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Abstract—Most of the biological processes including expression
levels of genes and translation of DNA to produce proteins
within cells depend on RNA sequences, and the structure of
the RNA plays vital role for its function. RNA design problem
refers to the design of an RNA sequence that folds into given
secondary structure. However, vast number of possible nucleotide
combinations make this an NP-Hard problem. To solve the RNA
design problem, a number of researchers have tried to implement
algorithms using local stochastic search, context-free grammars,
global sampling or evolutionary programming approaches. In
this paper, we examine SIMARD, an RNA design algorithm that
implements simulated annealing techniques. We also propose
QPS, a mutation operator for SIMARD that pre-selects high
quality sequences. Furthermore, we present experiment results of
SIMARD compared to eight other RNA design algorithms using
the Rfam datset. The experiment results indicate that SIMARD
shows promising results in terms of Hamming distance between
designed sequence and the target structure, and outperforms
ERD in terms of free energy.

I. INTRODUCTION

The RNA sequence design problem is an emerging research
topic motivated by applications such as customized drug
design. The goal of RNA design is to determine RNA primary
structure given its secondary structure. Although it is possible
to find the RNA primary structure from the secondary structure
using brute force methods, our computational technology does
not allow us to return a feasible answer within a reasonable
amount of time. This is due to the size of the solution space
which refers to the combinations of nucleotides. Researchers
in the field are currently using other methods, such as heuristic
methods, in order to reduce the time complexity.

The most important applications of RNA design would be
in molecular biology, biotechnology and medicine fields. As
the function and the secondary structure of RNA sequences
are tightly coupled, knowing the secondary structure of the
RNA is important to decide on its function. Thus, solving
the RNA design problem would allow researchers to assemble
RNA primary sequences, according to their need for secondary
structures or specific functions.

In this paper, we will introduce a new approach for RNA
design problem that was based on the Simulated Annealing
(SA) framework. Part of the algorithm was built upon an
evolutionary algorithm ERD [1]. Our research showed that
using SA as a meta-heuristic approach to find the global

optimum on top of evolutionary algorithm has an outstanding
performance in terms of Hamming distance between folded
structure of designed sequence and target structure, and our
preselection strategy can help to improve energy.

In the subsequent sections, we consider major existing
approaches on RNA design problem and then demonstrate our
SA based algorithm, with and without QPS.

II. RNA DESIGN

Currently, the major approaches to the RNA design research
are: local stochastic search, global sampling algorithms, and
evolutionary algorithms.

A. Local Stochastic Search for RNA Design Problem

A viable approach to solve the RNA Design problem can
be found by employing stochastic methods. Most of the time,
however, the target sequence is too long which forces re-
searchers to use local stochastic search to speed up the process.
RNA-SSD [2] and INFO-RNA [3] are two major programs
using local stochastic search for the RNA design problem.
Both algorithms use the principle of minimizing the structural
distance between the target structure and the minimum free
energy (MFE) structure of the designed sequence.

In RNA-SSD, the primary sequence is first initialized us-
ing three principles (see [2] for details). However, it is not
guaranteed that the initialized sequence can directly fold into
the target structure. Therefore, RNA-SSD decomposes the
target structure and initializes the sequence hierarchically and
constructs a tree where the root is the whole structure and the
leaves are the sub-sequences. Finally, it performs a recursive
local search. Consequently, decomposition plays an important
role in this algorithm as the complexity of the prediction
algorithm is O(n?).

INFO-RNA has a different initialization approach from
RNA-SSD. In the initialization part of INFO-RNA, dynamic
programming is used to make sure that the initial sequence
is the one with lowest possible energy while folding into the
target structure [3]. Again, local stochastic search is used to
improve initial sequence in this algorithm.

Using local stochastic search for the RNA design problem is
feasible, however it has some drawbacks. With local stochastic
search, an exact solution may not be found, even if one



exists. Another drawback is most of the local stochastic search
algorithms stagnates after a while and the ones which does not
stagnate are too slow. Lastly, local stochastic search algorithms
promise to find a local optimum but not necessarily the global
optimum if simulated annealing is not used.

