a state xi to xj by cki,j .

Remark 2. The cost associated with transitions to states
that are not reachable either by design or due to failure are
cki,j = ∞. All other cost have a value between 1 and ∞
based on connectivity preferences and specifications, with
the terminal cost denoted by cNi,j .

The DFSM can be transcribed into a graph such that
the nodes correspond to the states of the system, the edges
correspond to the transitions, and the weight of the edges

correspond to the cost of transition. This construction lends
itself to view the DFSM problem as a shortest path problem
from an initial node to a terminal node on the graph which
can be posed as a DFSM dynamic programming (DP)
problem.

III. PROBLEM STATEMENT

The computations on the graphs should be equivalent to
determining subsets of the discrete event space that represent
the events to be controlled. The objective is to minimize the
expected number of switches to get to safe-on final state
while always remaining in Xsafe−on ∪ Xsafe−off where
Y ⊆ Xsafe−on.

Remark 3. Xsafe−on is the set of states that meet mission
specifications and do not violate safety specification, while
Xsafe−off is the set of states that only satisfy safety
specifications.

For the simple case, the transition cost is 1 if the transition
is to safe space of the events space, 0 if the transition is in Y
or ∞ otherwise. Therefore the minimum cost from an initial
node vi to a terminal node vt is

Jk(i) = min
t|t6=i
{Jk+1(t) + cki,t} for k = 0, 1, . . . , N − 1.

Provided the appropriate labeling of the DFSM, the problem
likens to determining the sequences with the minimum
number of transitions needed to traverse from an initial state
to a final state, with the constraint imposed the safe-on set,
or the minimum number of actions needed to reach the same
state under equivalent constraints for a BT.

IV. OPTIMAL REACTIVE CONTROL POLICY SYNTHESIS

This section provides the methodology to find a robust
controller which can be summarized in four steps:
• Using specifications construct a DFSM or BT to obtain

the event space set and necessary subsets;
• Using a DP algorithm search the DFSM or BT for a

static policy;
• Verify that the final state satisfies the mission objective

and system specifications;
• If the mission objective and system specifications are

not met re-label the transition diagram and BT; accord-
ingly and re-run the DP algorithm in search of a new
policy.

A. Shortest Path on Transition Diagram

Using recursive fixing, a backward search is performed
to converge on a policy that account for the entire event
space and therefore the convergent rate is dependent on the
cardinality of the event space. The procedure starts at the
terminal vertex, vt, and iterates of the transition diagram
until the iteration that spans all vertices reachable from vt.
Vertices are evaluated in order of cost, first vt, then the vertex
with the least cost connect to vt, and so on. J(x) defines the
cost from the initial vertex and the algorithm describe below
considers only the evaluated vertices and that minimize the
cost.

Algorithm 1: shortest path DP Algorithm adapted from
[19]

Input: cost function, states, & transitions
Output: shortest path

1 Initialization: set JN (i) = cNi,t, k = 0
2 repeat
3 foreach k do
4 foreach state t 6= i do
5 compute vector

Jk(i) = min
t|t6=i
{Jk+1(t) + cki,t}

6 until Jk+1 ≈ Jk;
7 return J∗k

Under assumptions outlined, the stationary policy is a set of
transitions that satisfy

Jk(i) = min
t|t6=i
{Jk+1(t) + cki,t} for k = 0, 1, . . . , N − 1

where i denotes the node vi ∈ X and t denotes the node
vt ∈ Y

B. BT Search

Algorithm 2 aims to create a BT that returns success if and
only if the current switch configuration satisfies the mission
requirement without violating the safety specifications.
For each switch configuration Y ∈ Y we create a BT
TY that returns success if and only if the such configu-
ration is met. Initially this TY is composed by conditions
only (Algorithm 3 Line 9). We execute Tx on the graph
starting with the initial configuration x0. If the the switch
configuration Y is not met, TY returns failure. We identify
which single element yi ∈ Y is not met (Algorithm 3
Line 12). For each xi we identify a BT that will meet
such single switch configuration without violating any safety
requirements (Algorithm 3 Line 15). We repeat the procedure
until Tx return success. Finally we order T to achieve
optimality. In the ordered BT, each fallback node has its
children ordered by the the number of actions in an ascending
fashion.

