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Abstract—The necessity of proposing algorithms that are
effective in noisy image segmentation is clear in many real-world
applications. This paper proposes a new algorithm for severely
noisy image segmentation by looking at the proper choice of
feature, and feature manipulation. We are using Discrete Wavelet
Transformation (DWT) as a tool to provide our method with the
proper feature, and then we manipulate it via wavelet shrinkage.
Particle Swarm Optimization (PSO) is used to adaptively search
for threshold values that produce the best segmentation results
when applied in the wavelet shrinkage, and Fuzzy C-Means
(FCM) is used as a fitness metric in PSO. The proposed method
was tested on two different datasets being extremely contami-
nated with the common Gaussian noise. These tests indicate the
superior performance and consistency of the proposed method
in comparison to other state-of-the-art methods.

I. INTRODUCTION

Image segmentation is considered one of the foremost
mid-level steps in image processing applications like image
compression [1], image recognition [2], traffic control and
surveillance [3], object detection [4], and many more. It is
a procedure of partitioning an image into disjoint regions that
are homogeneous in intensity, color, or texture. Among the
applications of image segmentation, there are domains where
segmentation needs to be done on noisy images. Noise could
be added to images via capturing or transmission procedures.
For instance, medical images suffer from intensity inhomo-
geneities and noise. Also, natural images have additive Gaus-
sian noise. Another field that needs methods handling noisy
images is remote image analysis with applications in Synthetic
Aperture Radar [5], and satellite [6] image processing.

Fuzzy C-Means (FCM) as a fuzzy clustering algorithm has
the potential to deal with both problems of image segmentation
and noise removal at the same time. However, a common issue
in applying FCM to image data is determining how to include
spatial information in clustering along with other information
such as intensity or color. In recent years, many FCM-based
algorithms have been proposed to deal with the problem of
noisy image segmentation [7], [8], [9], [10], [11], [12], [13],
[14]. Most of these algorithms modify the objective function
of the original FCM to have more spatial information included
from a surrounding window around each pixel. Some of these
algorithms are parameter dependent [7], [8], [9], [10] which
requires prior information about the type and volume of noise.

One technique of recent interest that can deliver accurate
segmentation results, when merged with FCM-based algo-

rithms, is Particle Swarm Optimization (PSO). It is extensively
used in optimization problems [15], [16], and is gaining
popularity in the field of noisy image segmentation with the
definitive contribution still to be made.

A. Goals

This paper proposes a new FCM-based noisy image seg-
mentation method using PSO and wavelet transform. The
algorithm requires no parameter tuning for the volume of
noise, and shows stable and accurate results on different
images with different noise volumes. While there has been
much research on changing the objective function of FCM [7],
[8], [9], [10], [11], [12], or new similarity metrics for FCM
[13], [14] to improve the performance, there has not been a
stress on the importance of feature choice and manipulation in
the literature. This paper targets the problem from the feature
analysis point of view. It explores the potentials of PSO and
wavelet-based thresholding for noisy image segmentation. We
demonstrate the effect of appropriate choice of features and
feature processing on FCM performance with superior results
compared to other state-of-the-art methods.

II. BACKGROUND

A. Fuzzy C-Means and the Related Algorithms

Fuzzy C-Means (FCM) was first introduced in [17], and
then extended in [18] by Bezdek. It is a clustering algorithm
in which all the datapoints are considered to belong to all the
clusters to some extent. Datapoints (pixels in our application),
are represented as a set, X = {x1,x2, ...,xN}, where a p-
dimensional vector as features is associated to each pixel, xi.
The aim is to find C cluster centers in a way that the following
objective function is minimized:
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where N and C are the number of pixels and clusters
respectively, ui j is a value specifying the degree of
membership of pixel i to cluster j which needs to satisfy:

ui j ∈ [0,1] and
C
∑
j=1

ui j = 1, and m is the weighting exponent.