B. Global Sampling Algorithms

In general, local search algorithms algorithms use an initial
sequence and mutate it to find final sequence which folds
into target structure. In these kind of algorithms, the initial
sequence is very important to find a stable and appropriate
solution. With local search approaches, it may be difficult
to find the best or good-enough solution with chosen initial
sequence. However, in 2012, Alex Levin et al. introduced a
new approach and tried to overcome disadvantages of local
search algorithms [4]. Their package is called RNA-ensign
and it uses global sampling methods [4].

RNA-ensign is an ensemble-based approach which starts
with a random sequence and computes the probability of
folding into target structure of all k-mutants of this random
sequence (Boltzmann distribution is used to find this) and
samples from this group of sequences [4]. Finally, starting
from first mutant sequence, it tries to find the sequence whose
minimum free energy (MFE) structure is the target structure. In
the sampling step, they use RNAmutants [5] algorithm which
enables them to sample in polynomial time and space [4].
If the algorithm can not find a mutant-sequence which folds
into target structure, it reports as a failure [4]. Results show
that RNA-ensign has more stable solutions compared to local
search algorithms. However, it has O(n®) complexity which
implies that it has significant drawback about time.

In 2013, RNA-ensign is improved and a new algorithm
called IncaRNAtion [6] is implemented to decrease complexity
of RNA-ensign. Although RNA-ensign has O(n®) complexity,
IncaRNAtion runs in linear complexity. In this algorithm,
they use modified version of RNAmutants [5] to get linear
complexity in sampling process [6].

C. Evolutionary Algorithms

In general, evolutionary algorithms use meta-heuristic and
optimization techniques to find an optimal solution. Evolu-
tionary algorithms takes its name from Darwinian principles.
Their behaviour is similar to a natural processes: natural se-
lection. Evolutionary algorithms usually consists of four main
parts: reproduction, mutation, variation(or recombination), and
selection [7].

The genetic algorithms used to solve RNA design problem
are MODENA [8], Frnakestein [9], GGI-FOLD [10] and
ERD [1]. All of these algorithms apply four main steps of
evolutionary algorithms but the way they implemented these
steps is different. In general, they initiate the population to
select the sequence, they mutate the selected one and after
finding the fitness of the final solution, they terminate.

Although they look similar to each other, using different
techniques, generally in the calculation of fitness of solutions,

distinguishes one from the other. Both MODENA and GGI-
FOLD use multiple objectives for determining the fitness
of the solutions but the number and characteristics of these
objectives differ [8] [10]. Frnakenstein is another algorithm
differing from others mainly by fitness calculation method: It
uses Boltzmann probabilities and find positional fitness [9].
As it is written in Python and using Boltzmann probabilities
is computationally costly, Frnakenstein suffers from high run-
time compared to others [9].

Last but not least, ERD is the only evolutionary algo-
rithm and it uses mutation instead of recombination [1].
One advantage of ERD is that one can specify both energy
and structural constraints. Another advantage of ERD is the
initial decomposition scheme used before evolutionary part
of the algorithm starts. The structure given is decomposed
using multiloop occurrences and compatible sub-sequences are
gathered from STRAND database to form the initial sequence
for evolutionary algorithm while preserving the energy and
structural constraints. This makes the initial sequence closer
to the ones in the nature as database of natural sequences
(STRAND) is used in this step. Lastly, ERD replaces the sub-
structures in mutation steps; thus, the mutation is not on the
nucleotide level but on the sub-structure level to maintain the
consistency between structures [1].

The objectives of this paper are as follows:

« To examine an algorithm for RNA secondary structure de-

sign based on simulated annealing techniques (SIMARD).

« To measure the designability of our RNA structure design

algorithm by design by comparing the structure from
Rfam and The RNA secondary STRucture and statistical
ANalysis Database (STRAND).

o To compare the result of SIMARD to eight other RNA

design algorithms.

« To observe the impact that QPS has on the quality of

SIMARD results.

