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Abstract— We present the co—design of a gaming scenario
between an Artificial Evolution algorithm and a human designer.
Such co—design is twofold, consisting of an initial stage in which a
genetic algorithm is used to evolve the control parameters that
define the behavior of a group of virtual agents. This produces
interesting and unexpected results not only creating
differentiated behaviors but also increasing the flexibility of the
character to adapt to a given objective. In the second stage of the
game design a human interplay was introduced in adding other
elements to the game, such as other characters and new game
dynamics. In this paper we introduce a game that integrates
virtual and physical characters while taking advantage of such
co-design approach. The physical character consists of a robot
which controlled through a Natural User Interface can be part of
the game by interacting with other characters in the virtual
environment.

Keywords—  Virtual agents,  Artificial
Physical/Virtual Interaction, Natural User Interface

Evolution,

I. INTRODUCTION

Computational Intelligence (CI) techniques have been
broadly used in Video Games, in great part because of the
interesting scenarios that video games can offer to test the
performance of algorithms. These scenarios are of great use,
since they can capture the complex dynamics and competitive
elements of the real world, thus offering challenging tasks, and
at the same time maintain the controllability and traceability of
a computer simulation were all the variables, scores, feedback
and simulation parameters can be easily accessed and
configured. In addition to this, not only does CI benefit of
using games as a test bed, but also, video games can obtain
advantages by using this type of techniques. The application of
CI into video games can provide solutions to create more
realistic scenarios, intelligent characters with appealing
interactions, or the adaptation of the game according to the
user’s level of motivation [1]. CI has been used in video games
in a vast amount of applications. For example, in Procedural
Content Generation [2], algorithms with limited or indirect user
input are used for the creation of game content, such as
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characters, levels, items, game rules, etc. An approach used to
generate such content is based on search, where by using
evolutionary algorithm, random search, or any other stochastic
optimization method, content with certain desired properties is
generated. This is an incremental process in which the search
space is explored producing changes on content, by keeping
changes which make the solution better and discarding those
that are harmful, the desired properties are eventually achieved
[2]. Another application is the creation of characters that learn
how to play a game well. This is the case of Non-Player
Characters (NPC) [3], which use reinforcement learning or
evolutionary algorithms to learn behaviors that enable them to
win a game. In this type of applications, the game is seen as a
reinforcement learning problem, in which policies are
constructed based on the score of the game.

The aim of this project is to use artificial evolution as a tool
that helps the designer of a game, by determining the set of
control parameters that enable a group of virtual agents to
exhibit a swarm behavior, coordinating their actions to
collectively achieve the completion of a given task. In addition
to this, we explore the use of evolutionary techniques to allow
the group of agents to adapt to different objectives, by
modifying the individual and the overall swarm behavior. To
illustrate this co-design approach, we present a game
integrating both, physical and virtual characters, and a human
player that interacts as the leader of a virtual swarm of agents.

This paper is organized as follows: Section II presents the
proposed methodology. The model used to achieve a swarm
behavior is detailed, the genetic encoding and fitness function
used in the evolutionary algorithm are described, and the
human design process and physical-virtual interaction are
described. Section III describes the results showing how the
boids model achieved a cohesive behavior, the Genetic
Algorithm (GA) generated highly fit solutions, and the
different gameplays that where constructed along with the
interaction of the user and physical characters with the virtual
elements Finally, in Section IV a discussion summarizing this
work and its result is done.



II. METHODS

To start, we identified the need to endow the main character
of our game, herein referred as a casual agent, with a
cooperative behavior and with the capability of adapting to
different game objectives. The proposed methodology is based
on the use of Genetic Algorithms (GA) to achieve the
adaptability of the swarm and to modify the control
parameters, aiding in the design of a video game. GA have the
capacity to explore wide search areas using a population of
candidates and because it does not require any previous
information about the fitness landscape [4], yet generating
efficient and powerful results. The GA was chosen based on
the need of solving the engineering problem of optimizing the
boids behavior. It is beyond the scope of this work to evaluate
and compare multiple evolutionary algorithms. Future work
described in Section IV shed light over possible improvements
for the evolutionary algorithm. The approach used towards a
collective behavior was to implement a model in which
through local interactions a group of agents exhibits swarming
behaviors. The model is known as Boids [5].