d(., .) is the distance metric, and d(xi,v j) is the distance
between pixel xi and cluster centre v j which uses the
Euclidean metric in our approach. Using Lagrange multipliers



the two following updating equations are obtained which are
necessary but not enough to have Eq. (1) at its minimum:
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The traditional applications of FCM to image segmentation
fail to produce accurate noisy segmentation results as the
objective function did not consider any spatial information.
In this manner, the first notable attempt to overcome this
weakness is [7] known as FCM S. The method was proposed
to conquer the intensity inhomogeneities present in the seg-
mentation of MRI images by allowing the labeling of a pixel
to be affected by its immediate neighborhood. Since FCM S
was computationally expensive, FCM S1 and FCM S2 were
proposed [8] to improve both efficiency and effectiveness
by using a pre-calculated mean and median filtration of the
surrounding window for FCM S1 and FCM S2 respectively.
EnFCM was proposed [9] as another modification of FCM.
It uses a linearly weighted filter applied to the noisy image,
and then FCM is performed on the intensity histogram of
the image. The algorithms mentioned so far have a tuning
parameter, termed α, which has to be large enough to suppress
the effect of noise, and has to be small enough to preserve
the details in an image. Since these methods are parameter
dependent, their utilization was narrowed down to certain
types and volumes of noise. FGFCM [10] was therefore
proposed later to reduce the parameter dependency of the
former modifications. FGFCM proposes a non-linear filtering
factor which still has two tuning parameters termed as λs and
λg, but it was shown that the dependency of FGFCM to these
parameters is much less than that of the previous methods to
α. Motivated by the strengths of all the previous methods, the
parameter-free FLICM was proposed [11]. A new fuzzy factor
was introduced into the objective function that considers gray
and spatial information simultaneously. Although the method
is parameter-free and performs better than its predecessors,
the segmentation results are not accurate in the case of multi-
intensity noisy images [19]. Also, FLICM is problematic when
it comes to identifying the class of boundary pixels [12], and
severely noisy image segmentation.

B. Wavelets

Wavelet transform is a technique which provides multi-
resolution representations for image analysis [20]. One of the
primary properties of wavelet transforms is its sparsity when
applied to real-world signals. This means that they contain a
few large coefficients encompassing the majority of the energy
of the signal. The rest are unimportant coefficients that carry
no significant information. This feature of wavelets is quite
favorable for image denoising. To apply wavelet decomposi-
tion on an image, 2-dimensional Discrete Wavelet Transform
(2D-DWT) is required to be done by applying 1D-DWT along
the rows, and then the columns of an image. After applying

2D-DWT on an image, it is decomposed into four sub-bands.
These four sub-bands are the results of applying high-pass
and low-pass filters in vertical and horizontal directions, and
are named HH1, LH1, HL1, and LL1, or diagonal, horizontal,
vertical and approximation coefficients respectively. LL1 can
be further decomposed to give another set of coefficients at
the second scale (Fig. 1-b).

Applying 2D-DWT to an image f (x,y) of size M×N is
performed according to the block diagram provided in Fig.
1-a, using the following formulas:

Wϕ( j0,m,n) = 1√
MN

M−1
∑

x=0

N−1
∑

y=0
f (x,y)ϕ j0,m,n(x,y)

Wψ( j,m,n) = 1√
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∑
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j,m,n(x,y), i = {H,V,D}

(4)
in which j0 is an arbitrary starting scale, and the Wψ( j,m,n)
coefficients define an approximation of f (x,y) at scale j0. The
Wψ( j,m,n) coefficients add horizontal, vertical, and diagonal
details for scales j > j0.

Thresholding wavelet coefficients can suppress the effect
of noise [21], but it is a difficult task to determine the
appropriate threshold values. Under-thresholding leaves a lot
of noise which causes many segmented regions in an image,
while over-thresholding image deforms the boundary lines, and
also causes redundant segmented regions around the edges.
Generally, over-thresholding could also eliminate details from
an image.

