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Abstract—Evolutionary process has become a popular design 

method for experimenting and automatically synthesizing 

intelligent controllers for autonomous robots.  Such controllers are 

automatically created using different evolutionary methods 

without direct programming or in-depth human knowledge of the 

design. Multi-agent systems and collective behaviors based on 

swarm intelligence observed in nature are generally ideal 

candidates for automatic controller design using evolutionary 

processes.  Although the evolutionary process can provide great 

insight into possible solutions and is a reasonable tool for such 

experiments, it may not be the most efficient and ideal design tool 

for every experiment.  In this paper, we setup experiments on self-

organization of a multi-agent system and evolve three different 

controllers.  We then compare the design effort and results of the 

three evolved controllers with a traditionally designed controller 

that performs the same task.  We show that the traditionally 

designed controller outperforms the best case evolutionary-based 

controller by 10% when measured in overall median fitness level. 

We also show that the traditionally designed controller is the most 

reliable as it never violates the design rules. Many studies have 

been performed in comparison of different evolutionary 

techniques, but to the best of our knowledge none of them focus on 

the study of design effort and suitability of such approaches. The 

evolutionary process is a reasonable design tool only for problems 

that are too difficult or complicated to be addressed using 

traditional design methods. 

Keywords—Evolutionary Robotics; Swarm Robotics; Genetic 

Algorithm; Evolutionary Process; Control Design 

I. INTRODUCTION 

Evolutionary process has become a popular design method 
for experimenting and automatically synthesizing intelligent 
controllers for autonomous robots.  Such controllers are 
automatically created using different evolutionary methods 
without direct programming or in-depth human knowledge of 
the design.  Evolutionary processes are widely used in 
evolutionary robotics (ER), a research field that bridges artificial 
life and autonomous robotics.  ER can be used to create both the 
control structure and the control parameters for autonomous 
robots through the means of an evolutionary process. An 
evolutionary process generally consists of software simulations 
on a population-based artificial environment to synthesize 
controllers for autonomous robots.  The robots are then evolved 
over generations to correctly execute tasks and exhibit desired 
behaviors with some level of intelligence. 

Multi-agent systems and collective behaviors based on 
swarm intelligence observed in nature are generally ideal 
candidates for automatic controller design using evolutionary 
processes [1]–[3].  Swarm robotics (SR) is the research field that 
deals with such systems. In SR, the multi-agent systems are 
generally comprised of mostly simple physical robots with a 
specific desired collective behavior.  The collective behavior 
emerges from a set of elementary rules that govern the 
interactions of individual robots with each other and their 
respective environment. A well-constructed evolutionary 
process can produce decentralized systems with desired 
emergent properties, such as robustness to individual failures, 
flexibility and adaptability to environmental changes, or 
scalability to different group sizes. 

Although the evolutionary process can provide great insight 
into possible solutions and is a reasonable tool for such 
experiments, it may not be the most efficient and ideal design 
tool for every experiment.  The evolutionary process uses a 
bottom-up approach where the design is mainly focused on 
piecing together fundamental systems of actuators and sensors 
to give rise to a complex and intelligent system.  Evolutionary 
process needs large number of fast, accurate and 
computationally intensive simulations. Depending on the setup 
of the evolutionary process the resulting controller may be 
simple or complex.  The synthesized controllers are generally 
evolved in isolation and are subject to local optimizations where 
they may not yield the exact desired system.  These limitations 
lead to a black-box solution that is difficult to modify and reverse 
engineer with a possible reality gap that would prevent applying 
the controller to a real-world robot and environment. 