A. Boids Model and Simulation Environment

The first step was to construct our own simulation scenario
to emulate each boid (virtual agent) using the Python
programming language. Each of the virtual agents (referred to
as A) was created as a single geometrical object [5] consisting
of a circle with a special set of properties: a two dimensional
position in the simulation environment P =Xy and a
velocity in both directions 7 =V,* VyA providing the agent an
orientation. The casual agents (also known as boid) are agents
whose behavior is determined by the boids model Fig.1, a.
Each of the boids has a simulated perception of the other
agents, limited by a local circular zone of vision defined by the
neighborhood radius R, (Light ring, Fig.1, a). The agent has
access to the position and velocity of the M flock mates
(smaller dark agents positioned inside light ring, Fig.l, a)
within its neighborhood, allowing it to apply the boids set of
rule and compute its new state at each time step of the
simulation. It is important to notice that the membership to the
neighborhood is obtained by computing the Euclidian distance
between the two agents. The set which includes all the N casual
agents in the virtual environment is denoted by S,
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Fig. 1. (a) Boids model and radii, (b) Cohesion rule, (c) Repulsion rule, (d)
Alignment rule

The three rules that determine the agent’s behavior can be
described as follows. The cohesion rule, mathematically
described by (1), consists in modifying the agent’s velocity
(arrow pointing out of dark agent at the center, Fig.1, b) such
that it produces a shift in its position that moves him closer to
the center of mass of the local flock (small dot, Fig.1, b). In
contrast, the repulsion rule described by (2) changes the
velocity in a way that the agent moves away from the center of
mass of its local collision group. This group is made out of the
H agents (dark agents, Fig.1, c) lying inside the collision radius
R.. The alignment rule (3) adjusts the velocity in a way that on
the next time step the agent will steer towards the average
heading of the local flock (Fig.1, d)
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Each rule produces a non-correlated modification to the
agent’s velocity. These modifications are merged into a single
value using a linear combination, where each of the parts is
multiplied by a weight W, Wy, W,

B. Evolution of Controllers

As mentioned before, the main ideas underlying the use of
Artificial Evolution are to enhance the process of the games’
design. This, by autonomously generating control parameters
that produce flocking behaviors that through manual
adjustments would not have been easily achieved. Such
behavior must respond to the need of the swarm to adapt to a
given objective in the game. For this reason, in the initial stage
of this work we added three additional agents: A predator
agent, a leader agent and an obstacle agent. Each of these
characters had a parameter which enabled modifying the
reaction a casual boid had towards a specific character.

As a case study for the scope of this project the leader
character was used as a mean to create a new objective in the
game. The new objective was to achieve a moderately compact
swarm exhibiting a flocking behavior that could use the leader
agent as the head of the swarm guiding its movement
trajectory. By “moderately compact swarm” we refer to the
type of grouping behavior present in schools of fish or flock of
birds [6], where even though individuals exhibit the capacity to
move at impressive speeds in a uniform group, they can also
alter the shape and level of compactness of the flock to avoid
an obstacle or re allocate members within the group. To reach
this objective we decided to construct each potential individual
(solution) with a genetic representation encoding the
parameters which produced the most significant changes on the
swarm’s behavior. That is, both vision radius (R, and R.) which
drastically affect how global the communication between
agents is, and the group of principal and auxiliary weights W,
Wg, W, and W, (leaders weight). That have the highest impact



in the swarms’ behavior greatly controlling in a complex
manner the inter agent interaction. A summary of the genotype
is presented in Table I:

Table 1. Genetic Representation of Individuals (Solutions) to Evolve

Gene R, R, We Wr Wy A

Value Range | 0-150 | 0-150 | 0-1 | 0-1 ] 0-1 ] 0-10

The fitness function evaluating the performance of each
individual (solution), consisted of a linear combination of four
components (all normalized), making this search a multi-
objective optimization problem. The first, the inter agent
collision f,., measures the average amount of casual — casual
agent collisions that occurred during the evaluation of an
individual (i.e. the total run time of the simulation). This
parameter was measured by computing if the Euclidian
distance between agent 4 and its surrounding neighbors was
less than or equal to twice the agents size. If such evaluation
was true, it indicated that two (or more) agents had partially or
totally overlapped, implying that a collision had taken place.