C. Particle Swarm Optimization

Particle Swarm Optimization (PSO) was introduced by
Kennedy and Eberhart in 1995 [22], [23] motivated by so-
cial behaviors of organisms particularly choreography of bird
flocking. Talking of PSO modus operandi, it starts with a
swarm of potential solutions (population size) that are updated
iteratively based on their position and velocity in the search
space. Therefore, particle i, has position, xi, and velocity, vi.
Knowing that the search space is D-dimensional, each particle
is represented by Xi = (xi1,xi2...xiD) and Vi = (vi1,vi2, ...,viD)
as arrays of the positions and velocities of each particle. The
movement is done based on pbest which is the best previous
position of a particle, and gbest which is the best position
so far obtained in the search. Position and velocity of each
particle are updated using:

vk+1
id = ω× vk

id + c1r1(pbestid− xk
id)+ c2r2(gbestd− xk

id) (5)

xk+1
id = xk

id + vk+1
id (6)

where k is the iteration in the search procedure, d ∈ D is the
dth dimension, ω is the inertia weight, c1 and c2 are constants,
and r1 and r2 are random numbers in [0,1]. The goodness of
each solution is determined through a fitness evaluation in each
iteration, which is defined according to the application. PSO
converges when a certain degree of accuracy is achieved or a
fixed number of iterations is applied.



(a) (b)
Fig. 1: Two-dimensional DWT. (a) the analysis filter bank; (b) the resulting two-scale decomposition

D. Related Work

Two distinctive approaches are recognizable in the research
history of using FCM or its modification alongside PSO
for noisy image segmentation. The first approach contains
methods that use PSO to look for cluster centers that optimizes
an already existing FCM-based algorithm [24], [25], [26].

The second approach, a very recent trend, uses PSO to
modify the distance metric used in FCM to calculate the
distance between datapoints and cluster centers. For instance,
a new similarity metric is proposed in [27] using wavelets
as features for superpixels. The new similarity metric is
tuned for parameters using PSO. Another case is the method
proposed in [13], which is based on simple statistical features
extracted from a surrounding window, and then including them
along with fuzzy membership and intensity values into a new
similarity metric. PSO was utilized to adaptively determine
the contribution of each feature into noise removal according
to the properties of each image. A similar work was also
proposed entangling coordinates of the prototypes of each
cluster with the corresponding feature associated with each
pixel [14].

FCM-based noisy image segmentation approaches have
some problems. Some of these approaches are parameter
dependent, and some perform poorly on severely noisy images.
In this paper, we introduce a new FCM-based noisy image
segmentation algorithm which not only resolves the addressed
problems, but also shows significant improvement compared
to other algorithms.

III. THE PROPOSED METHOD

This paper proposes a new algorithm for noisy image
segmentation by adaptively thresholding wavelet coefficients
utilizing PSO. The proposed method introduces a unique
set of threshold values for each image according to noise
volume, and properties of the image under consideration.
FCM clustering takes part in both evaluating thresholding
performances in PSO, and the final segmentation procedure.
The idea is to firstly transform an image to wavelet domain
using a specific wavelet function at a certain number of
scales. Secondly, PSO searches for an optimal set of threshold
values to threshold the wavelet coefficients obtained from the
previous step. The outcome of the PSO search is then applied
for a final denoising. Thirdly, the image is reconstructed with

the thresholded coefficients to generate the denoised image.
Lastly, FCM is used to cluster the reconstructed image, and
segment it according to the mean intensity value of each
cluster. Fig. 2 shows the block diagram of the proposed
method.

A. PSO Representation

In our approach, PSO is utilized for wavelet coefficients
manipulation and therefore better segmentation results. More
specifically, PSO looks for the optimum values of the thresh-
olds among different wavelet sub-bands at different scales.
This gives the thresholding procedure the adaptivity of tuning
the threshold values according to noise volume and image
properties. Each particle thresholds vertical, horizontal, and di-
agonal coefficients of each scale with a different value. Know-
ing that there are three detail coefficients (or sub-bands) named
as horizontal, vertical, and diagonal at each scale, there would
be three threshold values for each scale of transformation. The
wavelet transform is performed at five scales in our problem.
Therefore, each particle is a set of potential threshold values in
the form of a 15-dimensional array termed as [θ1,θ2, ...,θ15].
To prevent particles from under- and over-thresholding the
coefficients, we set a minimum and a maximum value for each
threshold value for better convergence of the PSO search. The
minimum value is zero and the maximum value is obtained
according to the Universal threshold proposed in Visu Shrink
method [28]. The Universal threshold value is given by:

θU = σ
√

2ln(n) (7)

where σ is the noise standard deviation, and n is the number
of pixels in an image. Since σ is unknown in our case, it is
obtained using a robust median estimator [28] from the finest
scale of wavelet coefficients:

σ =
median

[
|xi j : i, j ∈ HH1|

]
0.6745

(8)

where x are noisy coefficients of sub-band HH1.
Although the Universal threshold will thoroughly suppress

the effect of noise, the value is bigger than necessary [29],
and therefore over-smooths the underlying image.



Fig. 2: Block diagram of the proposed method

B. Wavelet Transformation and Thresholding

As mentioned before thresholding based on wavelet coeffi-
cients is a difficult task because improper threshold values
or number of scales may lead to imprecise and incorrect
segmentation results. When thresholding wavelet coefficients,
the threshold has to be large enough to attenuate the effect of
noise, and it has to be small enough to preserve the details
in an image. The same thing is ruling over the number of
scales. If the number of scales is too low, both denoising and
segmentation are not done properly, and if it is too large details
will vanish from an image. Empirically, we have realized that
thresholding wavelet coefficients at five scales has the potential
to show suitable segmentation performances while keeping
important details. The family of filters also play an important
role in this manner. Different wavelet filters have different
properties [30].

Each wavelet-based thresholding needs a thresholding func-
tion through which the wavelet coefficients are thresholded.
The thresholding function determines the criterion under
which we manipulate each coefficient for denoising purposes.
In this paper, we have selected the simple and effective
soft thresholding function [21]. The PSO-proposed threshold
values are used within this function:

Y =

{
sign(X)× (|X |−θ), if |X |> θ

0, if |X | ≤ θ
(9)

where X is a wavelet coefficient and θ is a threshold value.

C. Fitness Evaluation

The thresholding performance of each particle needs eval-
uation in each iteration of PSO. For this, we perform a
reverse wavelet transform on what is being left off of the
thresholded coefficients to reconstruct the denoised image. The
intensity values of each pixel form the reconstructed image
are then used as features for FCM clustering. FCM clustering
performance is then being used as the fitness metric in PSO.
To measure the FCM clustering performance, FCM objective
function introduced in Eq. 1 is calculated. Therefore, the FCM
objective function acts as the fitness function for performance
evaluation of particles. In each iteration of the search, potential
solutions in the population are tested, and the best particle will
be conveyed to the next iteration.

IV. EXPERIMENT DESIGN

A. Datasets and Evaluation

To evaluate the proposed method comprehensively we test
our method on two different image datasets. The first one is a
Synthetic image dataset in which the images are composed of
a limited number of regions, easily distinguishable due to the
fact that each region has a single intensity value, and they are
geometrically simple. Having said that, this dataset is helpful
in giving an understanding of how our method performs when
dealing with simply recognizable compact regions in an image.
There are five images in this dataset named S1,S2, ...,S5.
While performing FCM clustering on them, the number of
clusters is set to 4, 3, 3, 4, and 3 respectively based on the
number of regions provided in the original image.

The second dataset is taken from the well-known Berkeley
dataset [31] specifically created for image segmentation and
boundary detection. For this dataset, five images named 3096,
42049, 167062, 86016, 196027 have been selected for a similar
experiment. The number of clusters has been pre-determined
as 2, 2, 3, 2, and 2 respectively, based on the main compact
regions in the image/groundtruth. Fig. 3 shows the original
images of these two datasets. Then, each image is corrupted
by Gaussian noise. The variance of noise ranges from 10%
to 80% to explore the performance of our method as noise
volume changes. For a quantitative evaluation, we use the
Segmentation Accuracy (SA) [7]:

SA =
C

∑
i=1

Ai∩Si
C
∑
j=1

S j

(10)

in which Ai represents the number of segmented pixels be-
longing to the ith cluster in the segmented image, and Si is
the number of pixels belonging to the ith cluster in the ground
truth image.