In contrast to ER, the traditional control design uses a 
top-down approach.  In this approach the designer starts with the 
big picture (desired collective behavior) and breaks down the 
system to different subsystems (individual robots and their 
behaviors).  Furthermore, each subsystem is broken down into 
smaller parts (actuators and sensors) where physical and 
mathematical models govern the controller, rules of interactions 
and the collective behavior.  This approach requires a prior 
knowledge of the solution and the breakdown is generally 
difficult to perform due to the indirect relationships between the 
rules executed by the robots.  However, the traditional control 
design is still widely used in most swarm robotic designs as it 
generally outperforms the evolutionary process results. 
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Currently, the top-down approach is widely used in most 
swarm robotic designs where individual level behaviors are 
designed and tested using a trial-and-error process.  The 
automatic design approach of ER as an alternative has been 
adopted in many cases [4]–[7].  The complexity of classical 
design and difficulty of transitioning ER from simulations to real 
world (reality gap) has given rise to a newly proposed automatic 
modular design (AutoMoDe) approach [8], [9]. AutoMoDe 
generates an individual-level behavior in the form of a 
probabilistic finite state machine (PFSM) by searching for the 
best combination of preexisting parametric modules and uses an 
optimization algorithm to select the topology of PFSM, the 
modules to be included, and the value of their parameters. The 
set of modules and the rules to compose a probabilistic finite 
state machine represent the bias injected in the automatic design 
process [5], [6].  Experiments with the vanilla variation of 
AutoMoDe has shown that while it can perform better than ER 
approach, it still cannot outperform the classical approach. 

In this paper, we setup experiments on self- organization of 
a multi-agent system and evolve three different controllers 
similar to [4], [7].  We devised three experiments that evolved 
controllers for the e-puck educational robot by École 
Polytechnique Fédérale de Lausanne (EPFL), Switzerland using 
MATLAB® (MathWorks – Natick, Massachusetts) and V-REP 
(Virtual Experimentation Platform from Coppelia Robotics – 
Switzerland).  We also developed a traditionally designed 
controller that performed the same task as the evolved 
controllers.  We then compare the design effort and results of the 
three evolved controller with a traditionally designed controller.  
Although the extent of our experiments may be limited, we feel 
they are sufficient to show that traditionally designed controller 
outperforms the controllers synthesized using evolutionary 
process.  The evolutionary process and ER are an extremely 
valuable tool and research field, when it is applied to problems 
that are challenging for a traditional control design and is not an 
ideal solution for all ordinary problems. 

In the next section, we provide detail information on the 
setup of the evolutionary process  and the controller designed 
using a traditional design method. In section III we present the 
results obtained from the simulations with a discussion and 
comparison of different controllers.  Lastly, in section IV we 
provide a summary and conclusion to our experiment. 

II. METHODS 

Evolutionary process as a design tool can synthesize desired 
controllers for autonomous robots without direct human 
programming. This approach differs from the traditional control 
design were the designer creates the controller using physical 
and mathematical models and by dividing the whole system into 
subsystems.  Successful results have been reported using ER [4], 
[7], [10]–[12] and in particular V. Trianni and S. Nolfi have 
published case studies on self-organizing swarms of s-bots using 
their proposed design process approach in [4], [7].  This paper 
reports results of experiments and simulations performed on a 
similar robotic platform the e-puck. In this section we first 
introduce the robotic platform that was used in the experiments 
and the desired collective behavior.  We then provide details on 
the setup of three evolutionary experiments and end with details 
of the traditionally designed controller. 

A. The Robotic Platform and Desired Collective Behavior 

The e-puck as depicted in Fig. 1 is an educational robotic 
platform used in SR and ER [6], [13]. The e-puck robot has a 
diameter of 75 mm and is a differential drive robot with a host 
of sensors and actuators that includes: two stepper motors, loud 
speaker, three microphones to capture sound, red and green light 
emitting diodes (LED), color CMOS camera for vision, eight 
infrared (IR) proximity sensors around the body of the robot for 
obstacle avoidance and three ground sensors for measuring light 
intensity and ground color. 

The experiments we performed in this paper were setup to 
devise a decentralized controller for a group of e-pucks to 
develop a self-organizing synchronization by employing an 
individual periodic behavior consisting of oscillations along the 
y axis of the rectangular arena shown in Fig. 2. The arena is a 
6×3 meter painted floor surrounded by walls. The ground is 
painted white for |y| < 0.2 m, linearly changes to black until 
|y| = 1 m and is painted black for |y| > 1 m.  The three ground 
sensors in the front of e-puck are expected to be used for 
adjustments to the heading of the robot in producing individual 
periodic oscillatory movement along the y-axis of the arena.  The 
light intensity measured by these sensors can be used as a 
positioning system providing y-location and heading.  The loud 
speaker and microphones are one suitable selection for means of 
communication for synchronizing self-organizing oscillation. 
The eight IR proximity sensors around the body of the robot are 
an obvious choice for obstacle avoidance.  

