
Assessment of Evolutionary Processes
Experiments on Self-Organizing Behavior of E-pucks

Hossein Ghaffari Nik

ECE Department of the Volgenau School of Engineering

George Mason University

Fairfax, Virginia, United States of America

hghaffar@masonlive.gmu.edu

Dr. Nathalia Peixoto

ECE Department of the Volgenau School of Engineering

George Mason University

Fairfax, Virginia, United States of America

npeixoto@gmu.edu

Abstract—Evolutionary process has become a popular design

method for experimenting and automatically synthesizing

intelligent controllers for autonomous robots. Such controllers are

automatically created using different evolutionary methods

without direct programming or in-depth human knowledge of the

design. Multi-agent systems and collective behaviors based on

swarm intelligence observed in nature are generally ideal

candidates for automatic controller design using evolutionary

processes. Although the evolutionary process can provide great

insight into possible solutions and is a reasonable tool for such

experiments, it may not be the most efficient and ideal design tool

for every experiment. In this paper, we setup experiments on self-

organization of a multi-agent system and evolve three different

controllers. We then compare the design effort and results of the

three evolved controllers with a traditionally designed controller

that performs the same task. We show that the traditionally

designed controller outperforms the best case evolutionary-based

controller by 10% when measured in overall median fitness level.

We also show that the traditionally designed controller is the most

reliable as it never violates the design rules. Many studies have

been performed in comparison of different evolutionary

techniques, but to the best of our knowledge none of them focus on

the study of design effort and suitability of such approaches. The

evolutionary process is a reasonable design tool only for problems

that are too difficult or complicated to be addressed using

traditional design methods.

Keywords—Evolutionary Robotics; Swarm Robotics; Genetic

Algorithm; Evolutionary Process; Control Design

I. INTRODUCTION

Evolutionary process has become a popular design method
for experimenting and automatically synthesizing intelligent
controllers for autonomous robots. Such controllers are
automatically created using different evolutionary methods
without direct programming or in-depth human knowledge of
the design. Evolutionary processes are widely used in
evolutionary robotics (ER), a research field that bridges artificial
life and autonomous robotics. ER can be used to create both the
control structure and the control parameters for autonomous
robots through the means of an evolutionary process. An
evolutionary process generally consists of software simulations
on a population-based artificial environment to synthesize
controllers for autonomous robots. The robots are then evolved
over generations to correctly execute tasks and exhibit desired
behaviors with some level of intelligence.

Multi-agent systems and collective behaviors based on
swarm intelligence observed in nature are generally ideal
candidates for automatic controller design using evolutionary
processes [1]–[3]. Swarm robotics (SR) is the research field that
deals with such systems. In SR, the multi-agent systems are
generally comprised of mostly simple physical robots with a
specific desired collective behavior. The collective behavior
emerges from a set of elementary rules that govern the
interactions of individual robots with each other and their
respective environment. A well-constructed evolutionary
process can produce decentralized systems with desired
emergent properties, such as robustness to individual failures,
flexibility and adaptability to environmental changes, or
scalability to different group sizes.

Although the evolutionary process can provide great insight
into possible solutions and is a reasonable tool for such
experiments, it may not be the most efficient and ideal design
tool for every experiment. The evolutionary process uses a
bottom-up approach where the design is mainly focused on
piecing together fundamental systems of actuators and sensors
to give rise to a complex and intelligent system. Evolutionary
process needs large number of fast, accurate and
computationally intensive simulations. Depending on the setup
of the evolutionary process the resulting controller may be
simple or complex. The synthesized controllers are generally
evolved in isolation and are subject to local optimizations where
they may not yield the exact desired system. These limitations
lead to a black-box solution that is difficult to modify and reverse
engineer with a possible reality gap that would prevent applying
the controller to a real-world robot and environment.