We have compared our method to several state-of-the-
art FCM-based noisy image segmentation methods. These
methods are FCM S1 and FCM S2 [8], EnFCM [9], FGFCM,
FGFCM S1 and FGFCM S2 [10], and FLICM [11].

B. Parameter Design

PSO, FCM, and wavelet transformation all have parameters
to set, and we have mentioned a few of them before. Table
I shows the full set of parameters in the proposed algorithm
and the values allocated to them in the experiments.

TABLE I: Parameter settings of the proposed method.
Parameter Value/Type
Wavelet filter Coiflets family
Scale number 5
Termination threshold for FCM 0.001
Maximum number of iterations for FCM 100
Population size 20
PSO iterations 50
c1 and c2 in PSO 1
weighting exponent (m) 2

Some of the state-of-the-art methods also have parameters
which need tuning for an optimal performance. FCM S1,
FCM S2 and EnFCM need α to be tuned, and FGFCM,
FGFCM S1, and FGFCM S2 need λg and λs to be tuned.
As presented in [11], the best performance of these methods
is guaranteed given the values α = 1.8, λs = 3, and λg = 6. To
keep the comparison fair, the surrounding window in all the
comparison methods is set to 7× 7 pixels. This window has
been used in all the them to collect information from neighbor
pixels, build a feature, and then attribute it to the pixel under
consideration.

C. Statistical Significance Test

To analyze the non-deterministic behavior of PSO in our
scheme, a pair-wise statistical significance test is performed.
For this, the Wilconxon test with the significance level of
0.05 is selected. For more information about this test, please
refer to [32]. Our algorithm runs 30 times independently on
each image, and the results in the form of SA values are
compared with other methods using the test. If the p-value
(the probability of observing a test statistic as or more extreme
than the observed value under the null hypothesis) is greater
than the significance level, the pair-wise comparison is not
significantly different. Otherwise, one method is significantly
better than the other.

V. RESULTS AND DISCUSSION

For each of the Synthetic and Berkeley images, there are
eight different noise levels. This means there are 40 noisy
test images for each dataset (80 test images in total). We
name each sample noisy image an “instance” in this paper.
In the following two sub-sections the results for each dataset
is discussed separately.

A. Synthetic Dataset

In this dataset, we first consider a pair-wise comparison
of the proposed method with others. A quick analysis of
the results from table II and Wilconxon test shows that our
method is completely (in all 40 instances) significantly better
than FCM S1, FCM S2, EnFCM, FGFCM, FGFCM S1, and
FGFCM S2. In comparison with FLICM our method still
possesses 36 out of 40 significantly better performances. There
are only three instances that FLICM has significantly better
performances than the proposed method, and they are all on
low noise variance of 10% for images S2, S3, and S4. There
is also one instance (S4, variance = 80%) that the proposed
method is not significantly different from FLICM.

To determine the overall best performance, and the first-
two best performers for an instance, we do another analysis
by sorting the segmentation accuracy of all the algorithms for
that instance. This reveals that in 36 (out of 40) instances
the best performer is the proposed method, in three instances
FLICM is the best performer, and in one instance either the
proposed method or FLICM is the best performer. This is the
case that the p value is greater than the significance level.
When considering the second-best performers, it becomes
evident that our method does second-best in three instances.
These three instances are the ones that FLICM has a better
performance than ours. Equivalently, our method always does
either best or second-best, and never worse. In this manner,
methods that possess the highest number of second-best per-
formances are FGFCM S1 with 25, FLICM with nine, and
FCM S1, FCM S2, EnFCM, and FGFCM with no second-
best performances. This means that the latter four methods do
not have any place among the first-two best performances.

B. Berkeley Dataset

For this dataset, again, with respect to the SA values
provided in table III and the Wilconxon significance test,
our method always does significantly better than FCM S1,
FCM S2, EnFCM, FGFCM, and FGFCM S1 in all the 40
instances. Pair-wise comparison to FGFCM S2 and FLICM
indicates that the proposed method is doing significantly better
in 39 and 28 instances (out of 40) respectively. Eight out of
the 12 instances that FLICM performs better than ours belong
to image 167062.