III. METHOD
A. Simulated Annealing in RNA Structure Prediction

Simulated Annealing (SA) was first applied to problems
involving optimization by Kirkpatrick et al [11]. Instead of
finding the local optimum with traditional deterministic or
local approaches, SA is a robust probabilistic approach to find
global optimum in the presence of large solution space.

SA utilize the iterative search optimization approach, based
on successive update steps (either random or deterministic)
where each update step is proportional to an arbitrarily set
parameter which can play the role of a temperature. This is
where the analogy with the annealing process of metals play
a role.

In contrast to other evolutionary algorithms, SA is superior
because Geman and Geman has proved a necessary and
sufficient condition for the convergence of the algorithm to
the global minimum [12]. This is the big advantage for SA
over other evolutionary algorithms.

In the past, our lab has done extensive research in using
SA for RNA secondary structure prediction. Our algorithm,



SARNA-Predict, has shown superior performance (in terms of
prediction accuracy when compare to native structure) over
other state-of-the-art algorithms in predicting structures both
with and without pseudoknots [13] [14] [15]. As a result, we
are now proposing to use the SA paradigm for RNA structure
design.

B. SIMARD

SIMARD (Simulated Annealing for RNA Design) is a
heuristic algorithm for the RNA inverse-folding problem and
it was first proposed by Erhan er al. [16]. Algorithm 1 shows
the pseudo-code for SIMARD under the simulated annealing
framework [17].

Algorithm 1 Structure of the simulated annealing algorithm
in RNA secondary structure design
Sequence = InitialSequence;
Temperature = Initial Temperature;
Distance = HammingDistance(Sequence, Structure);
while (Temperature > FinalTemperature) do
for (¢ = 1 to NumberOflterations) do
NewSequence = Mutate(Sequence);
NewDistance = HammingDistance(NewSequence,
Structure);

R A oA e

8: A Distance = NewDistance - Distance;

9 R g{egaAnCPistance < 0) OR (with Probability[Accept]
= eTemperature ) then

10: Distance = NewDistance;

11: Sequence = NewSequence;

12: end if

13: end for

14: decrease Temperature;

15: end while
16: FreeEnergy = FoldAndEvaluate(Sequence);

The basic structure of a SA search optimization algorithm
consists of several main parts:

A. State Representation

B. Perturbation / Mutation Function

C. Evaluation / Cost Function

D. Scheduler
In the following sub-sections, we will describe these main
parts in more detail.

1) RNA Secondary Structure Representation: We use ERD
to decompose an RNA secondary structure to create several
pools of RNA secondary sub-structures [1].

Pool construction is done using STRAND sequences such
that the resulting pools contain sub-sequences that are sim-
ilar to the natural ones [1]. To construct the pools of sub-
sequences, fold method from Vienna package [18] is em-
ployed and resulting structures are then decomposed into sub-
structures.

The target structure is also decomposed into structural
components so that we can randomly choose a sub-sequence
with a compatible type and length from our database of

natural sub-structures. In decomposition scheme, the structural
components are stored three arrays: (starray for stems, hparray
for hairpin loops, and mlarray for multiloops) [1]. As in other
algorithms, the initialized sequence is not promised to fold into
target structure. The overall goal of SIMARD is to improve
the initial sequence.

Once we have the pools of RNA sequences, we can view
the problem of designing RNA structure as one of picking the
sub-set S of sub-sequences from the set of all possible sub-
sequences H, such that the Hamming distance D(S) between
the structure of the designed sequence and the goal structure
is minimized.

2) Perturbation / Mutation Function: The main goal of the
perturbation function is to modify the design in a controlled
and intuitive fashion. We tested two methods of mutation:
without pre-selection and with pre-selection.

A. Without pre-selection

In each iteration, a random selection will be made from the
pool of stems, hairpins and multiloops that make up the work-
ing solution. This selection is replaced with a sub-structure of
the same type and length, taken from the corresponding pool
of natural sub-structures. The resulting sequence is returned
and evaluated.