  
Fig. 1.  E-puck the educational robot by École Polytechnique Fédérale de 
Lausanne (EPFL), Switzerland [3] with a host of sensors and actuators. 

 

 
Fig. 2.  Top-view snapshot of V-REP simulation illustrating the environment 

in which the evolutionary experiments were performed.  The three dark circles 

in the arena are 3 individual e-pucks. 
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We setup two evolutionary experiments using MATLAB 
simulations with an in-house model of the e-puck without 
sensory noise or actuator disturbances. A simplified input/output 
block diagram of the e-puck and the desired controller is shown 
in Fig. 3.  The kinematics of the e-puck was modeled as a 
differential drive robot where left and right angular velocities of 
the wheels acted as its inputs as described in (1): 

𝑥[𝑛 + 1] = 𝑥[𝑛] + 𝑣 ∙ cos(𝜔) ∙ ∆𝑡  

𝑦[𝑛 + 1] = 𝑦[𝑛] + 𝑣 ∙ sin(𝜔) ∙ ∆𝑡  

𝜃[𝑛 + 1] = 𝜃[𝑛] + 𝜔 ∙ ∆𝑡  (1) 

𝑣 =
𝑟

2
(𝑣𝑅 + 𝑣𝐿)  

𝜔 =
𝑟

𝐿
(𝑣𝑅 − 𝑣𝐿)  

 

Where vR and vL are the angular velocities of the right and left 
motors respectively, r is the radius of the wheels and L is the 
separation between the two wheels. 

The third evolutionary experiment we setup used an identical 
model as shown in Fig. 3 but the simulations were carried in 
V-REP virtual environment. Our traditionally designed 
controller consisted of a proportional controller and was tested 
using the same simulation environment. 

B. Evolutionary Experiments and Setup 

We followed the guidance presented in [4] for the setup of 
the evolutionary experiments performed here. Based on the 
characteristics of the arena and the desired collective behavior, 
we selected the right and left motors and the three ground 
sensors as the sensory-motor system for achieving the individual 
periodic oscillatory behavior.  The left and right motor velocities 
are controlled based on the perception of the e-puck from the 
arena using the ground sensors.  The ground sensors can decode 
the grey level into a range of [0, 1], where 0 corresponds to black 
and white is 1.  The maximum angular velocity of the wheels is 
set to 2π rad/sec.  If the obstacle avoidance is also a desired 
individual behavior, the eight proximity IR sensors can be used 
for collision avoidance and maneuvering.  Finally, for the 
collective behavior and synchrony among the e-pucks the loud 
speaker and microphone is used as a communication channel.  
The communication among the e-pucks is configured as a global 
binary communication system, where if any or all the e-pucks 

are signaling they all perceive a 1 as the received signal and a 0 
if no one is signaling. 

Neural network controllers are an ideal choice for ER [1], 
[14].  There are two parts to a neural network controller: the 
genetics or genotype that is evolved in the experiment and 
potentially holds the desired solution to the problem, and the 
organism or phenotype that in this case is the robotic system. 
Evolution is heavily dependent on the distinction between 
genotype and phenotype, and their relation, that is the genotype-
to-phenotype mapping [7].  In these experiments we used a 
homogeneous set of e-pucks where in each trial all individuals 
were identical and clones of the same genotype.  We selected 
direct mapping and used a fully connected, feed-forward neural 
network control structure also called a perceptron network for 
genotype-to-phenotype mapping. This perceptron directly 
transforms the sensory inputs into actuator outputs, without 
recurrent connections or internal states or layers.  The sensory 
neurons are passed through after being multiplied by their  
corresponding weights, and the output neurons are sigmoid units 
whose activation is computed by (2): 

 𝑂𝑗 = 𝜎(∑ 𝑤𝑖𝑗 ∙ 𝐼𝑗 + 𝐵𝑗𝑖 ),        𝜎(𝑧) ≝
1

1+𝑒−𝑧  (2) 