When sorting out all the performances of all the algorithms
for each instance, a quick analysis shows that our method
does the best in 27 out of 40 instances, and second-best in
a further 12 instances. This means that our method does the
best or second-best in 39 out of 40 instances in this dataset. In
a performance-decreasing manner, the rest of the algorithms
perform as follows: FLICM has 12 bests and none second-best,
FGFCM S2 has one best and three second-bests, FGFCM S1
has none best and 25 second-bests, and FCM S1, FCM S2,
EnFCM, and FGFCM do not have any place among the first-
two best performers. Another interesting point from table III
is the unusual behavior of FLICM on some of the instances
with unexpectedly low SA value. We will show in qualitative
comparison that these are the cases that FLICM completely
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Fig. 3: Original test images from the Synthetic dataset, row (a), and Berkeley dataset, row (b).

TABLE II: SA values for the Synthetic dataset. The bold number
indicates the best performance for each instance.

Algorithm
Img.Vol. FCMS1 FCMS2 EnFCM FGFCM FGFCMS1 FGFCMS2 FLICM Ours

S1

10% 88.98 89.86 88.98 93.12 94.33 93.01 95.90 97.06± 0.03
20% 79.41 82.85 78.95 86.22 89.66 87.22 88.04 95.94± 0.05
30% 71.62 78.14 71.44 79.86 85.99 81.37 58.15 95.46± 0.09
40% 67.16 74.94 67.10 75.31 82.15 77.10 44.95 94.28± 0.10
50% 62.77 71.79 63.34 71.38 78.93 72.83 43.12 94.07± 0.07
60% 59.78 70.42 60.64 67.94 76.36 72.67 29.27 94.17± 0.10
70% 57.25 68.61 58.12 64.82 73.33 70.26 44.69 93.19± 0.14
80% 55.29 66.27 56.10 62.87 69.89 67.67 30.49 92.70± 0.04

S2

10% 97.85 98.41 97.89 99.11 99.02 98.73 99.18 99.12± 0.01
20% 92.26 95.05 92.42 96.51 97.85 96.98 97.35 98.67± 0.03
30% 87.25 91.49 87.72 93.58 96.51 94.87 96.28 98.36± 0.03
40% 81.72 89.21 82.85 89.11 93.49 92.02 74.52 98.13± 0.01
50% 76.60 86.52 78.22 85.39 91.32 89.71 82.32 97.64± 0.05
60% 74.44 85.53 76.40 83.65 90.05 88.70 74.51 97.38± 0.01
70% 71.04 83.49 73.47 80.16 86.40 86.54 73.24 97.68± 0.03
80% 68.52 81.58 71.02 77.76 85.56 85.59 73.89 97.18± 0.02

S3

10% 81.10 93.30 96.04 97.68 97.25 97.15 99.65 99.61± 0.00
20% 67.89 76.50 69.33 88.37 95.48 94.37 99.19 99.33± 0.01
30% 52.89 71.85 64.92 76.71 90.76 88.78 98.63 98.92± 0.04
40% 45.92 67.07 60.81 72.89 86.83 84.82 65.52 98.73± 0.02
50% 41.31 62.38 57.00 69.78 80.65 78.62 55.60 98.54± 0.06
60% 38.72 61.55 54.03 68.78 80.23 77.18 54.36 98.56± 0.02
70% 36.99 59.21 51.58 63.26 78.07 72.38 51.58 97.79± 0.03
80% 34.49 58.54 49.69 62.40 75.42 70.59 45.22 97.96± 0.08

S4

10% 72.59 77.48 85.28 93.80 92.25 93.70 98.16 96.49± 0.01
20% 54.42 67.71 72.10 72.65 84.55 82.02 92.41 95.16± 0.08
30% 51.00 60.31 66.59 65.40 65.40 75.39 82.16 93.93± 0.04
40% 49.36 58.30 61.76 62.01 60.43 76.61 81.68 93.21± 0.03
50% 48.69 55.94 53.88 57.90 57.28 72.07 81.86 91.89± 0.04
60% 48.82 54.17 50.62 56.55 56.25 70.21 88.39 90.13± 0.32
70% 48.04 54.01 48.08 51.60 54.57 68.73 88.55 90.99± 0.15
80% 47.76 52.40 47.51 47.01 50.01 68.26 85.70 81.70±10.08