B. With pre-selection (QPS)

We developed QPS, or Quality Pre-selection Strategy to use
as a mutation operator that generates multiple RNA primary
sequences, each evolved from the same parent using the same
technique as above. This allows us to choose and return a
solution based on our optimization criteria. Algorithm 2 shows
the Pseudocode for QPS. For these experiments, a solution’s
quality was judged in regards to its free energy (lowest being
of the highest quality).

SIMARD

> accepts or rejects
based on

criteria 2

Selected sequence

Working sequence

Fig. 1. The relationship between QPS and SIMARD.

The number of sequences to generate and compare at each
step was on decision we had to make. To decide on this
number, we ran trials in which we generated two, three, four,
and five solutions in pre-selection on the sequence AF107506,
a partial sequence of a ribosomal RNA gene from bacterium
SY2-21 16S. The two factors we accounted for when making
our decision were coverage of the Pareto front and time cost.

Figure 2 shows a map of solutions generated by test runs
with pre-selection pool sizes of two, three, four, and five. This
is useful because we can see the general solution space that



each variation inhabits. Based on these results, we decided on
a pre-selection pool size of three, as four and five had too high
of a time cost and two did not show enough of an improvement
to energy.

Algorithm 2 High quality mutation selection with QPS

1: function QPS(Sequence)

2: BestSequence = Sequence;

3 initialize BestQuality;

4 for (: = 1 to SequencesToGenerate) do

5 NewSequence = Modify(Sequence);
6: NewQuality = Evaluate(NewSequence);
;
8
9

if (NewQuality > BestQuality) then
BestSequence = NewSequence;
BestQuality = NewQuality;

10: end if

11: Reset Sequence;
12: end for

13: return BestSequence

14: end function

3) ost Function: The objective of the cost function is to
evaluate the appropriateness of the current design or state.
In our implementation, we minimize the Hamming distance
between our working solution and the target structure. Ham-
ming distance is defined as the number of character differences
(number of mismatches) between two strings (A and B) of
equal length (N).

N-1
Hamming_Distance = Z |A; — Bl (1)

=0

Since the designed sequence is a primary structure and
the target is a secondary structure, we fold it into its lowest
free energy state using an RNA prediction method (Vienna
package [18] is currently used for the prediction). The Ham-
ming distance is then calculated between our working structure
and the target structure using dot-bracket format. We use this
Hamming distance determine wether to accept or reject the
sequence with a specific probability function (see line 9 of
Algorithm 1).

4) Cooling and Annealing Schedule: A discrete-time im-
plementation of SA can be realized by generating Markov
chains of finite length for a finite sequence of descending
values of temperature. The parameters that control these
descending values of temperature are the cooling or annealing
schedules [19].

In general, the classes of annealing schedules that are most
effective have the following characteristics [19] [20]:

« A high starting acceptance probability.

o A very low terminating acceptance probability.

o A slow cooling rate, o € [0, 1] i.e. where a between 0.8
and 0.99 is a recommended value, T},c., = aTp14-

e The number of iterations is equal to the number of
neighboring solutions. Neighboring solutions are defined

as two adjacent states that can be reached by a single
move (i.e. (s,8') € M).

In SIMARD, the decreasing temperature is performed using
geometric scheduler. Thus temperature is multiplied by the ge-
ometric scheduler factor () in each iteration (1},c, = T p14).

In the current implementation, we have chosen 0.90 to be
our geometric scheduler factor. Also, final temperature has
0.001 as a default value. Lastly, the initial temperature is set
automatically with a SA warm up procedure developed by
Aarts er al. [21].

In the following sections, we will describe the results we
have obtained using SIMARD, both with and without QPS.

IV. DATA

To benchmark SIMARD, we employed the Rfam [22] [8]
set of structures. As in Lyngs et al. [9], RF00023 was excluded
from the dataset for the ease of comparison with the employed
table. It is because RF00023 has lots of pseudo-knotted base
pairs [9]. Thus, Rfam dataset includes 29 structures from
29 Rfam families with lengths varying between 54 — 451nt
inclusive. Two additional columns were added to Table T to
indicate results for SIMARD and ERD [1].