The second parameter is the number of agents at goal f,,
showing how close the casual agents are from the leader during
the run time of the simulation. In order to have a heuristic
which indicated how likely were the casual agents to follow the
leader, we created a circular area (termed goal area) centered in
the leader’s position. The proposed heuristic establishes that
each time a casual agent stands within this area; the agent is
currently following the leader. Consequently, by obtaining the
amount of agents that stand inside the area and averaging it for
the total simulation time, we are indirectly measuring the rate
at which the leader following behavior was manifested.

As described above by using the heuristic implemented
with fag we can estimate when a casual agent is close to the
leader. However, being able to measure how many agents are
inside the goal area is not enough. In addition we must be able
to determine the way in which such agents arrived. Namely, we
must measure if the agents arrived as a group, or if each one of
them independently reached the goal. To suffice this, a third
parameter delta time of arrival f;7 was introduced indirectly
measuring the frequency at which the agents arrived to the
goal. Specifically, what we measured was the elapsed time
between the arrival of one agent and the other.

The fourth parameter is the median group radius f,,,. This
parameter indicates how disperse or compact is the swarm of
boids by measuring the average mean distance between the
casual boids position and the center of the group, constituted
by agents of the set S,,. The measurement of f,, is as follows.
The center of the group C,, is extracted by using the position of
all the agents belonging to S, and computing the average as
showed in (4). Then the Euclidian distance between the center
of the swarm and each of the members of the set is computed
and stored in a list. Finally, by knowing which is the mean
value of this list for each time step of the simulation, an
average value over the total number of iterations Tt can be
calculated, obtaining f,,. (5). The values produced by f,, were
used as the input argument to a Gaussian Function as showed
in (6), producing the modified parameter f;,,. This function
was constructed such that individuals with a phenotype
producing either heavily disperse or over compacted group of
agents where strongly penalized. In contrast, agents exhibiting

an intermediate compactness between the above mentioned
extreme situations, were rewarded with a higher f,,- value. The
Gaussian’s peak rjg(mean or expectation) was set to an
“ideal” mean group radius which was experimentally
established following the guidelines previously described.
Similarly, a standard deviation o was also experimentally
determined; controlling how acceptable are the described
extreme situations.

Average Median Group Radius

N-l o ON-l 4
cm{ZX’,Z Y/}V{JGSW} “)
=0 j=0

1 &l .

fmr = E ; median {‘Ccapl Hv {J € S(ra }} (5)
Lo =Tidea )’

mer = e 207 ’rideal = 100’0 = 40 (6)

Due to the stochastic behavior and short term predictability
of the boids model [7] in which a controller could by chance,
converge to a different behavior of the swarm. A single
evaluation of an individual would lead to a noisy fitness
functions [8]. To lessen the stochastic nature of the agents and
compute a more stable value of fitness, each of the individuals
was evaluated several times generating a set of fitness values
which were averaged to produce a final decisive fitness. Fig.2
clearly depicts many of the previously described features of the
simulation environment and the evolutionary parameters.

Fig. 2. Simulation environment during the Evolutionary Process. R,
(neighborhood radius) and R. (collision radius) can respectively be identified
as the big and small circles centered on each of the agent. As a white dot, the
center of the group C,, is presented and the f,, (Median Group Radius) is
represented as the white circle centered on this dot. The leader agent is
represented as the dot on the far right of the scenario, it is surrounded by a
circle of radius r¢ which encompasses the goal area.

C. Human Crafted Gameplays

In a second stage of the design of the gaming environment
a human user stepped in by carrying out two main tasks: the
fine tuning of the controller and the creation of new gameplays.
The fine tuning process was mainly carried out experimentally
by trial and error. However, the time consumption was
minimum given the fact that the adjustments that had to be
performed where almost negligible and could be done by a
quick visual inspection of the simulation. With respect to the
creation of the new gameplays, a number of new features such
as game characters, dynamics and graphical features were
added, enhancing the games playability and making it more
interesting.