In contrast to ER, the traditional control design uses a
top-down approach. In this approach the designer starts with the
big picture (desired collective behavior) and breaks down the
system to different subsystems (individual robots and their
behaviors). Furthermore, each subsystem is broken down into
smaller parts (actuators and sensors) where physical and
mathematical models govern the controller, rules of interactions
and the collective behavior. This approach requires a prior
knowledge of the solution and the breakdown is generally
difficult to perform due to the indirect relationships between the
rules executed by the robots. However, the traditional control
design is still widely used in most swarm robotic designs as it
generally outperforms the evolutionary process results.

This work was supported in part by the Neural Engineering Laboratory at
George Mason University under advisement of Dr. Nathalia Peixoto.

Currently, the top-down approach is widely used in most
swarm robotic designs where individual level behaviors are
designed and tested using a trial-and-error process. The
automatic design approach of ER as an alternative has been
adopted in many cases [4]–[7]. The complexity of classical
design and difficulty of transitioning ER from simulations to real
world (reality gap) has given rise to a newly proposed automatic
modular design (AutoMoDe) approach [8], [9]. AutoMoDe
generates an individual-level behavior in the form of a
probabilistic finite state machine (PFSM) by searching for the
best combination of preexisting parametric modules and uses an
optimization algorithm to select the topology of PFSM, the
modules to be included, and the value of their parameters. The
set of modules and the rules to compose a probabilistic finite
state machine represent the bias injected in the automatic design
process [5], [6]. Experiments with the vanilla variation of
AutoMoDe has shown that while it can perform better than ER
approach, it still cannot outperform the classical approach.

In this paper, we setup experiments on self- organization of
a multi-agent system and evolve three different controllers
similar to [4], [7]. We devised three experiments that evolved
controllers for the e-puck educational robot by École
Polytechnique Fédérale de Lausanne (EPFL), Switzerland using
MATLAB® (MathWorks – Natick, Massachusetts) and V-REP
(Virtual Experimentation Platform from Coppelia Robotics –
Switzerland). We also developed a traditionally designed
controller that performed the same task as the evolved
controllers. We then compare the design effort and results of the
three evolved controller with a traditionally designed controller.
Although the extent of our experiments may be limited, we feel
they are sufficient to show that traditionally designed controller
outperforms the controllers synthesized using evolutionary
process. The evolutionary process and ER are an extremely
valuable tool and research field, when it is applied to problems
that are challenging for a traditional control design and is not an
ideal solution for all ordinary problems.

In the next section, we provide detail information on the
setup of the evolutionary process and the controller designed
using a traditional design method. In section III we present the
results obtained from the simulations with a discussion and
comparison of different controllers. Lastly, in section IV we
provide a summary and conclusion to our experiment.

II. METHODS

Evolutionary process as a design tool can synthesize desired
controllers for autonomous robots without direct human
programming. This approach differs from the traditional control
design were the designer creates the controller using physical
and mathematical models and by dividing the whole system into
subsystems. Successful results have been reported using ER [4],
[7], [10]–[12] and in particular V. Trianni and S. Nolfi have
published case studies on self-organizing swarms of s-bots using
their proposed design process approach in [4], [7]. This paper
reports results of experiments and simulations performed on a
similar robotic platform the e-puck. In this section we first
introduce the robotic platform that was used in the experiments
and the desired collective behavior. We then provide details on
the setup of three evolutionary experiments and end with details
of the traditionally designed controller.

A. The Robotic Platform and Desired Collective Behavior

The e-puck as depicted in Fig. 1 is an educational robotic
platform used in SR and ER [6], [13]. The e-puck robot has a
diameter of 75 mm and is a differential drive robot with a host
of sensors and actuators that includes: two stepper motors, loud
speaker, three microphones to capture sound, red and green light
emitting diodes (LED), color CMOS camera for vision, eight
infrared (IR) proximity sensors around the body of the robot for
obstacle avoidance and three ground sensors for measuring light
intensity and ground color.