V. RESULTS AND DISCUSSION

Experiments showed that SIMARD outperforms the existing
RNA Design algorithms in terms of success count where
Hamming distance is used to indicate success rate. According
to Rfam dataset experiments, for a target structure with length
80 — 300 nt, an initialized sequence in ERD or SIMARD
(without pre-selection) has approximately 40 — 100 Hamming
distance to target structure when folded, and this number is
reduced to 0 — 3 Hamming distance with SA optimization.
Since SA performs well in large solution spaces, the change
is more dramatic when the length increases. In the experi-
ments, we found out that solution space affects the quality
of the designed sequence. The larger pools we have for sub-
sequences, it is more likely that initial sequence is improved
to a sequence having zero-distance to the target structure.

Figure 3 illustrates an example run of RF00030 from the
Rfam dataset using SIMARD with QPS, and without QPS.
Figure 3(a) presents the graph which indicates the domain of
distances that were accepted during two runs of SIMARD:
with and without QPS. Notice that during the initial stage
where the temperature values were high, the probability to
accept a configuration that produced a higher distance was
higher. As the temperature decreased, less configurations with
higher distance were accepted. Hence, the convergence behav-
ior of the algorithm can be observed.

We can see the change in energy over time in Figure 3(b).
Without QPS, energy is not considered within SA moves, so
we do not observe decrease in the energy over SA iterations.
On the contrary, it slightly increases at last stages of SA
algorithm where distance dramatically decreases. The benefit
of QPS can be seen here: the algorithm finds a better solution
space and the energy is lower overall.
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Fig. 2. The horizontal axis describe the difference between the generated solutions and the target structure in terms of Hamming distance. Vertical axis

describe the free energy of these structures.

Both with and without QPS, While distance is decreasing
dramatically, energy is going up to some extent. Similarly,
when minimizing energy is used as a main goal in SA method,
the distance is going up as expected. This shows that there is
a negative correlation between Hamming distance and energy
in terms of solutions found by the algorithm. This could be
improved by trying a different method of generating new
sequences.

A. Rfam Dataset Results

Table I shows the result of SIMARD against eight other
algorithms (Frnakenstein, MODENA, RNA-SSD, INFO-RNA,
RNAInverse, NUPACK, Inv, and ERD) using the Rfam dataset.
The column labeled Structure indicates the accession number
of the target structures in the given dataset. Len. indicates
length of the target structure. Each entry represents the success
fraction over the conducted experiments. If a given algorithm
designed and returned a compatible sequence, it is counted
as success. For example, if we do ten experiments and out
of nine times the algorithm returned a result, then table entry
is 9/10 = 0.9. This is the general practice in the literature to

report the results. The fields having asterisk under Inv indicates
that the target structure is found as invalid in this algorithm [9].

For each target structure, 10 experiments were performed
for Frnakenstein, and NUPACK; and 500 experiments were
performed for the other five algorithms (MODENA, RNA-SSD,
INFO-RNA, RNAInverse, and Inv). These results were reported
by Lyngso et al [9]. Experiments for SIMARD and ERD also
run 10 times for each target structure. If an algorithm does
not give any result after a set time limit (e.g. several days), it
is counted as unsuccessful [9].

To be consistent with the literature (employed Frnakenstein
table [9]) we also counted total successes depending on the
numbers that are bigger than zero in each column. To be
clear, if an algorithm designed a sequence at least once
within conducted experiments, it is counted as success. ERD
and SIMARD outperforms other algorithms by successfully
designing a compatible sequence for all 29 tested Rfam struc-
tures. MODENA and Frnakenstein then follow by designing
23 compatible sequences out of 29 (79.3%).