The first feature added consisted in transforming the
Predator Agent into a Non Player Character (NPC), exhibiting
to a certain degree an autonomous behavior. The predator was
endowed with a simulated perception limited by a radius which
defined how “sharp” (big) was the predator’s sight. Any casual
agent inside the sight of the predator would become a potential
prey for him to hunt. Depending on the presence or absence of
agents within the predator’s sight, it could exhibit to types of
behaviors: Random Foraging or Prey Hunting. The Prey
Hunting behavior is triggered whenever a casual agent lies
within the predator’s sight; enabling the predator to follow and
eventually hunt the preys that surround him. The speed at
which a predator agent hunted its preys was initialized at a base
speed V), and during the game the predators speed linearly
decreases by a factor AV, according to the number of preys
within its sight. This mechanism translates in increasing the
predator’s ability to hunt individual agents and decreasing its
possibilities of capturing boids which remain in a swarm. The
Random Foraging behavior, triggered when no casual agents
lay within the predator’s sight. Is a simple behavior in which
the velocity is modified by adding a real number sampled from
a uniform distribution. In this way the predator randomly
wonders around the scenario searching for preys.

Under certain circumstances in which the preys moved in a
specific configuration, the predator agent started oscillating
back and forth around the preys’, endlessly chasing the same
group of preys but never successfully hunting them. To avoid
this problem that perpetually locks the NPC in a loop, we
introduced the surrender and precision actions. The surrender
action is a mechanism that allows the predator to eventually
abandon the hunting of a group of prey and restart exploring
the scenario in look for new ones. Complementarily, the
precision mechanism allowed the predator to reduce its hunting
speed in order to achieve more accurate movements while
approaching a prey. The speed reduction is directly
proportional to the level of persistence. This allowed the
predator to not only consider surrendering when no preys had
been hunted for a certain amount of time steps, but to first
consider adopting the strategy of gradually reducing its hunting
speed to increase the probability of hunting a prey.

A second feature added to the gameplay is a character
referred to as the Assistant Agent. This character consisted of
an autonomous player (i.e. not controlled by the games user)
whose main role was to search for dead casual agents and
revive them. The assistant is able to localize any dead casual
agents that are inside its vision radius and gradually approach
to revive him. Similar to the predator agent, the assistant
exhibits the same type of behavior by randomly exploring the
scenario in look for dead agents, then targeting a specific agent
to revive, and eventually abandoning this task if no successful
revival action is performed within a limited time frame.

A third feature named Guider Agent, is another NPC whose
function is to take the swarm of casual boids from an initial
position A (left side of the scenario) to a final position B (right
side of the scenario, target point). To achieve this conduct the
guider agent has the capacity of attracting the casual boids and
is equipped with a global vision of both, a target point and the
complete set of casual boids. In this manner this character
managed to produce a shift in its position that slowly moved

him right, and at the same time it remained close to the group
of casual agents to effectively take them to the target point.
Whenever a casual boid was left behind, the guider agent went
back, getting close to the casual boids and re uniting them in a
single group. A final feature added, is the ability of the user to
create obstacle objects which the autonomous characters try to
avoid colliding against.

D. Physical Character and Interfaces

We decided to add a new component to the game which
resides out of the virtual environment in which all the other
agents where created: an E-puck mobile robot [8][9]. This
robot served as a physical character which could directly
interact with other virtual elements creating an interesting link
between the physical and virtual world. Two main elements
allowed us to create this physical — virtual interaction: The
robot along with an overhead tracking system and a Natural
User Interface (NUI).

The Natural User Interface consisted of a Kinect that kept
track of each of the user’s joints, allowing him to command
through gestures the mobile robot. The implemented gesture
control algorithm required of capturing the position of the
user’s head, hands and shoulders. Whenever the user raised its
left hand above its head and the difference between the
positions of both joints in the Y-direction was greater than a
threshold distance, the control of the mobile robot was enabled.
Once enabled the user could control the direction of the
heading of the robot, between a straight motion and angular
rotation. When the relative distance in the X-direction between
the right shoulder and the right hand was zero or less than a
small epsilon value the command sent to the robot was to
establish the same speed in both wheels producing a forward
motion. In comparison, when this distance was greater than a
threshold, the users pose was considered as a left or right
steering command, thus setting different speeds in the robots
left and right wheels.

