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Abstract—In evolutionary multi-objective optimization, vari-
ation operators are crucially important to produce improving
solutions, hence leading the search towards the most promising
regions of the solution space. In this paper, we propose to use a
machine learning modeling technique, namely random forest, in
order to estimate, at each iteration in the course of the search
process, the importance of decision variables with respect to
convergence to the Pareto front. Accordingly, we are able to
propose an adaptive mechanism guiding the recombination step
with the aim of stressing the convergence of the so-obtained
offspring. By conducting an experimental analysis using some
of the WFG and DTLZ benchmark test problems, we are able to
elicit the behavior of the proposed approach, and to demonstrate
the benefits of incorporating machine learning techniques in
order to design new efficient adaptive variation mechanisms.

I. INTRODUCTION

When dealing with a multi-objective optimization problem
(MOP), evolutionary multi-objective optimization (EMO) al-
gorithms seek an approximation of the set of optimal trade-
offs between the objectives, known as the set of Pareto
optimal solutions. One of the main challenges in EMO is
to shorten the time required to identify such Pareto optimal
solutions, especially for large-scale and real-time MOPs. When
the time required for evaluating the objectives, and the time
required for the search process is limited, the discovery of
Pareto optimal solutions as soon as possible is substantially
beneficial. The time to find Pareto optimal solution is closely
related with the search performance of EMO algorithms. This
performance is mainly determined by the effectiveness of
EMO operators, such as selection, recombination (crossover)
and mutation. Recombination and mutation operators appear
to be particularly important, since their purpose is to produce
new candidate solutions for the next iteration. If it is possible
to generate an improving solution by means of recombination
and mutation, the search process can proceed. Otherwise the
solution search stagnates. Therefore, it is important to increase
the efficiency of generating improving solutions.

The objective functions defining a MOP may be character-
ized by a large number of decision variables. Among those
variables, some could be more relevant to convergence than
others. This becomes even more relevant in many-objective
optimization, where different subsets of variables may influ-
ence convergence towards different objective subspaces. The

acquisition of such a knowledge is particularly valuable to the
decision maker. In design optimization, for instance, besides
producing optimal solutions, the decision maker is interested
in understanding the correlation between feasible changes in
the decision space and trade-offs in the objective space. This
allows her/him to know how to build alternative designs. In
real-world applications, this kind of analysis is often done
offline to allow for a better problem understanding.

In this paper, we focus on bi-objective MOPs, and we
propose an original way to learn online what variables fa-
vor Pareto improvements. We then bias variation operators
accordingly in order to find Pareto optimal solutions as soon as
possible, and hence improve the algorithm convergence. More
precisely, we use random forest, a machine learning algorithm,
in order to perform a regression of the Pareto rankings, in
terms of non-dominated sorting, over decision variables at
each iteration. From fitting the statistical regression model, we
obtain estimates of the variable importance. We later use this
knowledge to select the variables that will undergo variation.
Although both recombination and mutation are important
variation operators, in this work we focus on recombination.
Thus, in the proposed approach, the EMO algorithm focuses
on searching the variable space by crossing more often the
variables that affect convergence to the Pareto front. In [1]
the authors proposed an algorithm based on decision variable
analyses including control property analysis and variable link-
age analysis. They applied interdependent analysis between
pairs of variables, divide the problem into low dimensional
sub-problems, and solved them independently. In this paper,
we identify variables baced on the variable importance towards
improving pareto ranking.

We use AεSεH [2], [3] as a baseline algorithm and compare
its performance against versions that include the proposed
informed recombination approach by biasing the variable
selection from the conventional SBX recombination operator.
We experiment the corresponding algorithm with numerical
functions from the WFG benchmark suite [4] and DTLZ
benchmark suite [5]. In these MOPs, variables are divided
in two subsets. One is related to convergence, whereas the
other one is related to diversity of solutions in objective
space. Although this sharp separation of variables does not
necessarily hold in real-world applications, where the interac-



tion of several variables usually affect both convergence and
diversity, these kind of problems are an appropriate benchmark
to investigate the effectiveness of models that learn the relative
importance of variables for promoting convergence.