The experiments we performed in this paper were setup to
devise a decentralized controller for a group of e-pucks to
develop a self-organizing synchronization by employing an
individual periodic behavior consisting of oscillations along the
y axis of the rectangular arena shown in Fig. 2. The arena is a
6×3 meter painted floor surrounded by walls. The ground is
painted white for |y| < 0.2 m, linearly changes to black until
|y| = 1 m and is painted black for |y| > 1 m. The three ground
sensors in the front of e-puck are expected to be used for
adjustments to the heading of the robot in producing individual
periodic oscillatory movement along the y-axis of the arena. The
light intensity measured by these sensors can be used as a
positioning system providing y-location and heading. The loud
speaker and microphones are one suitable selection for means of
communication for synchronizing self-organizing oscillation.
The eight IR proximity sensors around the body of the robot are
an obvious choice for obstacle avoidance.

Fig. 1. E-puck the educational robot by École Polytechnique Fédérale de
Lausanne (EPFL), Switzerland [3] with a host of sensors and actuators.

Fig. 2. Top-view snapshot of V-REP simulation illustrating the environment

in which the evolutionary experiments were performed. The three dark circles

in the arena are 3 individual e-pucks.

x

y

We setup two evolutionary experiments using MATLAB
simulations with an in-house model of the e-puck without
sensory noise or actuator disturbances. A simplified input/output
block diagram of the e-puck and the desired controller is shown
in Fig. 3. The kinematics of the e-puck was modeled as a
differential drive robot where left and right angular velocities of
the wheels acted as its inputs as described in (1):

𝑥[𝑛 + 1] = 𝑥[𝑛] + 𝑣 ∙ cos(𝜔) ∙ ∆𝑡

𝑦[𝑛 + 1] = 𝑦[𝑛] + 𝑣 ∙ sin(𝜔) ∙ ∆𝑡

𝜃[𝑛 + 1] = 𝜃[𝑛] + 𝜔 ∙ ∆𝑡 (1)

𝑣 =
𝑟

2
(𝑣𝑅 + 𝑣𝐿)

𝜔 =
𝑟

𝐿
(𝑣𝑅 − 𝑣𝐿)

Where vR and vL are the angular velocities of the right and left
motors respectively, r is the radius of the wheels and L is the
separation between the two wheels.

The third evolutionary experiment we setup used an identical
model as shown in Fig. 3 but the simulations were carried in
V-REP virtual environment. Our traditionally designed
controller consisted of a proportional controller and was tested
using the same simulation environment.

B. Evolutionary Experiments and Setup

We followed the guidance presented in [4] for the setup of
the evolutionary experiments performed here. Based on the
characteristics of the arena and the desired collective behavior,
we selected the right and left motors and the three ground
sensors as the sensory-motor system for achieving the individual
periodic oscillatory behavior. The left and right motor velocities
are controlled based on the perception of the e-puck from the
arena using the ground sensors. The ground sensors can decode
the grey level into a range of [0, 1], where 0 corresponds to black
and white is 1. The maximum angular velocity of the wheels is
set to 2π rad/sec. If the obstacle avoidance is also a desired
individual behavior, the eight proximity IR sensors can be used
for collision avoidance and maneuvering. Finally, for the
collective behavior and synchrony among the e-pucks the loud
speaker and microphone is used as a communication channel.
The communication among the e-pucks is configured as a global
binary communication system, where if any or all the e-pucks

are signaling they all perceive a 1 as the received signal and a 0
if no one is signaling.

Neural network controllers are an ideal choice for ER [1],
[14]. There are two parts to a neural network controller: the
genetics or genotype that is evolved in the experiment and
potentially holds the desired solution to the problem, and the
organism or phenotype that in this case is the robotic system.
Evolution is heavily dependent on the distinction between
genotype and phenotype, and their relation, that is the genotype-
to-phenotype mapping [7]. In these experiments we used a
homogeneous set of e-pucks where in each trial all individuals
were identical and clones of the same genotype. We selected
direct mapping and used a fully connected, feed-forward neural
network control structure also called a perceptron network for
genotype-to-phenotype mapping. This perceptron directly
transforms the sensory inputs into actuator outputs, without
recurrent connections or internal states or layers. The sensory
neurons are passed through after being multiplied by their
corresponding weights, and the output neurons are sigmoid units
whose activation is computed by (2):