C. Label Correction

Label correction allows for the synthesis procedure to be
reactive. Label correction occurs when a policy does not
satisfy a mission objective or safety specification, such as
a failure in the system that results in an unreachable state.
This information is provided by sensors. If a mission is not
satisfied, the final state is re-labeled as a unsafe state, and
the DP search is again performed with new values in the
transition diagram and pre and post conditions for the BT in
accordance to the new label.

Algorithm 2: get safe subtree
input : Single switch configuration: x

Mission Configuration: Y
Violating Configurations: S

output: Subtree to safely satisfy y
1 for S ∈S do
2 TS←fallback node()
3 if x ∈ S then
4 S̃← S\Y
5 for s̃ ∈S̃ do
6 if s̃ > 0 then
7 c̃← condition node(Switch s̃

Is OPEN)

8 else
9 c̃← condition node(Switch s̃

Is CLOSED)

10 TS .add child(c̃)

11 if x > 0 then
12 a← action node(Switch x CLOSED)
13 c← condition node(Switch x Is

CLOSED)

14 else
15 a← action node(Switch x OPEN)
16 c← condition node(Switch x Is

OPEN)

17 Ta←sequence node()
18 Ta.add child(TS)
19 Ta.add child(a)
20 T ←fallback node()
21 T .add child(c)
22 T .add child(Ta)
23 return T

V. ALGORITHM ANALYSIS

A. Worst-Case Complexity Analysis Using DFSM

The abstraction used to perform calculations on the DFSM
was extended from the EPS graph. The complexity of the
construction of the EPS graph is O(V +E). The nodes of the
transition diagram are 2V and the edges are V ×2V therefore
the complexity to construct the graph is O(2V × (1 + V)).
The worst-case work bound of the policy synthesis procedure
is O(|V × 2V ||2|V).

B. Worst-Case Complexity Analysis Using BT

Given the mission set Y and the safety violations set S Al-
gorithm 3 computes a number |Y| of BTs TY for each switch
configuration Y ∈ Y . In each TY , Algorithm 3 finds a subtree
Ty to safely satisfy each single switch configuration y ∈ Y .
Each Ty is computed in O(|S||E|) time where |E| is the
cardinality of the edges of the graph (number of switches).
For each TY we compute at most a number |E| of Ty (worst
case where we have to perform an action on each switch).
Finally Algorithm 3 sorts the children of T . The sorting is

Algorithm 3: get optimal safe subtree
input : Initial configuration: x0

Mission Configurations: Y
Violating Configurations: S

output: BT T
1 T ←fallback node()
2 for Y ∈Y do
3 TY←sequence node()
4 for Y ∈Y do
5 if m > 0 then
6 c← condition node(Is Contactor

y CLOSED)

7 else
8 c← condition node(Is Contactor

y OPEN)

9 TY .add child(c)

10 status←TY .execute on graph(x0)
11 while status 6= success do
12 C←TY .failed conditions()
13 for c ∈ C do
14 c̃←get value of(c)
15 Tc← get safe subtree(c̃,Y ,S)
16 TY .replace child(c,Tc)
17 status←TY .execute on graph(x0)

18 T .add child(TY)
19 T .reorder()
20 return T

done in O(|Y||E|log(|Y|+ |E|))) time, as for each TM we
sort each subtree Tm. times. Hence the proposed approach
computes a BT in O(|Y||S||E|2 + |Y||S||E|log(|Y|+ |E|))
time.

Proposition 1. Algorithm 2 finds a BT in finite time.

Proof. The sets S and S̃ are finite. Hence the loops inside
Algorithm 2 executes a finite number of operations

Proposition 2. Algorithm 3 finds an optimal BT in finite
time.