On the other end of the control loop the E-puck robot was
programmed using ASEBA [10], an event-based programming
language for real-time distributed control of mobile robots. The
code stored inside the robot was trivial, it only had one event in
which two variables corresponding to the speed of both wheels
was established. The bridge between both programming
languages (i.e. Kinect and E-puck robot) was established using
an available API provided by ASEBA called ASEBA CMD.
The wheel’s speeds where sent via Bluetooth to the robot’s
microprocessor by using ASEBA Switch, a utility that can
connect to specific targets differentiated by an identifier (each
E-puck robot has a unique identifier).

In addition to the above, a feedback mechanism which
connected the physical character to the virtual environment
was created. Such feedback was achieved using computer
vision techniques which enabled performing a visual tracking
of the robot’s position. The tracking algorithm used the
standard image processing pipeline: capturing the RGB image,
converting it to gray scale to reduce the dimensionality of the
input image, thresholding the input data to produce a binary
image, performing blob detection and finally using a nearest
neighbor tracking algorithm to trace the position of the desired
blob (particle). It is important to highlight that the blob



detection algorithm wused two constraints (area and
compactness) enforcing a greater stability of the tracking
system. The complete visual tracking algorithm was
implemented using the open source software SwissTrack [11].
After obtaining the coordinates of the robot in the physical
scenario, they are sent through a TCP/IP port to the python
game engine, were Swiss Track serves as a server and the
gaming engine is the client. In the python algorithms the
position of the leader character is set to the robot’s position in
the physical scenario.

ITII. RESULTS

A. Boids Swarm Behavior

Using the boids model resulted in a bioinspired way to
achieve a flocking behavior among the group of agents,
inspiring itself in the movement of biological swarms. By
manually modifying the main parameters through a long time
consuming process, we could achieve a behavior which mimics
the flocking behavior of birds, or schooling conducts of fish.
The Boids simulation environment is presented in Fig.4.

B
‘e 00
o oco
R )
o
s N
e
.
°
@ (b)
B
B
3 o
. o ¥ :7; :o
° o:ofb\
vo @ * ®L €2
@ P
© (d

Fig. 4. Simulation environment showing the creation of flocks with
different parameters. (a) Low W, and high R,, (b) High W.and Low R,, (c)
Low Wrand high R., (d) High Wrand Low R,,

As depicted in the Fig.4, different flock behaviors could be
achieved. For example, when we decreased W, to a nearly null
value but kept a moderately large radius R,, the agents
exhibited a highly compact behavior were a reduced number of
small groups were formed and after some iterations they came
together into a highly dense group (Fig.4, a). This showed an
independence or low relevance of the cohesion weight when
influencing the global behavior of the group and revealed the
high impact that the level of communication has on the speed
of convergence. This was further confirmed with the
parameters used to produce the behavior depicted in Fig.4, b, in
which a high cohesion weight with a moderately low Rn where
established. Despite the high cohesion agents only formed
multiple small groups sparse all over the scenario. By keeping
a low Wy but increasing the collision radius R, we achieved an
unexpected behavior showed in Fig.4, c. In which numerous
compact groups were formed, remaining heavily intertwined

and never collapsing with the other neighboring clutters into a
single flock. One interesting aspect of this behavior is that at
the macroscopic scale the swarm formed a structured formation
among clusters (hexagonal geometry) where each of the
clusters positioned itself in a vertex and the “invisible”
cohesion among clusters formed the hexagon’s edges. This
type of behavior is characteristic of Agent Ensembles, were
permanent connections among the agent clusters cause the
system to act as a single physical object [12], moving itself as a
semi-rigid object along the scenario.