 𝑂𝑗 = 𝜎(∑ 𝑤𝑖𝑗 ∙ 𝐼𝑗 + 𝐵𝑗𝑖), 𝜎(𝑧) ≝
1

1+𝑒−𝑧 (2)

Where Ii is the activation of the ith input unit, Bj is the bias term,
Oj is the activation of the jth output unit, wij is the weight of the
connection between input neuron i and output neuron j, and σ(z)
is the sigmoid function. There are a total of twelve inputs and
three outputs for the neural network controller. Three sensory
neurons, I1 to I3, are mapped into the three ground sensors. Eight
sensory neurons, I4 to I11, are mapped into the proximity RI
sensors and the last sensory neuron, I12, is a binary input and
mapped into the microphone of the e-puck for perception of
sound. All sensor readings are scaled to the range of [0, 1]. O1
and O2 are the activation states of the first two motor neurons
corresponding to left and right e-puck motors and are mapped to
the range of ±vmax (2π rad/sec). The third motor neuron controls
the speaker in such a way that a sound signal is emitted whenever
the activation state O3 is greater than 0.5. Fig. 4 illustrates the
input/output chain of the perceptron network that controls the
first motor neuron O1. The same structure is repeated with
different weights and biases for the rest of the output motor
neurons O2 and O3. The connection weights wij and bias terms Bj
are the genotypes and are the genetically encoded parameters.
Each parameter is represented with an 8-bit binary code mapped
onto a real number ranging in [−10, +10].

Fig. 3. Simplified block diagram of the e-puck model used in the experiments.
The controller at the bottom of the figure is the subject of these experiments

and is to be designed.

 e-puck Model

Left Velocity

Right Velocity

RX Signal

Differential

Drive

Kinematics

Sensory

Perception

&

Actuation

y

x

θ

Proximity

Sensors 1...8

Left/Center/Right

Ground Sensors

TX Signal

8

3Controller

Fig. 4. Input/output chain of the fully connected feed-forward perceptron
network that controls the first output motor neuron O1. The same structure is

repeated with different weights and biases for the rest of the output motor

neurons O2 and O3.

1

I1

I2

I3

I12

...

B1

w1,1

w2,1

w3,1

w12,1

...

 O1

To evaluate the performance of evolved controllers a two
component fitness function is used for these experiments that is
set as metrics to reward individual motion (FM) and group
synchrony (FS). The overall fitness of the group is evaluated as
the average of these two:

 𝐹 =
1

2
∙ 𝐹𝑀 +

1

2
∙ 𝐹𝑠 , 𝐹 ∈ [0, 1] (3)

The movement component FM relates to the individual
motion and rewards e-pucks that move along the y-axis of the
arena at the maximum speed:

 𝐹𝑀 =
1

𝑅
∑ (

1

𝑇
∑ (

|∆𝑦(𝑡,𝑟)|

∆𝑌
)𝑇

𝑡=1)𝑅
𝑟=1 (4)

Where R is the number of robots in the swarm, ∆y(t, r) is the
variation of the y-position of e-puck r at cycle t, and ∆Y is the
maximum possible variation, which corresponds to the e-puck
moving at maximum speed in a direction parallel to the y-axis.
This fitness component rewards fast motion along the y-axis.
Oscillations during the whole trial are necessary to maximize
FM.

The group synchrony component FS evaluates the degree of
synchronized movement between two e-pucks and is calculated
for all possible pairs in the group. The overall FS of the swarm
is taken as the least synchronized pair in the group. The function
defined in (5) encodes the movements of an individual e-puck in
a way that incorporates the direction of movement (away from
or toward the x-axis) and the actual physical y-position of the e-
puck. This is necessary to stress the desired synchronized
oscillatory movement.