Proof. The set Y is finite set. Hence the number of TY
computed is finite. The TY is updated until it return suc-
cess. To prove that it will return success in finite time
we need to prove that an action required to satisfy the
safety specification do not conflict with an action required
to perform the mission. Algorithm 3 computes the actions
required to satisfy the safety specification using Algorithm 2.
Algorithm 2 consider only those switches that are not listed
in the mission specification (Line 4) Hence no conflicting
actions are performed. The optimality is ensured by the
sorting algorithm.

VI. APPLICATION FRAMEWORK

A. Electrical Power System

An electrical power system is a modular collection of com-
ponents and circuits necessary for the generation, transmis-
sion and distribution of power. The typical components of an
EPS are generators/alternators, rectifier units, transformers,
switches, batteries, and loads. Generators provide the source
of power that the system will convert into electrical energy.
Rectifier units convert alternating current (AC) to direct
current (DC). Transformers use electromagnetic induction
through a ”step-up” or ”step-down” process that involves
the increase or decrease of voltages to transfer electrical
energy. Batteries store electrical energy. Switches connect
and disconnect circuit components to maintain system re-
quirements while allowing the EPS to provide energy to the
loads. And loads consume the electrical energy to perform a
function. These components can be arranged to form various
topologies in order to regulate and control the conversion and
transmission of electrical energy for consumption. Maintain-
ing power flow is the key objective of the electrical power
system for safety critical applications. For this paper, it is
assumed that the EPS operates according to a reflected binary
code (RBC), also known as Gray code, switching scheme,
where two successive states values differ in only one bit
(binary digit) translating to one switch being turned on or
off.

B. Problem Description

Given an EPS topology, an initial state, and mission
objective, synthesize a reactive switching control robust to
faults that yields the optimal sequence of actions and final
state of the system. An optimal sequence, in reference to the
control policy, is defined as the minimal number of actions
required to reach a final state that does not violate safety
specification.

VII. EXAMPLES

A switch configuration is denoted by a vector where if
the ith entry is 1 the ith-switch is close and if 0 the ith-
switch is open. Actuation of the system corresponds to a
transition and the observed switch configuration corresponds
to a state of the system. Use the states and the transitions
to create a DFSM and DFSM transition diagram. Now,
derive the control policy. For the DFSM-based policy, a
search is performed on the DFSM transition diagram to
identify a path from the initial configuration to the a goal
configuration. Transitions are assigned cost values to ensure
specifications are satisfied. In the BT-based policy a recursive
search is performed to find the sequence of actions needed
to satisfy the mission and safety requirement. Regardless
of the EPS model, a backward search approach from the
goal configuration identifies the actions that yield the desired
results. Before performing an action, the BT ensures that
it does not violate any safety requirement (e.g. it turns off
some other switches to avoid safety violation). Among all
the possible BTs or paths on the DFSM transition diagram,

the one that represents the least number of actions from the
initial configuration to the terminal configuration is chosen.

A. Motivating Simple Three-Switch Example

Consider the EPS in figure 4(a). The graph representation
of the EPS is depicted in figure 4(b). The mission is to power
the load without short-circuits. The initial condition of the
system is all switches opened, x0 = [0, 0, 0]. The indexed set
of terminal configurations that satisfy the mission is denoted
by, Y; thus, for this example, Y = {[1, 0, 1]∪ [0, 1, 1]}. The
states that correspond to a safety violation are denoted by S
and therefore, for this example, S = {[1, 1, 1] ∪ [1, 1, 0]}.

Generator 1

1

Bus

Generator 2

2

3

Load

(a) EPS.

Generator 1

1 2

Generator 2

Bus

Load

3

(b) Graph modeling the EPS.
Fig. 4. EPS and Graph for Example VII-A. The EPS has four components:
two generators, one bus, and one load, and three switches: switch 1, 2, and 3.