B. Adaptation Through Evolution

Manually tuning the parameters and achieving a desired
behavior on purpose is not a straightforward process. Despite
the boids model being solely composed of three interacting
rules, it can be considered a complex system, having the
unique property of short-term predictability, where the actions
and movements of the agents can be predicted for a few couple
of time steps, but beyond that, the deterministic aspect of boids
fails. Short-term predictability is contrary to both, chaotic
systems which are completely unpredictable, and periodic
systems which are entirely predictable [6]. By using the
Genetic Algorithm (GA) technique, we could overcome the
gap that exists between mapping the individual boid behavior
(micro) to the system/swarm behavior (macro).
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Fig. 5. GA Fitness per Evolved Generation. Two solutions (many more
solutions were generated, but only a subset of these are shown) gradually
evolved generation by generation reaching acceptable fitness values. Each
generation had population of 20 individuals.

Table II. Genetic Representation of Best Evolved Individuals (Solutions)

Gene Rn RC Wc WR WA WL
Ind1 150.00 | 30.29 | 2.71% | 100.00% | 71.16% | 5.78
Ind2 150.00 | 32.07 | 0.67% | 66.74% | 10.99% | 10.00

* W, not showed in percentage since it is a scaling factor

The controller parameters of the best individuals within the



generated solutions are presented in Table II. Based on the
genotype of Indl and Ind2, one can observe that both have a
low cohesion and a very high repulsion value. Analyzing this
results one could postulate that the GA found that this
combination was ideal, since having a contrasting value to that
found by the GA (i.e. A high W) would cause the boids from
a neighborhood to converge to a small area (excessive
attraction). In this manner increasing their chance of colliding
and therefore raising the possibility of having agent inter
collisions, decreasing the fitness parameter f,.. By comparing
the experimental fitness values showed in Table III for the
swarms /ndl and Ind2, one can observe a direct relationship
between having low cohesion and high repulsion values and
getting a better f;,. (i.e. fewer agent collisions). Building upon
this, a high W easily allows the agents to move close to each
other at high velocity values and still prevent crashing against
others. As achieved by Indl, saturating this value to its
maximum generates a policy which on average tries to totally
avoid any collision and as a consequence the agents can get
closer to each other. This is manifested as a lower collision
radius R.. The above insight can be clearly seen by doing a
quick comparison between the values of Wy and R, for the two
satisfactory solutions found by the evolutionary algorithm.
There certainly exist an inverse relationship between the
distance at which two agents are comfortable of coming
together and the level of rejection among agents. All of the
individuals converged to having the largest allowed value for
the neighborhood radius R,. In this way they could increase
the range of their simulated perception, more easily detecting
the presence and position of the leader agent enabling them to
approach him and increasing f,.. In addition, a bigger amount
of boids could be included within a single neighborhood
radius, consequently creating more compact groups and
increasing the value of the median group radius fg,,. At the
same time if both, the compactness of the group and the
chances of following the leader agent are increased, when a
group of agents enters the goal area they will come in at more
regular time intervals, also improving the fitness parameter
corresponding to fir.

Table III. Fitness Parameters Achieved by Best Evolved Individuals”

Parameter fac fag far Temr F
Ind1 095 | 099 | 0.97 | 0.75 | 0.93
Ind2 0.87 1.00 | 0.96 0.73 0.90

* Fitness values obtained after the end of evolution. Experimentally simulating the
Swarms in a scenario in which the leader agent moved (not static)

Table IV. Priority Levels (Weights) for Fitness Components

Priority W W.g War Womr
Value 0.30 0.35 | 0.15 0.20

The overall fitness values F presented in Table III were
obtained through a linear combination of the fitness
components using the weights presented in Table IV. The
process of finding an ideal solution through the evolutionary
algorithm did require the tuning of the priority levels
(weights). By changing the values of the priority level we

managed to exert different evolutionary pressures which
guided the evolution towards each of its multiple objectives.
Despite the fact that this tuning does require a manual trial and
error approach, the process is remarkably simpler in
comparison to tuning the six parameters that define the boids
controller, that are highly dependent through complex inter
relations and which have a nonlinear input—output
correspondence. On the contrary, each of the priority levels is
clearly defined in an intuitive and independent manner, where
there is a direct association between the value of each
component and a specific target behavior.

