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Abstract—Side-scan sonar technology has been used over
the last three decades for underwater surveying and imaging.
Application areas of side-scan sonar include archaeology, security
and defence, seabed classification, and environmental surveying.
In recent years the use of autonomous underwater systems has
allowed for automatic collection of data. Along with automatic
collection of data comes the need to automatically detect what
information is important. Automatic target recognition can allow
for efficient task planning and autonomous system deployment
for security and defence applications.

Support Vector Machines (SVMs) are proven general purpose
methods for pattern classification. They provide maximum mar-
gin classification that does not over fit to training data. It is
generally accepted that the choice of kernel function allows for
domain specific information to be leveraged in the classification
system. In this paper it is shown that for target classification in
side-scan sonar, extra feature extraction and data engineering can
result in better classification performance compared to parameter
optimization alone.

I. INTRODUCTION

Side-scan sonar technology has been used over the last three
decades for underwater surveying and imaging. Application
areas of side-scan sonar include archaeology, security and
defense, seabed classification, and environmental surveying. In
recent years, the use of autonomous under water systems has
allowed for automatic collection of data. However, along with
automatic collection of data comes the need for the system to
determine what data is important.

A. Side-scan Sonar

Side-scan sonar is an active acoustic range detection system
that is often used for underwater surveying, archaeology, and
Automated Target Recognition (ATR). Side-scan sonar utilizes
an acoustic emitter and two acoustic receivers, one on the port
and starboard side on the hull of vessel, on a towed “fish”, or
mounted on an underwater vehicle. The return signal from the
emitter is measured and an image is composed by the forward
motion of the emitter/receiver. An example of such an image
is shown in Figure 1.

Computational Intelligence (CI) approaches are necessary
when side-scan sonar is combined with autonomous systems.
An autonomous system can be operated within a remote
environment, capture data through side scan-sonar, and then
return the captured data for analysis. Communications between
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Fig. 1. An example of some of the unique features and challenges associated
with side-scan sonar images.

an autonomous system and the shore/vessel is often too restric-
tive or non-existent for real-time processing. It is therefore
advantageous for the autonomous system to be able to make
complex decisions while deployed in the field. For example,
when surveying for targets of interest it may be important
for the underwater vehicle to surface and transmit its data
versus finishing its planned route. This is especially the case
for security related operations. In the work of Quintal et al [1],
they state “current side-scan data processing techniques are
largely manual, highly time-consuming, and prone to operator
error. Availability of well-trained analysts is also a challenge”.
These are the motivating factors for research into machine
learning and automatic target recognition in side-scan sonar.

The task of image classification has been extensively stud-
ied. There are some unique challenges in the case of side-
scan sonar images. Since the forward movement of the ve-
hicle “scans” the sea floor, if there is a change in heading



there are non-linear distortions created in the imagery. Other
distortions and interference are caused by sudden changes
in depth, schools of fish, and vegetation such as seaweed.
There are existing approaches to object recognition in side-
scan sonar images. In the work of Wang et al. [2], the authors
were successful in multi-level object segmentation in side-
scan sonar images using adaptive approaches. Pinto et al. [3]
examine the segmentation, skeleton extraction and autonomous
system requirements in side-scan sonar imagery. Chang et
al. [4] investigate the use of fuzzy C-means based clustering
for shadow removal in side-scan sonar images. A survey of
analysis techniques for side-scan sonar can be found in the
work of Xiaojun et al [5]. In the work of Dura et al. [6] the
authors propose a novel active learning technique based on
kernel classifiers with the purpose of enhancing the detection
of underwater objects without a priori knowledge. In the
work of Wang et al. [7], [8] the authors investigate the use
of multi-aspect classification of sonar imagery and also the
use of SVMs for imbalanced class labels respectively. This
paper focuses on the benfit of pre-filtering of images before
classification using SVMs.

Before describing the classification system presented in
the paper, both the mathematical notation used, and a brief
description of SVMs will be given.

1) Mathematical Notation: Scalar variables are represented
by italicized lowercase letters, and vector variables by bold
lowercase letters. When referring to a component dimension
of a vector, round bracketing is used. For example, the ith
dimension of the vector x, is stated as x (i). For matrices
and gray-scale images, row-column addressing is used. Given
image I , a pixel in the ith row and jth column is described as
I (i, j). Finally, matrices and images are addressed row-wise
from top to bottom, and column-wise from left to right.

The following is a description of some of the functions and
variables used in this paper:
• x ∈ Rd: A vector of dimensionality d. x is used as an

input vector for the classification process.
• y ∈ ±1: A classification label associated with a sonar

image. The +1 and -1 are targets of interest and non-
targets respectively.