In terms of energy, ERD gives better (minimum) energies
than SIMARD without QPS about 60% of the time (see
Table II). With this in mind, we ran the sequences with



TABLE 1
RFAM DATASET RESULTS. FIRST COLUMN INDICATES THE ACCESSION NUMBER OF THE TARGET STRUCTURES IN THE GIVEN DATASET. SECOND COLUMN
INDICATES THE LENGTH OF THE TARGET STRUCTURE. EACH ENTRY REPRESENTS THE SUCCESS FRACTION OVER CONDUCTED EXPERIMENTS.
SEQUENCES ARE ORDERED BY LENGTH

Structure  Len.  Frnakenstein MODENA  RNA-SSD INFO-RNA  RNAinverse = NUPACK Inv.  SIMARD ERD
RF0008 54 1.00 1.00 0.96 1.00 0.95 .00 0.22 1.00 1.00
RF00029 73 1.00 1.00 0.82 0.67 0.20 0.72 * 1.00 1.00
RF0005 74 1.00 1.00 1.00 0.99 0.87 1.00 0.29 1.00 1.00
RF00027 79 1.00 1.00 1.00 1.00 0.82 1.00  0.86 1.00 1.00
RF00019 83 1.00 1.00 0.40 0.98 0.57 1.00 * 1.00 1.00
RF00014 87 1.00 1.00 0.94 1.00 1.00 1.00 * 1.00 1.00
RF0006 89 1.00 1.00 0.98 0.66 0.06 0.99 * 1.00 1.00
RF00026 102 1.00 1.00 0.00 0.04 0.02 1.00 * 1.00 1.00
RF0001 117 1.00 1.00 0.01 0.95 0.01 0.29 * 1.00 1.00
RF00021 118 1.00 1.00 0.99 1.00 0.96 1.00 * 1.00 1.00
RF00020 119 0.00 0.00 0.00 0.00 0.00 0.00 * 1.00 1.00
RF00016 129 0.00 0.00 0.00 0.00 0.00 0.48 * 1.00 1.00
RF00015 140 1.00 1.00 0.00 0.51 0.05 1.00 * 1.00 1.00
RF00022 148 1.00 1.00 0.00 0.15 0.02 1.00 * 1.00 1.00
RF0002 151 1.00 1.00 0.00 0.00 0.00 0.00 * 1.00 1.00
RF0007 154 1.00 1.00 0.05 0.85 0.08 0.95 * 1.00 1.00
RF0003 161 0.10 1.00 0.00 0.01 0.00 0.00 * 1.00 1.00
RF00013 185 1.00 1.00 0.00 0.37 0.09 1.00 * 1.00 1.00
RF0004 193 1.00 1.00 0.00 0.27 0.10 1.00 * 1.00 1.00
RF00025 210 1.00 1.00 0.00 0.06 0.00 1.00 * 1.00 1.00
RF00012 215 1.00 1.00 0.00 0.01 0.01 0.98 * 1.00 1.00
RF00017 301 1.00 1.00 0.00 0.94 0.23 1.00 * 1.00 1.00
RF00030 340 1.00 1.00 0.00 0.01 0.00 0.00 * 1.00 1.00
RF00028 344 0.30 0.00 0.00 0.01 0.00 0.09 * 1.00 1.00
RF0009 348 1.00 1.00 0.00 0.00 0.01 0.78 * 1.00 1.00
RF00010 357 0.00 0.00 0.00 0.00 0.00 0.00 * 1.00 1.00
RF00018 360 1.00 1.00 0.00 0.01 0.01 0.00 * 1.00 1.00
RF0001 1 382 0.00 0.00 0.00 0.00 0.00 0.00 * 1.00 1.00
RF00024 451 0.00 0.00 0.00 0.00 0.00 0.23 * 1.00 1.00
Total successes 24 23 10 22 19 22 3 29 29

SIMARD using QPS as a mutation operator. SIMARD with
QPS outperformed ERD on 29 out of 29 sequences in terms
of final result free energy, as can be see in Table II. To
make up for the runtime difference, the shown energies are
the best solution found out of 10 runs for ERD, the best
solution found out of 2 runs for SIMARD with QPS, and
the best solution found out of 1 run for SIMARD without
QPS. SIMARD without QPS outperformed SIMARD with
QPS on five sequences. This could be because the sequences
are shorter and the design space is more limited, meaning that
the additional constraints that QPS involves forced SIMARD
into a poor design space. It is also possible that, as luck can
play a big factor in SA, and we have a fairly small sample
size, the initial sequence for the non QPS run was of very
high quality.