The remainder of the paper is organized as follows. In
Section II, we present the proposed approach for comput-
ing variable importance within the EMO search process. In
Section III, we give the experimental setting of our analysis.
In Section IV, we provide the experimental results of the
proposed approach on some WFG benchmark functions. The
last section concludes the paper and gives further insights for
future research.

II. LEARNING VARIABLE IMPORTANCE

A. Overall Concept

We intend to learn which variables affect convergence of
solutions to the Pareto front in order to recombine them
more often, and eventually find Pareto optimal solutions faster.
In this paper, we use the Pareto ranking induced by non-
dominated sorting [6] as the score to represent how good
solutions are with respect to convergence. Thereby, the score
shows the convergence improvement direction. We fit a statis-
tical regression model to predict this score from the decision
variables of the solutions contained in the current population.
From the regression model, we extract variable importance
and aim to perform an effective solution search by biasing
recombination towards variables with larger importance. Fig.
1 illustrates the overall concept.

B. Variable Importance

As anticipated, we will extract variable importance from a
statistical model that is learnt whilst the EMO search process
evolves. Since the functional form of the relationship between
variable values in the decision space and Pareto rankings in the
objective space is a priori unknown, we need a flexible model
that makes as few assumptions as possible. Moreover, since we
want to model such a relationship online, we need our model
not only to be flexible, but also computationally efficient. For
these reasons, we settled on a random forest regression.

Random forest [7] is an ensemble method based on classi-
fication and regression trees [8]. Each tree is fit to a bootstrap
sample of the training dataset and, additionally, the tree fitting
algorithm picks for each split the most discriminative variable
among a subset of m randomly-selected candidates. These
two sources of randomness have the effect of reducing the
correlation among individual trees, which is paid for by a small
increase in their bias, in order to achieve a greater reduction
in variance when aggregating trees predictions at the forest
level. Indeed, bootstrapping and aggregating predictors, i.e.
bagging [9], is especially effective with trees because of their
low bias but high variance.

In this paper, we apply random forest to predict the Pareto
ranking of solutions from the current population using the
corresponding decision variables as inputs. With bagging, each
tree has its training set drawn with replacement, which means
that it will only contain a subset of solutions. These left-out

TABLE I
PROBLEMS’ FEATURES.

Separability Modality Geometry

WFG1 S U convex, mixed

WFG3 NS U linear

DTLZ3 S M concave

observations, called out-of bag (OOB), can be used as a test
set to estimate the accuracy of that particular tree. The OOB
cases are submitted to the tree and a mean squared error (MSE)
between true ranks and predicted ranks is recorded. Hence, if
we want to gauge the relative importance of a variable, we can
randomly permute its values in the OOB data and recalculate
the OOB error: the greater the increase in MSE, the more
important the considered variable. The average of such an
increase in MSE over all trees in the forest constitutes the
raw importance score for that particular variable [7] [10]. This
measure is often called mean decrease in accuracy (MDA) or
permutation importance.

III. EXPERIMENTAL SETTING

A. Benchmark Problems

We use WFG1, WFG3 [4] and DTLZ3 [5] multi-objective
test problems, which are scalable in the number of objectives
M and number of variables n. In WFG problems the first
np variables determine the position of the solution within a
front and the next nd variables the distance of the solution
to the optimal Pareto front. The number of position- and
distance-related variables np and nd can be set freely, such that
n = np + nd. In WFG1 the objective functions are separable
unimodal and the optimal Pareto front has a convex and mixed
geometry. On the other hand, in WFG3 the objective function
are non-separable unimodal and the optimal Pareto front has a
linear and degenerate geometry. DTLZ problems have M − 1
position-related variables and n − (M − 1) distance-related
variables. DTLZ3 objective functions are separable multi-
modal and the optimal Pareto front has a concave geometry.
Table I shows the features of each problem.

In WFG problems, a solution is Pareto optimal if all
distance-related variables satisfy the following property: xi =
2i× 0.35, i ∈ {np+1, . . . , n}. In DTLZ problems, a solution
is Pareto optimal if all distance-related variables satisfy the
following property: xi = 0.5, i ∈ {np + 1, . . . , n}.