 𝑑(𝑡, 𝑟) = 𝑦(𝑡, 𝑟) ∙
∆𝑦(𝑡,𝑟)

∆𝑌
 (5)

The cross-correlation coefficient ϕr1r2 of two sequences
d(t,r1) and d(t,r2) is defined as:

 𝜙𝑟1𝑟2 =
Φ𝑟1𝑟2

√Φ𝑟1𝑟1∙Φ𝑟2𝑟2
 ,

 Φ𝑟1𝑟2 =
1

𝑇
∑ (𝑑(𝑡, 𝑟1) ∙ 𝑑(𝑡, 𝑟2))𝑇

𝑡=1 (6)

The coefficient ϕr1r2 can take values in [−1, 1], where a value
of 1 indicates perfect synchrony and a value of −1 indicates
perfect asynchrony. FS is computed using (6) considering (5) and
is bounded in [0, 1].

 𝐹𝑆 = max {0, min
𝑟1≠𝑟2

𝜙𝑟1𝑟2} (7)

FM and FS reward movement of the e-pucks and their
synchrony from the observer’s perspective, without explicitly
indicating how to perform a periodic behavior and are both
behavioral, external and implicit. In addition to FM and FS, we
used two other indirect selective pressures needed to stress the
desired self-organizing oscillatory behavior. The experiment is
given performance fitness of F = 0 if any of the e-pucks move
over to the black painted area. This is to assert the need to
staying only in the white and gradient painted area. If collision
avoidance is desired in the evolutionary experiment, the trial also
receives fitness of F = 0 if there is a collision between e-pucks
or the e-pucks and the walls.

To avoid complexity and computationally extensive
simulations, the maximum number of e-pucks in each

experiment was set to two. In the case where collision avoidance
was not used, the arena was not walled and the e-pucks were free
to move in infinite x-direction.

C. Traditionally Designed Controller

In an effort to compare the ER process and results we
developed a traditionally designed proportional controller to
mimic one of the evolved behaviors in the evolutionary
experiments. There are many sophisticated controllers and
complex solutions for creating a decentralized self-organizing
oscillatory swarm behavior, but the solution used in this part is
simple and similar to an evolved solution.

The controller takes the sensory data of the e-puck at every
step and acts on them as the states of the system. For simplicity,
a single delay (memory) is devised on the center ground sensor
data which enables the controller to know the direction of
movement (i.e. moving black-to-white or white-to-black). The
proportional controller acts on the error between the left and
right ground sensors to make adjustments on the heading of the
e-puck and effectively controlling the direction of the movement
along the y-axis only. A left-turn is triggered once a threshold
is reached on the center ground sensor (< 0.1) to ensure that the
e-puck does not cross to the black area and the direction of
movement is switched to black-to-white. The same threshold is
used in producing a binary signal which is globally perceived by
the other e-pucks. This signaling behavior (receiving a binary
one on the receiver end) will cause the same left-turn trigger if
the e-puck is moving white-to-black. These individual behaviors
force the swarm system to the desired self-organized
synchronized oscillatory movement.

The collision avoidance mode of the e-puck controller is
triggered if an obstacle is detected within the radius of 25 cm
from the e-puck. For obstacle avoidance the four front proximity
sensors PS2 through PS5 are used in conjunction with
Braitenberg weights.

 [
𝑣́𝑅

𝑣́𝐿
] = [1 2 −2 −1

−1 −2 2 1
] × [

𝑃𝑆2

𝑃𝑆3

𝑃𝑆4

𝑃𝑆5

] (8)

III. RESULTS

We performed three evolutionary experiments, two of which
were done using an in-house MATLAB simulation environment
and one using V-REP virtual experimentation platform. We
setup the first experiment using without evolving the collision
avoidance behavior where the arena was not walled and the e-
pucks were free to move in infinite x-direction. We enabled the
evolution of collision avoidance for the other two experiments.

We ran each evolutionary experiment through 500
generations. We set the population count of each generation to
100 genotypes each corresponding to a unique controller. The
first generation of each experiment was initialized with a
randomly selected population of controllers. We evaluated the
performance of each controller in every generation through ten
instances of trials with randomly selected initial conditions of
the e-pucks (position and heading in the arena). We then
calculated the fitness of each controller as the average of the ten

trials using (3). Once the fitness of each genotype in the
population has been evaluated, we produced the next
generation’s new population by a combination of selection with
elitism and mutation. At each generation, the four best
controllers of the population, the elite, are retained in the next
generation. The 96 remainder of the new population is generated
by the 20 individuals of the previous generation that scored the
highest fitness. Each selected genotype reproduces at most five
times by applying mutation with 3% probability of flipping a bit.
The simulations were performed with a time step of 50 ms for a
total duration of 90 seconds without any noise or disturbances
introduced.