Notice that all the possible states and transitions of the
electrical power system DFSM are depicted in the DFSM
diagram shown in figure 5. In the figure, the dotted lines
denote the transitions that yield a safety violation, the boxed
nodes are viable terminal configurations, and the arrow indi-
cates the initial state. A weighted value of infinity is assigned
to edges related to transitions to unsafe states. Weighted
values are also assigned to edges indicating preferential
states. These values are stored in a cost matrix and used
to when computing value and policy iteration, which provide
the optimal set of actions from every state to every state. The
distant from one state to another is the sum of the weighted
edges that make up the path connecting the two nodes. For
this example, assume that all non-dotted edges in figure 5
have a value of one; one can immediately identify potential
paths through safe states, and the related actions, that result
in a satisfactory terminal state such as: close switch 2 and
then close switch 3 or close switch 1 and then close switch
3. Since both paths are equidistant from the initial position
and no preference was indicated, a probabilistic approach or
which ever sequence was queued first.
For the BT, figure 6 shows the construction of the tree TY1

step by step. Algorithm 3 creates the initial TY1
depicted

in figure 6(a). TY1
returns failure since the condition is 1

CLOSED is not satisfied. Then, Algorithm 3 expands the
tree as seen in figure 6(b). Now, TY1

returns failure since the
condition is 3 CLOSED is not satisfied. Again, Algorithm 3
expands the tree as shown in figure 6(c). TY1 finally returns

Fig. 5. FSM Diagram of Example VII-A

success. TY2
is constructed in a similar way and depicted in

figure 6(d). Given the initial state, both TY1
and TY2

results in
two operations performed hence their order in T is irrelevant.
If there is a preference indicated by a liveness specification,
simply order the tree accordingly. T is depicted in figure 7.

→

1 is
Closed

3 is
Closed

(a) First TY1
of Example VII-A.

→

?

1 is
Closed

→

2 is
Open

Close
1

3 is
Closed

(b) Updated TY1
of Example VII-A

→

?

1 is
Closed

→

2 is
Open

Close
1

?

3 is
Closed

Close
3

(c) Final TY1
of Example VII-A

→

?

2 is
Closed

→

1 is
Open

Close
2

?

3 is
Closed

Close
3

(d) Final TY2
of Example VII-A

Fig. 6. Construction of TY1 and TY2 for Example VII-A.

?

→

?

1 is
Closed

→

2 is
Open

Close
1

?

3 is
Closed

Close
3

→

?

2 is
Closed

→

1 is
Open

Close
2

?

3 is
Closed

Close
3

Fig. 7. T of Example VII-A

B. Experimental Test Fixture

Generator 1

1

AC Bus

4

RU

6

DC Bus

Load

Generator 2

2

AC Bus

5

RU

7

DC Bus

Load

3

8

Fig. 8. EPS of Example VII-B

Consider the EPS in Fig. 8 where the mission requirement
is to power the four loads and the safety specification is
to not parallel the two generator. The mission set is Y =
{y1 ∪ y2 ∪ y3 ∪ y4 ∪ y5} where:

y1 = [1, 1, 0, 1, 1, 1, 1, 0]

y2 = [1, 0, 1, 0, 1, 0, 1, 1]

y3 = [0, 1, 1, 1, 0, 1, 0, 1]

y4 = [1, 1, 0, 1, 0, 1, 0, 1]

y5 = [1, 1, 0, 0, 1, 0, 1, 1]

The safety violation set is S = {s1 ∪ s2 ∪ s3} where:

s1 = [1, 1, 1, 0, 0, 0, 0, 0]

s2 = [1, 1, 0, 1, 1, 1, 1, 1]

s3 = [1, 1, 1, 1, 1, 1, 1, 1]

The initial switch configuration is

x0 = [1, 1, 0, 1, 1, 1, 1, 0]

that is all the switches except 3 and 8 are closed. We
chose such initial configuration to demonstrate how the
framework satisfies the safety conditions. The resulting BT
T is shown in Fig. 9. Each child in T achieves a switch
configuration in the mission set Y . The children are ordered
by the number of actions they execute. Some children have
to open switches to satisfy the safety requirement. In the
nominal case the actions executed are: Switch 1 CLOSED,
Switch 5 CLOSED, Switch 7 CLOSED. None of this action
violate a safety constraint. Note that if, due to several faults,
the T executes its third child (i.e. it performs the third
best plan), the switch 3 has to be opened before closing
switch 2 to avoid the two generators being paralleled. The
DFSM transition diagram yields the same result, however it
required additional computing power provided by Amazon
Web Services and the diagram is too large to display. It
contains 256 nodes and 2048 edges. Nodes pertaining to
safety violation shown below as switch configuration were
removed in order to reduce computational complexity.