Where Ii is the activation of the ith input unit, Bj is the bias term, 
Oj is the activation of the jth output unit, wij is the weight of the 
connection between input neuron i and output neuron j, and σ(z) 
is the sigmoid function.  There are a total of twelve inputs and 
three outputs for the neural network controller. Three sensory 
neurons, I1 to I3, are mapped into the three ground sensors.  Eight 
sensory neurons, I4 to I11, are mapped into the proximity RI 
sensors and the last sensory neuron, I12, is a binary input and 
mapped into the microphone of the e-puck for perception of 
sound.  All sensor readings are scaled to the range of [0, 1]. O1 
and O2 are the activation states of the first two motor neurons 
corresponding to left and right e-puck motors and are mapped to 
the range of ±vmax (2π rad/sec). The third motor neuron controls 
the speaker in such a way that a sound signal is emitted whenever 
the activation state O3 is greater than 0.5.  Fig. 4 illustrates the 
input/output chain of the perceptron network that controls the 
first motor neuron O1.  The same structure is repeated with 
different weights and biases for the rest of the output motor 
neurons O2 and O3. The connection weights wij and bias terms Bj 
are the genotypes and are the genetically encoded parameters. 
Each parameter is represented with an 8-bit binary code mapped 
onto a real number ranging in [−10, +10]. 

 
Fig. 3.  Simplified block diagram of the e-puck model used in the experiments. 
The controller at the bottom of the figure is the subject of these experiments 

and is to be designed. 
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Fig. 4.  Input/output chain of the fully connected feed-forward perceptron 
network that controls the first output motor neuron O1.  The same structure is 

repeated with different weights and biases for the rest of the output motor 

neurons O2 and O3. 
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To evaluate the performance of evolved controllers a two 
component fitness function is used for these experiments that is 
set as metrics to reward individual motion (FM) and group 
synchrony (FS).  The overall fitness of the group is evaluated as 
the average of these two: 

 𝐹 =
1

2
∙ 𝐹𝑀 +

1

2
∙ 𝐹𝑠 ,     𝐹 ∈ [0, 1]  (3) 

The movement component FM relates to the individual 
motion and rewards e-pucks that move along the y-axis of the 
arena at the maximum speed: 

 𝐹𝑀 =
1

𝑅
∑ (

1

𝑇
∑ (

|∆𝑦(𝑡,𝑟)|

∆𝑌
)𝑇

𝑡=1 )𝑅
𝑟=1   (4) 

Where R is the number of robots in the swarm, ∆y(t, r) is the 
variation of the y-position of e-puck r at cycle t, and ∆Y is the 
maximum possible variation, which corresponds to the e-puck 
moving at maximum speed in a direction parallel to the y-axis. 
This fitness component rewards fast motion along the y-axis. 
Oscillations during the whole trial are necessary to maximize 
FM. 

The group synchrony component FS evaluates the degree of 
synchronized movement between two e-pucks and is calculated 
for all possible pairs in the group.  The overall FS of the swarm 
is taken as the least synchronized pair in the group.  The function 
defined in (5) encodes the movements of an individual e-puck in 
a way that incorporates the direction of movement (away from 
or toward the x-axis) and the actual physical y-position of the e-
puck.  This is necessary to stress the desired synchronized 
oscillatory movement. 

 𝑑(𝑡, 𝑟) = 𝑦(𝑡, 𝑟) ∙
∆𝑦(𝑡,𝑟)

∆𝑌
  (5) 

The cross-correlation coefficient ϕr1r2 of two sequences 
d(t,r1) and d(t,r2) is defined as: 

 𝜙𝑟1𝑟2 =
Φ𝑟1𝑟2

√Φ𝑟1𝑟1∙Φ𝑟2𝑟2
 ,  

 Φ𝑟1𝑟2 =
1

𝑇
∑ (𝑑(𝑡, 𝑟1) ∙ 𝑑(𝑡, 𝑟2))𝑇

𝑡=1   (6) 

The coefficient ϕr1r2 can take values in [−1, 1], where a value 
of 1 indicates perfect synchrony and a value of −1 indicates 
perfect asynchrony. FS is computed using (6) considering (5) and 
is bounded in [0, 1]. 