B. Algorithms

1) Baseline Algorithm (org): We use the Adaptive ε-
Sampling and ε-Hood (AεSεH) approach [2], [3] as a base-
line EMO algorithm. AεSεH follows the main steps of a
population-based elitist evolutionary algorithm, i.e. parent se-
lection, offspring creation and survival selection. Two impor-
tant features of AεSεH are the εHood method used to select
parents for recombination and the ε-Sampling method used
for survival selection. In this work, SBX crossover [11] is
used as recombination operator, and is applied with a rate
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Fig. 1. Overall concept of the EMO search process with recombination based on variable importance.

Pc per individual and Pcv per variable. AεSεH has been
shown to perform similar or better than NSGA-II for different
MOPs [3], and it is known to be one of the state-of-the-art
algorithms for many-objective optimization [2]. We call this
baseline algorithm org for short.

2) Recombination applied to Convergence-Related Vari-
ables(ideal): Let us assume that convergence-related vari-
ables are known. We modify the baseline algorithm in order to
take advantage of this information, and apply recombination
to the variables that determine the distance to the Pareto front.
This corresponds to a cheating algorithm having a perfect
knowledge of the important variables allowing to get closer
to the Pareto front; it is then expected to show the best
search ability in terms of convergence. This approach, denoted
ideal, will allow us to appreciate the convergence that can
be achieved with a given recombination operator that perfectly
learns variable importance.

Let n be the number of variables of the MOP under
consideration, nd the number of distance-related variables,
np the number of position-related variables, and Pcv the
probability of crossover per variable. In ideal there are
two ways of selecting variables for recombination. When
Pcv × n ≤ nd, Pcv × n variables are selected randomly from
the subset of distance-related variables. On the other hand,
when Pcv×n > nd, all distance-related variables are selected
for crossover and the remaining Pcv × n− nd are selected at
random from the subset of np position-related variables.

3) Recombination based on Variable Importance(rf): This
algorithm modifies the baseline AεSεH algorithm to include
the proposed method. After solutions have been evaluated in
the course of the EMO search process, we obtain the estimated
importance of each variable from the random forest statistical
model as described in Section II-B, and we preferably select
for recombination those with high importance. Selection of
variables for recombination can either be determinist or prob-
abilistic. The deterministic approach sorts the variables in the
order of importance and chooses the Pcv × n most important
ones. The probabilistic approach chooses variables based on a
probability that depends on the variable importance, given by:

P (i)
cv = Pcv

V Ii∑n
j=1 V Ij

where P
(i)
cv is the crossover probability of the i-th variable,

Pcv is the overall crossover probability per variable, V Ii is
the estimated importance of the i-th variable, and n is the
total number of variables. We call this algorithm rf for short.
In this work we report results for the deterministic approach.

C. Experimental Setup

We set the number of objectives to M = 2 in all problems,
and the total number of variables to n = 10. We set the number
of distance-related variables to nd = {6, 4, 2} in WFG1 in
order to study the effects of recombination when the ratio
between the number of distance- and position-related variables
vary, while keeping the total number of variables constant. We
refer to these problem instances as A, B and C, respectively.
For WFG3, we set the total number of variables to n = 10
with nd = 6 and np = 4. For DTLZ3, we set the total number
of variables to n = 10 with nd = 9 and np = 1.

The number of generations is set to 2000, and the population
size is set to 100 individuals. We use SBX crossover and
polynomial mutation operators with conventional parameter
settings from the EMO literature. In particular, the distribution
exponents are set to ηc = 15 and ηm = 20, respectively. The
crossover probability per individual is set to Pc = 1.0 and
the crossover probability for each variable is Pcv = 0.5. The
mutation probability is set to Pm = 1/n. We report results
collected from 30 independent runs.

We use an archive population that keeps the non-dominated
solutions found through the generations in order to evaluate the
searching ability of the algorithms. We calculate Generational
Distance (GD) to evaluate convergence of the population and
Inverted Generational Distance(IGD) to evaluate diversity of
the population. For the calculation of GD and IGD, we have
derived a reference set of 100,000 solutions for each instance
in each problem.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

We applied the algorithms described in Section III-B to
three instances of WFG1. Table II reports the average Gen-
erational Distance (GD) and Inverted Generational Distance



TABLE II
COMPARISON OF ALGORITHMS (ORG , RF , AND IDEAL) ON WFG1 INSTANCES WITH RESPECT TO GENERATIONAL DISTANCE (GD) AND INVERTED

GENERATIONAL DISTANCE (IGD). THE FIRST VALUE IS THE AVERAGE INDICATOR-VALUE, THE SECOND VALUE IS THE STANDARD DEVIATION. ANY
STATISTICAL DIFFERENCE BETWEEN ORG AND RF IS SHOWN IN BOLD.