S5

10% 85.62 86.90 85.54 90.31 93.15 90.68 57.80 96.84± 0.09
20% 75.55 79.95 76.33 82.99 88.01 84.38 58.73 95.06± 0.07
30% 67.21 74.05 69.03 76.47 82.39 78.03 58.25 93.96± 0.11
40% 62.39 70.96 64.81 72.43 78.87 74.89 59.96 93.09± 0.06
50% 57.20 66.68 60.11 67.50 73.84 70.19 58.19 90.54± 0.13
60% 54.73 65.21 57.89 65.19 71.62 68.06 39.66 90.98± 0.15
70% 52.90 63.78 56.20 63.36 69.29 66.56 58.90 89.99± 0.06
80% 51.73 62.83 55.17 62.18 68.06 65.67 39.33 88.04± 0.12

misses one or some of the components of the image in final
segmentation results.

C. More Discussions

To further analyze the effect of noise volume variation on
SA value, we conduct another analysis to measure the SA
variance of each method on each of the ten test images from
the two datasets while the noise level ranges from 10% to 80%,
and then compare the results across all the methods. Table IV
provides such a comparison. The table shows the SA variance
of each method on each image with the minimum variance in

TABLE III: SA values for the Berkeley dataset. The bold number
indicates the best performance for each instance.

Algorithm
Img. Vol. FCMS1 FCMS2 EnFCM FGFCM FGFCMS1 FGFCMS2 FLICM Ours

3096

10% 64.18 67.18 68.78 76.26 82.71 84.41 6.13 83.82±0.10
20% 58.73 62.27 59.99 65.92 72.80 74.09 6.13 79.88±0.01
30% 57.00 60.56 57.54 62.73 69.95 69.36 6.13 76.67±0.03
40% 55.98 59.85 56.24 61.52 67.04 67.70 6.13 82.67±0.03
50% 54.96 58.69 54.72 59.88 65.35 63.74 6.13 84.33±0.01
60% 54.72 58.55 54.61 58.14 64.50 63.61 6.13 76.72±0.04
70% 54.45 58.53 54.12 57.79 64.24 63.45 6.13 80.44±0.07
80% 53.85 57.73 53.35 56.81 63.13 61.76 6.13 80.48±0.04

42049

10% 93.07 93.43 93.46 94.12 93.62 93.80 95.21 94.65±0.02
20% 89.00 91.02 90.77 92.86 92.70 92.47 94.16 93.35±0.09
30% 83.74 88.65 86.63 91.37 92.05 91.43 90.16 92.75±0.08
40% 78.72 86.03 81.48 88.65 91.12 90.18 19.09 92.27±0.04
50% 75.59 84.42 77.67 86.91 90.21 89.21 19.09 91.97±1.37
60% 73.31 82.63 74.97 84.17 88.95 87.88 19.09 91.17±0.11
70% 71.37 80.71 72.17 81.81 87.78 85.65 19.09 91.93±0.14
80% 69.59 78.55 70.66 78.60 85.10 82.15 19.09 89.84±0.23

167062

10% 79.13 79.77 85.49 98.00 97.27 81.84 99.06 98.47±0.01
20% 77.40 79.05 82.38 79.87 96.99 80.22 99.15 98.18±0.00
30% 76.64 78.56 81.45 77.91 75.23 80.17 99.20 97.84±0.01
40% 76.34 78.54 79.67 77.16 74.34 80.76 99.37 97.62±0.01
50% 75.61 77.82 78.59 77.16 73.22 80.61 99.19 97.60±0.00
60% 74.67 77.25 76.91 76.09 72.84 80.73 99.21 97.56±0.01
70% 74.00 76.78 75.50 74.68 72.52 81.54 98.94 97.21±0.01
80% 72.48 75.46 73.47 74.45 70.99 79.74 98.85 97.13±0.00