B. Length Dependency

Experiments showed that when we compare length depen-
dency of success rate over mentioned algorithms, the general
scheme is that success count of the algorithms reduce and
distance of the designed sequence to the target structure
increase when length of the structure increases. However,
one advantage of our algorithm is, as it employs Simulated
Annealing, increase in length does not affect the quality of
the designed sequence. Contrarily, when length increases, as
our solution space (pools of sub-sequences) also increases SA
performs better compared to short sequences. For the short

sequences, the SA loop stagnates over same solutions as our
solution space is not big enough.

To our knowledge, regarding length dependency, ERD out-
performs the existing algorithms so far. However, when length
becomes more than 900nt, SIMARD starts to give better
distances. When a typical sequence with length 953nt from
RNASTRAND dataset (393th sequence) is used in experi-
ments, ERD gives 14 as an average Hamming distance whereas
SIMARD gives 6. This specific example is chosen because
the structures with length over 953nt in RNASTRAND dataset
could not be successfully designed which makes this sequence
the longest sequence in our dataset.

VI. CONCLUSION

In this paper, we introduced SIMARD with QPS for RNA
design problem which uses simulated annealing as an opti-
mization technique to minimize Hamming distance, and pre-
selection to optimize energy. Using Rfam dataset, we have
showed that our algorithm yields better results for the long
RNA structures in terms of Hamming distance compared to
eight other RNA design algorithms. It is found that both ERD
and SIMARD has superior results over the existing packages.
In addition, we have shown that with QPS, we can outperform
ERD in terms of energy. One drawback of SIMARD is the
long computational times compared to ERD. However, we
have found that with the long sequences, SIMARD performs
better in terms of resulting Hamming distance and energy
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Fig. 3. SIMARD run with and without QPS of Rfam dataset sequence, RFO0030. The horizontal access represents algorithmic steps and the vertical axis
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TABLE II
COMPARING FREE ENERGY OF FINAL SOLUTIONS BETWEEN ALGORITHMS.
THE BEST ENERGY FOR EACH SEQUENCE IS BOLDED. THE SEQUENCES
ARE ORDERED BY LENGTH.

Energy (kcal/mol)
Sequence name  Length | SIMARD SIMARD ERD
with QPS no QPS

RF0008 54 =27 -53 -15
RF00029 73 -31 -16 -21
RF0005 74 -31 -26 -23
RF00027 79 -50 -51 -48
RF00019 83 -66 -29 -24
RF00014 87 -61 -31 -38
RF0006 89 -35 -124 -18
RF00026 102 -28 -2 -4
RF0001 117 -220 -16 -34
RF00021 118 -75 -40 -47
RF00020 119 -58 -29 -35
RF00016 129 -65 -62 -22
RF00015 140 -109 -36 -33
RF00022 148 -128 -36 -38
RF0002 151 -47 -63 221
RF0007 154 =77 -47 -53
RF0003 161 -80 -50 -44
RF00013 185 -110 -28 -58
RF0004 193 -94 -5 -55
RF00025 210 -86 -46 -40
RF00012 215 -84 -135 -48
RF00017 301 -217 -130  -126
RF00030 340 -106 -90 -69
RF00028 344 -115 -58 -61
RF0009 348 -105 -36 -60
RF00010 357 -206 -28  -126
RF00018 360 -122 -68 -64
RF00011 382 -188 -52 -110
RF00024 451 -226 -109  -124

(with QPS) than the ERD and the other algorithms, hence
SIMARD provides more accurate results than ERD in general.

Our algorithm employs fold function from Vienna Pack-
age [18] and pool construction scheme in ERD. In the future,

trying another function for secondary structure prediction and
another scheme for the evolutionary part of the algorithm could
increase the accuracy of the designed sequence.

Lastly, there are many future directions for SIMARD.
SIMARD is very flexible and it allows researchers to de-
sign their own SA approach for RNA design problem using
evolutionary techniques. In the future, the algorithm can be
easily extended to use constraints (to specify nucleotides to
specific positions or GC content). QPS also adds an element of
multiple optimization, and there are a number of combinations
of SIMARD optimization and preselection optimization that
we can try.
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