 𝐹𝑆 = max {0, min
𝑟1≠𝑟2

𝜙𝑟1𝑟2}  (7) 

FM and FS reward movement of the e-pucks and their 
synchrony from the observer’s perspective, without explicitly 
indicating how to perform a periodic behavior and are both 
behavioral, external and implicit.  In addition to FM and FS, we 
used two other indirect selective pressures needed to stress the 
desired self-organizing oscillatory behavior.  The experiment is 
given performance fitness of F = 0 if any of the e-pucks move 
over to the black painted area.  This is to assert the need to 
staying only in the white and gradient painted area.  If collision 
avoidance is desired in the evolutionary experiment, the trial also 
receives fitness of F = 0 if there is a collision between e-pucks 
or the e-pucks and the walls. 

To avoid complexity and computationally extensive 
simulations, the maximum number of e-pucks in each 

experiment was set to two. In the case where collision avoidance 
was not used, the arena was not walled and the e-pucks were free 
to move in infinite x-direction.   

C. Traditionally Designed Controller 

In an effort to compare the ER process and results we 
developed a traditionally designed proportional controller to 
mimic one of the evolved behaviors in the evolutionary 
experiments.  There are many sophisticated controllers and 
complex solutions for creating a decentralized self-organizing 
oscillatory swarm behavior, but the solution used in this part is 
simple and similar to an evolved solution.  

The controller takes the sensory data of the e-puck at every 
step and acts on them as the states of the system.  For simplicity, 
a single delay (memory) is devised on the center ground sensor 
data which enables the controller to know the direction of 
movement (i.e. moving black-to-white or white-to-black).  The 
proportional controller acts on the error between the left and 
right ground sensors to make adjustments on the heading of the 
e-puck and effectively controlling the direction of the movement 
along the y-axis only.  A left-turn is triggered once a threshold 
is reached on the center ground sensor (< 0.1) to ensure that the 
e-puck does not cross to the black area and the direction of 
movement is switched to black-to-white.  The same threshold is 
used in producing a binary signal which is globally perceived by 
the other e-pucks. This signaling behavior (receiving a binary 
one on the receiver end) will cause the same left-turn trigger if 
the e-puck is moving white-to-black. These individual behaviors 
force the swarm system to the desired self-organized 
synchronized oscillatory movement. 

The collision avoidance mode of the e-puck controller is 
triggered if an obstacle is detected within the radius of 25 cm 
from the e-puck.  For obstacle avoidance the four front proximity 
sensors PS2 through PS5 are used in conjunction with 
Braitenberg weights. 

 [
𝑣́𝑅

𝑣́𝐿
] = [ 1 2 −2 −1

−1 −2 2 1
] × [

𝑃𝑆2

𝑃𝑆3

𝑃𝑆4

𝑃𝑆5

]  (8) 

III. RESULTS 

We performed three evolutionary experiments, two of which 
were done using an in-house MATLAB simulation environment 
and one using V-REP virtual experimentation platform.  We 
setup the first experiment using without evolving the collision 
avoidance behavior where the arena was not walled and the e-
pucks were free to move in infinite x-direction.  We enabled the 
evolution of collision avoidance for the other two experiments. 

We ran each evolutionary experiment through 500 
generations.  We set the population count of each generation to 
100 genotypes each corresponding to a unique controller.  The 
first generation of each experiment was initialized with a 
randomly selected population of controllers. We evaluated the 
performance of each controller in every generation through ten 
instances of trials with randomly selected initial conditions of 
the e-pucks (position and heading in the arena).  We then 
calculated the fitness of each controller as the average of the ten 



trials using (3). Once the fitness of each genotype in the 
population has been evaluated, we produced the next 
generation’s new population by a combination of selection with 
elitism and mutation. At each generation, the four best 
controllers of the population, the elite, are retained in the next 
generation. The 96 remainder of the new population is generated 
by the 20 individuals of the previous generation that scored the 
highest fitness. Each selected genotype reproduces at most five 
times by applying mutation with 3% probability of flipping a bit.  
The simulations were performed with a time step of 50 ms for a 
total duration of 90 seconds without any noise or disturbances 
introduced.  