• k : Rd × Rd → R: Defines a kernel function that
represents a dot product in Reproducing Kernel Hilbert
Space (RKHS), between the two input vectors, x1 and
x2. Throughout this paper, a Gaussian kernel function is
used, k (x1, x2) = e−γ‖x1−x2‖2

• γ : Width parameter of the Gaussian kernel function.
• f : Rd → ±1: A classification function that predicts the

corresponding label of an unobserved input vector.
2) Support Vector Machines (SVMs): SVMs are general

purpose algorithms that can be trained with any set of input
vector and label pairs (xi, yi). To use SVMs for image
classification, an input vector is created based on pixel values,
an appropriate kernel function must be chosen, and hyper-
parameters are optimized. The training algorithm solves a con-
strained Quadratic Programming (QP) problem that minimizes
the classification error while also maximizing the margin of

separation between +1 and -1 class labels in the set. Domain
specific information can be used to improve the performance
of SVMs for image classification in two ways. First, the
images maybe pre-processed to extract useful information.
Second, the choice of kernel function can have a dramatic
influence on performance and accuracy. In a previous work,
using online kernel algorithms for processing image data was
investigated [9].

There are two types of SVMs or Support Vector Classifiers
(SVCs) that are used in this paper; the C-SVC algorithm,
and the ν-SVC algorithm. The hyper-parameters C and ν
control the behavior of the training algorithm. With both
SVCs, once the QP problem has been solved, a subset of
training vectors are retained by assigning values to the αi
variables. Any non-zero αi means that the corresponding
(xi, yi) becomes a Support Vector (SV) that contributes to the
classification of unobserved data. The parameter C is used
to apply regularization to the resulting classification function,
with a lower value of C possibly resulting in more support
vectors. In the case of ν-SVC, the ν parameter describes a
upper bound on the proportion of training errors, and a lower
bound on the proportion of SVs within the training set. From a
practitioner’s perspective, the ν parameter is bounded between
0 and 1.0, corresponding to 0% and 100% of the training
set respectively. The training QP problem for both C-SVC
and ν-SVC are given in equations 1 and 2. Once the QP
problem has been solved the classification function is defined
in equation 3. A Gaussian kernel function was chosen because
it is a universal kernel that can be applied to many machine
learning problems with little or no domain specific knowledge.
An interested reader can refer to [10], [11] for more details
on SVMs.

maximize
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αi − 1
2
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II. PROPOSED CLASSIFICATION SYSTEM

The MNIST handwritten digit data set [12] is currently
one of the most popular benchmark data sets for image
classification. This study proceeds in a similar fashion in that
there is a collection of sonar images of objects of interest
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Fig. 2. A sample side-scan sonar image with some objects of interest
illustrated.

(+1 class label) and randomly selected sonar images which
do not contain targets of interest (-1 class label). Side-scan
sonar images were captured by a REMUS-100 underwater
vehicle and targets of interest were labeled by trained sonar
technicians, as illustrated by Figure 2. For each target of
interest, a 41 pixel by 41 pixel image was extracted from the
side-scan sonar image. The sonar targets were identified by
a human operator and are within 20 pixels of the the actual
target’s center. Therefore a 41 by 41 pixel image size was
chosen to ensure that most of the target pixels were captured in
the sample. The original data set of targets was from the DSTO
ATR challenge in 2013, but in this study, the primary objective
is to examine the effect of image pre-processing on SVM
performance as applied to side-scan sonar data. The classifier
training data contains 654 training images that contain 202
targets of interest identified by a sonar operator. Figure 3
illustrates examples of target objects and non-target images
(background). The classification system works in three stages.

The first stage expands the data set from 202, 41x41 pixel
target image patches to 1404 image patches. For every target
image patch another is created by transposing the column
addresses of the pixels within the patch. This operation is
performed since a target image on one side of the vehicle
would produce a mirrored image if it were on the opposite
side. This increases the number of targets to 404 which are
assigned +1 class labels. SVMs are binary classifiers so a
second pass is made through the data set and for any training
image that contains no targets, a random 41x41 pixel patch
was extracted with a -1 class label. There were a total of 1000
random image patches without targets.

Fig. 3. The top row shows images of targets identified by a side-scan sonar
operator. The bottom row shows examples of background images (seabed with
sand and debris) where there is no target present.

The second stage of image processing involves the use
of either a Sobel or median filter, or no filtering (raw pixel
values are used). Figure 4 illustrates the image processing
that is explored in this paper. The first column illustrates three
original target images in the sonar data. The second column
shows the results of applying a Sobel filter to each image and
each pixel value is the magnitude of the Sobel response in the
x and y directions. The third column shows the application
of a median filter (using a 3x3 pixel window size) to each
corresponding image. The Sobel filter enhances the edges of
each sonar image, while the median filter has a smoothing
effect on neighboring pixels within the image. Three separate
image sets are created in this stage.