C. Large-Scale Electrical Power System

In this example we consider an electrical power system
for commercial applications. The electrical power system is
depicted in figure 10. For this example the objective was to
power the LVDC Bus 3. The safety specification is to not
parallel any two generators. The initial switch configuration
is such that only the switches 1, 6 and 26 are on. We chose
to not enumerate the sets Y and S due to magnitude of the
cardinality of the event space to search, |X| = 1013.

Fig. 10. Electrical Power System Schematic for Example VII-C

The resulting T has |Y| children. We chose to depict only
the most left one (nominal path) in Fig. 11. Intuitively to

?

-> -> -> -> ->

? ? ?

is #1OPEN? ->

? OPEN#1

is #5OPEN? ->

? OPEN#5

is #7OPEN? ->

? OPEN#7

? ? ?

is #2OPEN? ->

? OPEN#2

is #4OPEN? ->

? OPEN#4

is #6OPEN? ->

? OPEN#6

? ? ? ?

is #1OPEN? ->

? OPEN#1

is #3CLOSED? CLOSE#3

is #2OPEN? ->

? OPEN#2

is #4OPEN? ->

? OPEN#4

is #6OPEN? ->

? OPEN#6

? ? ? ?

is #1OPEN? ->

? OPEN#1

is #3CLOSED? CLOSE#3

is #2OPEN? ->

? OPEN#2

is #5OPEN? ->

? OPEN#5

is #7OPEN? ->

? OPEN#7

? ? ? ? ? ?

is #1OPEN? ->

? ? OPEN#1

is #3CLOSED? CLOSE#3 is #8CLOSED? CLOSE#8

is #2OPEN? ->

? OPEN#2

is #4OPEN? ->

? OPEN#4

is #5OPEN? ->

? OPEN#5

is #6OPEN? ->

? OPEN#6

is #7OPEN? ->

? OPEN#7

Fig. 9. T of Example VII-B. The precondition that are satisfied on the initial state are not shown for space limitation (fallback nodes without children).

power the LVDC Bus 3, the switches 1, 27, and 31 must
be turned on. Since at the initial condition the switches 11,
and 31 are on, turning 6 on will yield an unsafe switch
configuration (Generator L2 and Generator R2 in parallel).
To avoid such a configuration, either the switch 6 or 26 have
to be switched open before closing switch 6. The DFSM
formulation was found intractable for this example.

->

? ? ?

is #6OPEN? ->

? OPEN#6

? ? ?

is #31CLOSED? CLOSE#31 is #11CLOSED? CLOSE#11 is #5CLOSED? CLOSE#5

is #32OPEN? ->

? OPEN#32

is #36OPEN? ->

? OPEN#36

Fig. 11. First child of BT of Example VII-C.

VIII. CONCLUSION AND FUTURE DIRECTION

In this paper we presented a methodology to synthesize
fault tolerant control protocol for an aircraft EPS modeled
as discrete event system. The electrical power systems were
modeled as DFSMs and BTs. The algorithm used dynamic
programming techniques on graphical abstractions of the
systems to synthesize a switching protocol. The results
demonstrated, for small scale systems, that the algorithm was
effective with a DFSM diagram model. However, unless ad-
ditional modeling techniques were implemented to compress
the representation of the system’s event space, the problem
became intractable. BTs provide a tractable formulation
for the large-scale electrical power systems. The proposed
approach computed a minimal switching protocol for an EPS
whose switching is defined by Gray code convention. Future
work will seek to improve the algorithm and formulation
presented in this paper and use the results to address other
problems related to heuristic decision-making for electrical
powers systems such as sensor placement, fault detection and
isolation, and synthesis of built-in-test.