A. MATLAB Simulation Results without Collision Avoidance

We performed the experiment without collision avoidance
with the assumption that the e-pucks are in an infinite arena.
They were free to move in x-direction without any constrains (no
walls) and that the probability of e-pucks colliding with each
other was negligible and not crucial to evolution of self-
organizing synchronous collective behavior. This assumption
enabled much less computationally intensive simulations
compared to simulations where collision avoidance was part of
the evolutionary experiment. The only indirect selective
pressure for this experiment was when the e-pucks moved over
to the black painted part and a fitness of F = 0 was assigned to
the trial. Fig. 5 shows the results from the experiment without
collision avoidance.

B. MATLAB Simulation Results with Collision Avoidance

In this experiment, we setup the process to evolve the
collision avoidance of the controller. We imposed both of the
selective pressures on the simulations. If any of the e-pucks
moved to the black painted area or if any of the e-pucks collided
with the wall or the others the trial would receive a fitness of
F = 0. These two in conjunction with the fitness function (3)
would lead the experiment to evolving self-organizing
synchronous collective behavior with collision avoidance. As
the search area for weights was increased due to the addition of
the proximity sensors, the simulations for this experiment
required extremely high computational resources and extended
run time. Fig. 6 shows the results from the experiment with
collision avoidance.

C. V-REP Simulation Results with Collision Avoidance

We modified and used an e-puck model included with
V-REP provided by École Polytechnique Fédérale de Lausanne
(EPFL), Switzerland. This model was identical to the one we
used in section III.A-B simulations. We used the default physics
engine (ODE 2.78) for dynamic calculations and simulation of
real-world physics and object interactions. Fig. 7 shows the
results from the V-REP experiment with collision avoidance.

D. Performance Comparison of Evolved and Traditionally

Designed Controllers

We selected the best performing evolved controller of last
generation from each evolutionary experiment in sections II.A-C
to compare with the traditionally designed controller. We
simulated all four controllers 100 times with random initial
poses and measured their movement (FM), synchrony (FS) and
overall fitness (FOverall). Fig. 8 is a boxplot summary of the
results and compares different fitness levels of each controller.
Traditionally designed controller with collision avoidance is
denoted by “T”, evolved controllers using MATLAB without
and with collision avoidance are denoted by “E1” and “E2”
respectively and the controller evolved using V-REP with
collision avoidance is denoted by “E3”.

Fig. 5. Simulation results of MATLAB experiment without collision
avoidance. Boxplot of the fitness from the 20 top performing controllers in

each generation. Outliers are denoted by the plus sign.

Fig. 6. Simulation results of MATLAB experiment with collision avoidance.
Boxplot of the fitness from the 20 top performing controllers in each

generation. Outliers are denoted by the plus sign.

Fig. 7. Simulation results of V-REP experiment with collision avoidance.

Boxplot of the fitness from the 20 top performing controllers in each

generation. Outliers are denoted by the plus sign.

E. Discussion

We focused on overall performance, reliability, design effort
and adaptability of the controllers. The performance of the
controllers was indicated by the fitness function. The reliability
was measured based on instances of failures in following the
rules set forth. The design effort was measured by the time
required to design or evolve the final controller. Finally the
adaptability of the controllers based on ease of accommodating
possible changes in the robotic system and the environment was
a factor in selecting the best performing design method for the
given problem.

Traditionally designed controller outperformed all other
three evolved controllers both in terms of fitness level and
reliability. All three evolved controllers violated the design rules
and received fitness of zero at least in one instance. Evolved
controller without collision avoidance (E1) is the closest match
to the traditionally designed controller. The evolved controllers
(E2 and E3) both underperformed due to lack of convergence in
the evolutionary process, caused by added complexity of
collision avoidance requirement. Although the performance of
T and E1 are close to each other, we used a two sample t-test and
with a p-value of 0.0019 showed that the two groups are
significantly different from each other. Traditionally designed
controller (T) outperformed the best evolved controller without
collision avoidance (E1) by 10% in median of the overall fitness,
without receiving a fitness of zero and smallest variance.