The third stage takes the pixels in each image and then
creates a feature vector, (x), by copying pixel values into the
feature vector in a row by row fashion. Each image patch label
is added to the label vector, y. The final step is to normalize
each feature across all feature vectors. SVMs are sensitive to
differing scales of magnitude as the Gaussian kernel function
involves the L2-norm. All feature vectors are compiled into a
feature matrix, X. Rows represent individual feature vectors
from each image and columns represent specific pixel loca-
tions across the entire data set. Each column was normalized
by subtracting the minimum and dividing by the maximum in
each column. This results in all features being on the scale of
0.0 to 1.0. The resulting dimensions are X ∈ R1404 × R1681,
and y ∈ R1681. Figure 5 illustrates the data flow through the
three stages in the classification system.



Fig. 4. Examples of raw image data and image data after Sobel and median
filters are applied. The first column shows three separate raw target images.
The second and third column show the Sobel and median filtering result
respectively.

III. EXPERIMENTAL RESULTS

The three data sets that were created in the previous section
were used as training data sets for both C-SVC and ν-SVC.
There is no separate validation test data set in this case, there-
fore stratified 10-fold cross validation was performed. The
scikit-learn machine learning library was used to implement
the cross validation and LIBSVM (included with scikit-learn)
was the SVM library employed. The choice to use stratified
10-fold cross validation was made because of the imbalance of
+1 to -1 target labels (+1 has 404 samples while -1 has 1000
samples). Stratified cross validation maintains the proportion
of class labels between folds.

K-fold cross validation takes the data set and divides it into
K equally sized data sets. The K-1 smaller data sets are then
used for training the classification function and the final K-th
data set is used for testing. The process is repeated until all K
subsets have been used as the testing data set and the accuracy
results are then averaged across the K test sets, for this paper
K= 10 was used.

The most significant problem with machine learning using
SVMs is optimizing hyper-parameters and kernel parameters.
The most commonly used method to find optimal parameters
is to employ K-fold cross validation in combination with a
grid search method across parameters. The parameters that
produce the classifier with the highest accuracy are chosen.
In this paper, multiple rounds of grid search were used to
narrow down the optimal parameters for each classifier. This
procedure was used to optimize the hyper-parameters C and
ν for C-SVC and ν-SVC respectively, and also to optimize
the Gaussian kernel parameter, γ. Table I gives the maximum
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Fig. 5. The flow of processing used in this paper. It should be noted that
the final two stages, vector normalization and SVM application result in three
separate normalized datasets and three separate SVM classifiers.

TABLE I
10-FOLD CROSS VALIDATION RESULTS.

Classifier Filter Type Accuracy Parameters
C-SVC Sobel 92.7% C = 28 γ = 0.036
ν-SVC Sobel 92.8% ν = 0.225 γ = 0.05
C-SVC none 84.0% C = 5 γ = 0.02
ν-SVC none 84.1% ν = 0.235 γ = 0.017
C-SVC median 86.5% C = 50 γ = 0.05
ν-SVC median 86.0% ν = 0.27 γ = 0.03

accuracy obtained on the three data sets described in figure 5.
The results show that using the Sobel filter with both C-SVC
and ν-SVC have the highest accuracy rate.

Results are averaged across 10-folds of stratified cross val-
idation. Figure 6 shows all Receiver Operating Characteristic
(ROC) curves for each experiment performed. When viewing
the ROC curves, the dashed line represents the expected
true positive and false positive classification rate of randomly
guessing the classification result. Each fold of cross validation
is plotted on the ROC curve with a thinner line, and the mean
result (averaging of all 10 folds of cross validation) is given
by the dark curve. The accuracy of the classifier is given by
the area under the mean ROC curve. It is interesting to note
that the Sobel filtered dataset results in a “tighter” distribution
of single cross-validation ROC results about the mean ROC
curve. The accuracy values vary slightly with every simulation
run because sample index values are randomly shuffled each
time the dataset is loaded.



Fig. 6. ROC curves for the described experiments.

IV. CONCLUSIONS AND FUTURE WORK

The use of filtering has a positive effect on classifier
accuracy, and the accuracy is increased most significantly
when a Sobel filter is used. The Sobel filter is often used in
the first stages of edge detection in image analysis. SVMs
are similar to template methods in that they use a linear
combination of kernel function evaluations that involve both
support vectors (SVs) and unobserved data.

Two main conclusions can be drawn from this paper. First,
the largest distinguishing characteristic for identified targets
is geometrical uniqueness amongst surrounding topology. Ob-
jects of interest mostly consist of longer cylindrical, box like,
or sphere like shapes. These shapes consist of longer edges and
therefore a Sobel filter will respond with high spatial gradient
values, resulting in better pre-processing of training data. The
second conclusion that can be drawn is that a median filter will

filter out extreme values, such as noise, resulting in a slightly
better classifier than with raw data alone.

Previous research into the application of SVMs has held
the common view that a proper kernel function allows a data
engineer to apply domain specific knowledge to a classification
system. The experiments conducted in this paper illustrate that
the accuracy of an SVM for sonar image classification can be
improved using pre-filtering. Future work will be conducted
with regard to the integration of feature extraction for the
optimization of SVMs and other kernel based methods.
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