A numerical measurement of the emerging behavior of the
evolved swarms is present in two boxplot contrasting
characteristics of the best evolved individual (/ndI) versus an
individual with a low fitness. The measured characteristic is
the average between an agent’s position and the group’s
centroid C,, for each of the agents. The average is computed
over all time steps of the simulation. As seen in Fig.6 the high
fitness individual has a small mean value when compared to
the low fitness individual, indicating that the swarm’s level of
compactness and communication for the former is much
greater. This can be further evidenced by the reduced
interquartile range of the high fitness individual.
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Fig. 6. Comparison of compactness values for high-fitness (right boxplot)
and low-fitness (left boxplot) swarm’s.

C. Gameplays

With the human crafted features, two types of games were
created. The first gameplay consisted on an adversarial
scenario where the two main characters, Leader and Predator,
fought against each other. There are two teams: the leader’s
team constituted of the user controlled leader agent and the
autonomous assistant agent, and the predators’ team solely
made out of various predator agents (Fig.7). The objective of
the leader’s team is to maximize the amount of casual agents
that are alive by the end of the game. In contrast, the predator
team has to hunt as many agents as possible. The assistant
agent minimizes the amount of hunted agents by reviving
them, and the role of the user is to attract and move the casual
boids towards the safest positions, far from the random
exploration areas of the predators. In addition, and with great
importance towards a good user strategy, the game player
should try to cluster the casual boids. Creating a compact group
of agents and avoiding leaving individual boids wondering on



their own, which for the predators are easy to hunt preys
(because of its high speed against individual boids). When
multiple predators where present during the gameplay we
could observe a behavior similar to cooperative hunting,
despite the fact that predators are not aware of each other and
that they are not trying to explicitly cooperate, this result was
possibly produced because individual predators had the same
objectives. The underlying idea of the previously described
game is that the swarm as a whole, cooperating among agents
and aided by the leader, has a greater chance of survival upon
an attack, in comparison to a behavior where each casual boid
moves on its own without cooperation

Fig. 7. Gameplay: Adversarial scenario, Leader’s VS Predator’s Team.
User controlled Leader is currently wining the match by having 13 living
Boids. The Predator Agents are losing the match by only hunting down two
preys some of which have been revived by the Assistant Agent.

The guider agent which had the capability of moving the
casual boids from one point of the gaming scenario to another,
helped us to design a second gameplay, this time under the
idea of having an adversarial scenario between the
autonomously controlled guider agent and the user controlled
predator. The guider character had to take the casual agents
from their initial position on the left hand side of the scenario
to the target point on the right side of the scenario. If the guider
agent managed to at least safely position one casual boid
within a small distance from the target point, the guider agent
won. On the other hand, the user had to control the predator
agent in order to either hunt down all of the casual agents and
in this way prevent any boid from reaching the target point; or
manage to keep the casual boids as far away of the target point
until the game ended.

D. Physical Virtual Interaction
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Fig. 8. (a) User’s Joints Tracking (b) Physical Game Set Up: Kinect

interface, E-puck Robot with black elliptical label, Overhead camera for
visual tracking, Video beam for projecting virtual game in physical scenario.

Keeping track of the players joints (Fig.8) to capture the
control commands, resulted in a process displaying a high
stability, with a high performance, which was fairly
independent of the light conditions in the room, the presence of
other objects in the background of the scenario, and the
rotation or translation of the user’s body with respect to the
Kinect. The interface stability was mainly due to the fact that
we only used the data coming from the depth camera. The
physical game setup is presented in Fig.8. By adding the tag to
the robot we could make our tracking system more reliable
(Fig.9). It provided the position feedback regardless of the
robots speed even when other objects were present in the scene
It is important to highlight that to increase the systems
reliability it was also required to set the proper constraints on
the blobs area and compactness, in addition to configuring the
frequency at which the nearest neighbor tracking algorithm
was executed.