TABLE I. STATISTICS OF OVERALL FITNESS FOR CONTROLELRS

 T E1 E2 E3

Median 0.9223 0.8949 0.3616 0.3936

Variance 0.0031 0.0447 0.0589 0.0372

Maximum 0.9412 0.9140 0.8883 0.8874

Minimum 0.4718 0 0 0

Outliers 9 14 0 0

The evolutionary experiment without collision avoidance
(E1) outperformed the other two evolutionary experiments with
collision avoidance. As the evolutionary experiment is a tool for
optimizing coefficients in a search area related to weights of the
neural network as shown in Fig. 4, larger search area introduces
complexity. As the experiment without collision avoidance has
a smaller search area, we observed a convergence to the desired

solution after 60 generations. However, the other two with
collision avoidance did not converge well enough even after 500
generations. One factor in poor performance of the later
experiments is the effect of disturbances. In situations where
e-pucks get close to walls or each other the obstacle avoidance
intervenes and disturbs the established synchrony among the
group. Another factor is also related to evolution and the use of
signaling capabilities of the e-pucks. From Fig. 8 we can
observe that the movement component (FM) of E2 and E3 are
relatively well evolved, but the synchrony component (FS) is
poorly evolved and hence the overall fitness of these two are
underperforming compared to the others. We attribute better
performance of E3 over E2 to the simulation environment
provided by V-REP and the real-world physical engines.

The evolutionary experiments required extremely long and
computationally intensive simulations in comparison to the
design effort for the traditionally designed controller. The
experiment without collision avoidance (E1) completed in 24
hours and faster compared to the other two experiments. As we
introduced collision avoidance in E2, the completion of
experiment required much longer simulation time (96 hours).
The simulation in V-REP with parallel processing and
simultaneous simulations required even longer simulation time
(over 10 days) due to the rich and comprehensive physical
engine used by V-REP.

IV. CONCLUSION

Evolutionary process as a design tool has gained popularity
in evolutionary and swarm robotics for synthesizing intelligent
controllers for autonomous robots. Such controllers are
automatically created using different evolutionary methods
without direct programming or in-depth human knowledge of
the design. Although the evolutionary process is a powerful
design tool, it may not be the most efficient and ideal solution
for every experiment. The evolutionary process uses a bottom-
up approach where the design is mainly focused on piecing
together fundamental systems of actuators and sensors to give
rise to a complex and intelligent system. Evolutionary process
needs large number of fast, accurate and computationally
intensive simulations. Depending on the setup of the
evolutionary process the resulting controller may be simple or
complex. The synthesized controllers are generally evolved in
isolation and are subject to local optimizations where they may

Fig. 8. Performance comparison of evolved and traditionally designed controllers. Traditionally designed controller with collision avoidance is denoted by “T”,

evolved controllers using MATLAB without and with collision avoidance are denoted by “E1” and “E2” respectively and the controller evolved using V-REP with

collision avoidance is denoted by “E3”.

not yield the exact desired system. These limitations lead to a
black-box solution that is difficult to modify and reverse
engineer with a possible reality gap that would prevent applying
the controller to a real-world robot and environment.

In this paper, we setup three experiments on self-
organization of a multi-agent system and evolve three different
controllers similar to [4], [7]. We selected two simulation
environments (MATLAB and V-REP) with different levels of
complexities. The goal of this paper was to examine the
performance of controllers when compared with a traditionally
designed controller. We showed that an evolved controller can
provide desired outcome, but it was outperformed by the
traditionally designed controller. Higher level of complexity in
the desired task required more intensive and longer simulation
time. In the case of our self-organizing experiments and
outcome, the amount of effort, time and computational resources
required for evolutionary experiments was far more than the
effort for a traditionally designed controller. Based on our
experimental results we demonstrated that the evolutionary
process is a reasonable design tool, however it is best used for
problems that are too difficult or complicated to be solved by
traditional design methods.