ACKNOWLEDGMENTS

The authors would like to thank Scott Livingston, Ivan Pa-
pusha, and the anonymous reviewers for helpful comments.
This work was supported in part by IBM and UTC via the
iCyPhy consortium

REFERENCES

[1] N. Ozay, U. Topcu, R. M. Murray, and T. Wongpiromsarn, “Distributed
synthesis of control protocols for smart camera networks,” in Pro-
ceedings of the 2011 IEEE/ACM Second International Conference on
Cyber-Physical Systems. IEEE Computer Society, 2011, pp. 45–54.

[2] H. Xu, U. Topcu, and R. M. Murray, “A case study on reactive
protocols for aircraft electric power distribution,” in Decision and
Control (CDC), 2012 IEEE 51st Annual Conference on. IEEE, 2012,
pp. 1124–1129.

[3] R. Rogersten, H. Xu, N. Ozay, U. Topcu, and R. M. Murray, “An
aircraft electric power testbed for validating automatically synthesized
reactive control protocols,” in Proceedings of the 16th international
conference on Hybrid systems: computation and control. ACM, 2013,
pp. 89–94.

[4] R. G. Michalko, “Electrical starting, generation, conversion and distri-
bution system architecture for a more electric vehicle,” Oct. 21 2008,
uS Patent 7,439,634.

[5] J. Hopcroft, Introduction to automata theory, languages, and compu-
tation. Boston: Pearson/Addison Wesley, 2007.

[6] K. Pearson, “On lines and planes of closest fit to systems of points in
space,” The London, Edinburgh, and Dublin Philosophical Magazine
and Journal of Science, vol. 2, no. 11, pp. 559–572, 1901.

[7] P. Cunningham, “Dimension reduction,” 2007.
[8] D. Isla, “Handling Complexity in the Halo 2 AI,” in Game Developers

Conference, 2005.
[9] I. Millington and J. Funge, Artificial Intelligence for

Games. Taylor & Francis, 2009. [Online]. Available:
https://books.google.com/books?id=1OJ8EhvuPXAC

[10] S. Rabin, Game AI Pro: Collected Wisdom of Game AI Professionals.
Natick, MA, USA: A. K. Peters, Ltd., 2013.

[11] R. d. P. Pereira and P. M. Engel, “A framework for constrained and
adaptive behavior-based agents,” arXiv preprint arXiv:1506.02312,
2015.

[12] K. R. Guerin, C. Lea, C. Paxton, and G. D. Hager, “A framework
for end-user instruction of a robot assistant for manufacturing,” in
Robotics and Automation (ICRA), 2015 IEEE International Conference
on, May 2015, pp. 6167–6174.

[13] M. Colledanchise, R. Parasuraman, and P. Ögren, “Learning of behav-
ior trees for autonomous agents,” arXiv preprint arXiv:1504.05811,
2015.

[14] A. Klöckner, “Behavior trees for uav mission management,” in IN-
FORMATIK 2013: Informatik angepasst an Mensch, Organisation und
Umwelt. Köllen Druck + Verlag GmbH, Bonn, 2013, pp. 57–68.

[15] D. Hu, Y. Gong, B. Hannaford, and E. J. Seibel, “Semi-autonomous
simulated brain tumor ablation with ravenii surgical robot using behav-
ior tree,” in Robotics and Automation (ICRA), 2015 IEEE International
Conference on, May 2015, pp. 3868–3875.

[16] A. Klökner, “Interfacing Behavior Trees with the World Using De-
scription Logic,” in AIAA conference on Guidance, Navigation and
Control, Boston, 2013.

[17] M. Colledanchise and P. Ogren, “How Behavior Trees Modularize
Robustness and Safety in Hybrid Systems,” in Intelligent Robots and
Systems (IROS 2014), 2014 IEEE/RSJ International Conference on,
Sept 2014, pp. 1482–1488.

[18] P. Ögren, “Increasing Modularity of UAV Control Systems using
Computer Game Behavior Trees,” in AIAA Guidance, Navigation and
Control Conference, Minneapolis, MN, 2012.

[19] D. P. Bertsekas, D. P. Bertsekas, D. P. Bertsekas, and D. P. Bertsekas,
Dynamic programming and optimal control. Athena Scientific
Belmont, MA, 1995, vol. 1, no. 2.