A. MATLAB Simulation Results without Collision Avoidance 

We performed the experiment without collision avoidance 
with the assumption that the e-pucks are in an infinite arena. 
They were free to move in x-direction without any constrains (no 
walls) and that the probability of e-pucks colliding with each 
other was negligible and not crucial to evolution of self-
organizing synchronous collective behavior.  This assumption 
enabled much less computationally intensive simulations 
compared to simulations where collision avoidance was part of 
the evolutionary experiment.  The only indirect selective 
pressure for this experiment was when the e-pucks moved over 
to the black painted part and a fitness of F = 0 was assigned to 
the trial.  Fig. 5 shows the results from the  experiment without 
collision avoidance. 

B. MATLAB Simulation Results with Collision Avoidance 

In this experiment, we setup the process to evolve the 
collision avoidance of the controller.  We imposed both of the 
selective pressures on the simulations.  If any of the e-pucks 
moved to the black painted area or if any of the e-pucks collided 
with the wall or the others the trial would receive a fitness of 
F = 0.  These two in conjunction with the fitness function (3) 
would lead the experiment to evolving self-organizing 
synchronous collective behavior with collision avoidance.  As 
the search area for weights was increased due to the addition of 
the proximity sensors, the simulations for this experiment 
required extremely high computational resources and extended 
run time. Fig. 6 shows the results from the  experiment with 
collision avoidance.  

C. V-REP Simulation Results with Collision Avoidance 

We modified and used an e-puck model included with 
V-REP provided by École Polytechnique Fédérale de Lausanne 
(EPFL), Switzerland. This model was identical to the one we 
used in section III.A-B simulations.  We used the default physics 
engine (ODE 2.78) for dynamic calculations and simulation of 
real-world physics and object interactions. Fig. 7 shows the 
results from the V-REP experiment with collision avoidance. 

D. Performance Comparison of Evolved and Traditionally 

Designed Controllers 

We selected the best performing evolved controller of last 
generation from each evolutionary experiment in sections II.A-C 
to compare with the traditionally designed controller.  We 
simulated all four controllers 100 times with random initial 
poses and measured their movement (FM), synchrony (FS) and 
overall fitness (FOverall). Fig. 8 is a boxplot summary of the 
results and compares different fitness levels of each controller.  
Traditionally designed controller with collision avoidance is 
denoted by “T”, evolved controllers using MATLAB without  
and with collision avoidance are denoted by “E1” and “E2” 
respectively and the controller evolved using V-REP with 
collision avoidance is denoted by “E3”.   

 
Fig. 5.  Simulation results of MATLAB experiment without collision 
avoidance.  Boxplot of the fitness from the 20 top performing controllers in 

each generation.  Outliers are denoted by the plus sign. 

 
Fig. 6.  Simulation results of MATLAB experiment with collision avoidance.  
Boxplot of the fitness from the 20 top performing controllers in each 

generation.  Outliers are denoted by the plus sign. 

  

 
Fig. 7.  Simulation results of V-REP experiment with collision avoidance.  

Boxplot of the fitness from the 20 top performing controllers in each 

generation.  Outliers are denoted by the plus sign. 



E. Discussion 

We focused on overall performance, reliability, design effort 
and adaptability of the controllers. The performance of the 
controllers was indicated by the fitness function.  The reliability 
was measured based on instances of failures in following the 
rules set forth.  The design effort was measured by the time 
required to design or evolve the final controller. Finally the 
adaptability of the controllers based on ease of accommodating 
possible changes in the robotic system and the environment was 
a factor in selecting the best performing design method for the 
given problem. 

Traditionally designed controller outperformed all other 
three evolved controllers both in terms of fitness level and 
reliability.  All three evolved controllers violated the design rules 
and received fitness of zero at least in one instance.  Evolved 
controller without collision avoidance (E1) is the closest match 
to the traditionally designed controller.  The evolved controllers 
(E2 and E3) both underperformed due to lack of convergence in 
the evolutionary process, caused by added complexity of 
collision avoidance requirement.  Although the performance of 
T and E1 are close to each other, we used a two sample t-test and 
with a p-value of 0.0019 showed that the two groups are 
significantly different from each other.  Traditionally designed 
controller (T) outperformed the best evolved controller  without 
collision avoidance (E1) by 10% in median of the overall fitness, 
without receiving a fitness of zero and smallest variance. 