86016

10% 86.19 87.21 89.17 92.69 94.10 93.23 99.12 98.47±0.02
20% 77.12 81.05 79.43 86.77 91.36 89.22 16.36 97.81±0.01
30% 72.44 77.88 74.32 82.22 87.90 85.65 16.36 97.43±0.02
40% 69.06 74.50 70.22 77.56 84.35 81.36 16.36 98.31±0.04
50% 67.19 73.21 68.18 74.54 82.43 78.67 16.36 97.78±0.01
60% 65.87 72.26 66.18 73.57 80.89 76.95 16.36 97.81±0.00
70% 64.06 70.43 64.69 70.91 76.82 74.56 16.36 96.12±0.15
80% 63.14 70.11 63.54 69.68 75.53 74.11 16.36 95.89±0.04

196027

10% 73.29 74.95 76.09 78.74 79.61 80.24 91.09 79.15±0.25
20% 67.30 70.06 68.85 72.99 76.45 75.71 11.57 76.84±0.03
30% 64.64 68.19 65.46 70.20 74.40 73.88 11.57 77.78±0.02
40% 63.04 66.91 63.80 68.99 73.69 71.80 11.57 78.54±0.41
50% 61.68 66.14 61.97 67.30 72.35 70.24 11.57 80.08±0.16
60% 60.57 65.28 60.76 65.29 70.37 68.88 11.57 76.52±0.12
70% 59.69 64.07 60.36 64.67 68.43 67.26 11.57 74.19±0.06
80% 59.12 64.22 59.52 64.17 69.59 67.50 11.57 75.95±0.04

bold. Our method has the minimum variance in nine out of
ten cases. This indicates than even though the noise volume
has a large diversity, regardless of the segmentation accuracy,
the proposed method produces the most consistent results.

To qualitatively compare the segmentation results of our
method with other methods, Fig. 4 provides a few samples
from the overall 80 noisy images, and the corresponding
segmentation results of all methods. The first three columns
show S1, S4, and S5 from the Synthetic dataset with noise
variance of 70%, 50%, and 10% respectively. The next three
columns are images 3096, 167062, and 196027 from the



TABLE IV: The effect of variation of the noise level on SA variance.
Image 3096 42049 167062 86016 196027 S1 S2 S3 S4 S5
FCMS 1 11.53 72.93 4.31 60.52 22.47 136.53 109.62 275.01 69.96 145.28
FCMS 2 9.54 26.29 1.90 34.88 13.16 62.82 33.57 137.57 73.17 73.22
EnFCM 25.68 73.58 15.31 76.00 30.99 126.83 90.17 223.45 178.76 115.97
FGFCM 40.32 30.23 59.48 65.69 24.43 113.07 60.00 151.84 214.37 101.64
FGFCMS 1 42.47 7.95 124.33 43.83 13.97 69.47 25.85 67.87 230.72 83.19
FGFCMS 2 57.60 14.53 0.49 49.38 20.11 77.69 23.50 98.03 73.11 81.74
FLICM – 1472.33 0.03 856.00 790.32 626.00 137.19 566.31 33.84 78.96
Ours 8.52 2.05 0.21 0.91 3.60 2.11 0.45 0.38 20.74 8.57

Berkeley dataset with noise variance of 80%, 40%, and 30%
respectively. The last row shows how FLICM completely
misses one or more number of regions in the final segmenta-
tion results.

VI. CONCLUSIONS

A new noisy image segmentation was proposed in this
paper. The method utilizes wavelet thresholded coefficients,
in which the optimal values of thresholds were determined
using PSO. FCM was applied as a fitness metric in the PSO
search, also as the segmentation algorithm. Unlike the other
FCM-based noisy image segmentation methods, the proposed
algorithm looks at the problem from feature manipulation
point of view. To abbreviate the distinctive properties of the
new method, we mention three main points. First, it shows
considerably good performance on severely noisy images,
second, it does not need parameter-tuning for different noise
levels, and third, it produces considerably stable results even
when noise volume has a large variation. Future work will
explore the potential of the proposed method on other types
of noise.
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