REFERENCES

[1] K. Salama and A. M. Abdelbar, “A Novel Ant Colony Algorithm for

Building Neural Network Topologies,” in Swarm Intelligence, M.
Dorigo, M. Birattari, S. Garnier, H. Hamann, M. M. de Oca, C. Solnon,

and T. Stützle, Eds. Springer International Publishing, 2014, pp. 1–12.

[2] A. L. Christensen, R. O’Grady, and M. Dorigo, “From Fireflies to Fault-
Tolerant Swarms of Robots,” IEEE Trans. Evol. Comput., vol. 13, no. 4,

pp. 754–766, Aug. 2009.

[3] L. Sabattini, C. Secchi, M. Cocetti, A. Levratti, and C. Fantuzzi,
“Implementation of Coordinated Complex Dynamic Behaviors in

Multirobot Systems,” IEEE Trans. Robot., vol. 31, no. 4, pp. 1018–1032,

Aug. 2015.
[4] V. Trianni and S. Nolfi, “Engineering the Evolution of Self-Organizing

Behaviors in Swarm Robotics: A Case Study,” Artif. Life, vol. 17, no. 3,

pp. 183–202, Jul. 2011.
[5] J. A. Fernandez-Leon, G. G. Acosta, and M. A. Mayosky, “Behavioral

control through evolutionary neurocontrollers for autonomous mobile

robot navigation,” Robot. Auton. Syst., vol. 57, no. 4, pp. 411–419, Apr.
2009.

[6] F. Montes-Gonzalez and F. Aldana-Franco, “The Evolution of Signal

Communication for the e-puck Robot,” in Advances in Artificial
Intelligence, I. Batyrshin and G. Sidorov, Eds. Springer Berlin

Heidelberg, 2011, pp. 466–477.

[7] V. Trianni and S. Nolfi, “Self-Organizing Sync in a Robotic Swarm: A
Dynamical System View,” IEEE Trans. Evol. Comput., vol. 13, no. 4, pp.

722–741, Aug. 2009.

[8] G. Francesca, M. Brambilla, A. Brutschy, V. Trianni, and M. Birattari,
“AutoMoDe: A novel approach to the automatic design of control

software for robot swarms,” Swarm Intell., vol. 8, no. 2, pp. 89–112, Mar.

2014.

[9] G. Francesca et al., “AutoMoDe-Chocolate: automatic design of control

software for robot swarms,” Swarm Intell., vol. 9, no. 2–3, pp. 125–152,

Jun. 2015.
[10] V. Trianni, S. Nolfi, and M. Dorigo, “Evolution, Self-organization and

Swarm Robotics,” in Swarm Intelligence, C. Blum and D. Merkle, Eds.

Springer Berlin Heidelberg, 2008, pp. 163–191.
[11] M. Dorigo et al., “Swarmanoid: A Novel Concept for the Study of

Heterogeneous Robotic Swarms,” IEEE Robot. Autom. Mag., vol. 20, no.

4, pp. 60–71, Dec. 2013.
[12] G. Francesca et al., “An Experiment in Automatic Design of Robot

Swarms,” in Swarm Intelligence, M. Dorigo, M. Birattari, S. Garnier, H.

Hamann, M. M. de Oca, C. Solnon, and T. Stützle, Eds. Springer
International Publishing, 2014, pp. 25–37.

[13] P. Tarquino and K. Nickels, “Programming an E-Puck Robot to Create

Maps of Virtual and Physical Environments,” in Robot Intelligence
Technology and Applications 2, J.-H. Kim, E. T. Matson, H. Myung, P.

Xu, and F. Karray, Eds. Springer International Publishing, 2014, pp. 13–

28.
[14] J. Velagic, N. Osmic, and B. Lacevic, “Design of Neural Network Mobile

Robot Motion Controller,” in New Trends in Technologies, B. Ramov,

Ed. InTech, 2010.