TABLE I.  STATISTICS OF OVERALL FITNESS FOR CONTROLELRS 

 T E1 E2 E3 

Median 0.9223 0.8949 0.3616 0.3936 

Variance 0.0031 0.0447 0.0589 0.0372 

Maximum 0.9412 0.9140 0.8883 0.8874 

Minimum 0.4718 0 0 0 

Outliers 9 14 0 0 

 

The evolutionary experiment without collision avoidance 
(E1) outperformed the other two evolutionary experiments with 
collision avoidance.  As the evolutionary experiment is a tool for 
optimizing coefficients in a search area related to weights of the 
neural network as shown in Fig. 4, larger search area introduces 
complexity.  As the experiment without collision avoidance has 
a smaller search area, we observed a convergence to the desired 

solution after 60 generations.  However, the other two with 
collision avoidance did not converge well enough even after 500 
generations.  One factor in poor performance of the later 
experiments is the effect of disturbances.  In situations where 
e-pucks get close to walls or each other the obstacle avoidance 
intervenes and disturbs the established synchrony among the 
group.  Another factor is also related to evolution and the use of 
signaling capabilities of the e-pucks.  From Fig. 8 we can 
observe that the movement component (FM) of E2 and E3 are 
relatively well evolved, but the synchrony component (FS) is 
poorly evolved and hence the overall fitness of these two are 
underperforming compared to the others.  We attribute better 
performance of E3 over E2 to the simulation environment 
provided by V-REP and the real-world physical engines. 

The evolutionary experiments required extremely long and 
computationally intensive simulations in comparison to the 
design effort for the traditionally designed controller.  The 
experiment without collision avoidance (E1) completed in 24 
hours and faster compared to the other two experiments.  As we 
introduced collision avoidance in E2, the completion of 
experiment required much longer simulation time (96 hours).  
The simulation in V-REP with parallel processing and 
simultaneous simulations required even longer simulation time 
(over 10 days) due to the rich and comprehensive physical 
engine used by V-REP. 

IV. CONCLUSION 

Evolutionary process as a design tool has gained popularity 
in evolutionary and swarm robotics for synthesizing intelligent 
controllers for autonomous robots.  Such controllers are 
automatically created using different evolutionary methods 
without direct programming or in-depth human knowledge of 
the design. Although the evolutionary process is a powerful 
design tool, it may not be the most efficient and ideal solution 
for every experiment.  The evolutionary process uses a bottom-
up approach where the design is mainly focused on piecing 
together fundamental systems of actuators and sensors to give 
rise to a complex and intelligent system.  Evolutionary process 
needs large number of fast, accurate and computationally 
intensive simulations. Depending on the setup of the 
evolutionary process the resulting controller may be simple or 
complex.  The synthesized controllers are generally evolved in 
isolation and are subject to local optimizations where they may 

 
Fig. 8.  Performance comparison of evolved and traditionally designed controllers. Traditionally designed controller with collision avoidance is denoted by “T”, 

evolved controllers using MATLAB without and with collision avoidance are denoted by “E1” and “E2” respectively and the controller evolved using V-REP with 

collision avoidance is denoted by “E3”.   



not yield the exact desired system.  These limitations lead to a 
black-box solution that is difficult to modify and reverse 
engineer with a possible reality gap that would prevent applying 
the controller to a real-world robot and environment. 

In this paper, we setup three experiments on self- 
organization of a multi-agent system and evolve three different 
controllers similar to [4], [7].  We selected two simulation 
environments (MATLAB and V-REP) with different levels of 
complexities.  The goal of this paper was to examine the 
performance of controllers when compared with a traditionally 
designed controller.  We showed that an evolved controller can 
provide desired outcome, but it was outperformed by the 
traditionally designed controller.  Higher level of complexity in 
the desired task required more intensive and longer simulation 
time. In the case of our self-organizing experiments and 
outcome, the amount of effort, time and computational resources 
required for evolutionary experiments was far more than the 
effort for a traditionally designed controller. Based on our 
experimental results we demonstrated that the evolutionary 
process is a reasonable design tool, however it is best used for 
problems that are too difficult or complicated to be solved by 
traditional design methods.   
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