(@) (©)

Fig. 9. Overhead visual tracking system. (a) RGB Color Image. (b) Binary
Image produced after thresholding. (c) Nearest Neighbor tracking algorithm

IV. DISCUSSION

In this project we presented a bioinspired strategy of
achieving a cooperative and coordinated behavior among a
group of virtual agents, in which through local communication
and the use of a set of three simple motion rules, naive micro
behaviors at the individual level gave rise to an emergent
complex behavior at the swarm’s level. These complex
interactions allowed the swarm to synchronize its actions and
decisions to achieve different objectives. Furthermore, this
project used evolutionary algorithms to ease the selection of
the swarm parameters that cope with the different simulation
objectives. Under the scope of this project the specific
objective consisted in achieving a moderately compact swarm
exhibiting a flocking behavior that could use a leader agent as
the head of the swarm guiding its movement trajectory. Using a
genetic representation which encoded the main control
parameters of the swarm (simulated perceptions radii and rule
pondering weights) along with a fitness function composed of
four evolutionary pressures. We showed that the genetic
algorithm was able to produce highly fit solutions which could
find highly satisfactory behaviors, capable of balancing each
rule’s weight to obtain a fair tradeoff between a compact boid
clustering, a reduction in the amount of inter agent collisions,
and an adequate alignment among agents to promote the
scenario exploration. In this way the controller managed to
increase the swarm’s probability to find and lock down its
movement decisions towards following the leader agent.

The inclusion of the GA in the project, served as the initial
stage of the co—design of a basic gaming scenario by
automatically tuning the control parameters and helping the
human game designer by generating a range of interesting and



unexpected swarm behaviors. Some of which would have
difficultly been achieved through the time consuming process
of manually tuning parameters. In the second stage of the game
design a human interaction was introduced in adding other
elements to the game such as new characters (leader, predator,
assistant and guider agent) and created new interactions and
gameplays. In addition to the game design, we also enabled the
games user to add a physical character which could be part of
the game by interacting with some of the virtual characters.
Such character consisted of an E-puck robot which was the
physical representation of the leader character. The connection
between the physical and virtual worlds was achieved by
tracking the robots position inside a real arena. The position
was obtained using an overhead camera which provided a live
feedback to the virtual gaming scenario. The user could
interact with the robot through gestures using his hands and
shoulders, which were captured by a Natural User Interface
(Kinect).

By using the GA as a character design tool, we left an open
possibility that while searching for a strategically good
behavior to achieve a specific objective, the GA could generate
interesting and unexpected emergent behaviors [13]. By the
simple fact that by an extremely large factor the search space
of a GA is bigger to that of a human trial/error procedure. The
GA could more easily generate boid controllers which exhibit
certain sophisticated behaviors, from rapidly moving boids to
naturally moving swarms with a more realistic aspect. An
example of this can be seen in one of the individuals shown in
Table II, in which the boids showed a duality, by always
maintaining a single-group structure encompassing all of the
casual agents (compactness), but at the same time allowing a
great flexibility that enabled the boids to get significantly away
from the center of the single-group (sparseness). This kind of
behavior is really interesting since it achieves both, our desired
flocking objective and at the same time a behavior that might
be more appealing to a game user where the swarm members
perform more dynamic movements, making the task of
controlling and gathering the casual boids more difficult and
thus interesting.

There are several future improvements that can be
incorporated into the EvoBoids system in order to complete
and enhance its capabilities. First, a more complex simulation
and visualization environment can be created in order to not
only model each of the agents and their intrinsic boids
interactions, but also to incorporate interactions with the
surrounding environment and ecosystem [14]. By adding these
features one could achieve a spectrum of environmental
conditions to which different types of agents could adapt their
behaviors to, in this way, achieving a more detailed
computational simulation resembling that of artificial life.
Furthermore, an interesting approach would be to explore other
evolutionary algorithms and use comparison techniques to
evaluate the performance among algorithms. The work done in
[15] presents more advanced evolutionary algorithms such as
differential evolution (DE). DE could potentially incorporate
several advantages towards optimizing the behavior of the

swarm of agents because of its mechanisms of self-adaption of
the control parameters, population size reduction, and mutation
step size adaption. Moreover, DE is suitable for this problem
since it has been demonstrated that it can be used for multi-
objective optimization [16].
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