WFG1 (×10−1)

A B C
(np = 4, nd = 6) (np = 6, nd = 4) (np = 8, nd = 2)
GD IGD GD IGD GD IGD

org 2.13(1.27) 2.13(1.28) 3.43(2.08) 3.43(2.08) 6.66(2.42) 6.69(2.54)

rf 0.56(0.66) 0.57(0.65) 2.37(1.50) 2.32(1.52) 4.01(2.49) 3.86(2.68)

ideal 0.64(0.94) 0.77(0.91) 1.13(1.41) 1.06(1.43) 3.15(3.22) 2.86(3.49)

TABLE III
COMPARISON OF ALGORITHMS (ORG , RF , AND IDEAL) ON WFG3 AND DTLZ3 WITH RESPECT TO GENERATIONAL DISTANCE (GD) AND INVERTED
GENERATIONAL DISTANCE (IGD). THE FIRST VALUE IS THE AVERAGE INDICATOR-VALUE, THE SECOND VALUE IS THE STANDARD DEVIATION. ANY

STATISTICAL DIFFERENCE BETWEEN ORG AND RF IS SHOWN IN BOLD.

WFG3 (×10−3) DTLZ3 (×10−4)
(np = 4, nd = 6) (np = 1, nd = 9)
GD IGD GD IGD

org 7.00(0.89) 0.94(0.52) 2.46(1.68) 2.78(1.55)

rf 5.17(0.60) 0.47(0.35) 0.86(0.65) 2.28(0.68)

ideal 4.25(0.36) 0.39(0.37) 0.83(0.81) 2.57(0.65)
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Fig. 2. GD and IGD in WFG1
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Fig. 3. VI in WFG1 instance A

(IGD) values obtained by all algorithms for all instances
of WFG1, computed at the last generation of the 30 runs.
Standard deviations are shown in parenthesis. Results in bold
show if there is any significant difference between org and
rf, based on a Mann-Whitney non-parametric statistical test
with a p-value of 0.05. From this table, it can be seen that rf is
never outperformed by org on any case. More importantly, it
is able to provide statistically better GD- and IGD-values than
org in all instances. It is also interesting to notice that ideal
achieves the best indicator-values in most of the instances, then
validating the idea of designing variable importance-aware
recombination mechanisms to improve the search ability.

Fig. 2 shows the GD (on top) and the IGD (at the bottom)
values obtained by the algorithms over the generations on all
WFG1 instances, that result from the combination of number
of distance- and position-related variables described above.
The algorithms are shown in red, green and blue lines and
are labeled org, rf, and ideal, respectively. Looking at
Fig. 2, it can be seen that ideal achieves the best GD-values
through generations of all instances except for the values at
2000 generation of instance A. This is expected since ideal
represents an algorithm with a perfect model for variables
related to convergence. We can see that the method rf,
which learns online what variables are important to improve
convergence and emphasizes their recombination, obtains sig-
nificantly better GD-values than the baseline algorithm org.
The GD-values of method rf decrease substantially during
the initial stage of evolution and it can be said that the
proposed method has a large impact for population conver-
gence especially in this initial stage. This helps to increase
convergence speed of population during solution search. It
also can be seen that rf has better IGD-values than org in
all instances. The IGD-values of method rf decrease more
gradually than the GD-values. This is because position-related
variables are not given much chance to undergo crossover in
rf. Decreasing IGD-values is caused by both convergence and
diversity of population. In instance A, we can see that ideal
has worse IGD-values than rf. This is because instance A

has 6 distance-related variables and ideal always applies
crossover to Pcv × n = 0.5 × 10 = 5 of those variables. So,
ideal never applies crossover to position-related variables.

Fig. 3 shows the boxplot of variable importance for each
variable by rf at given generation steps. The number of
generations is showed on the top of each boxplot graph. It
seems that there is no difference at the beginning of the search,
but after 400 generations, distance-related variables x5 ∼ x10

have larger variable importance than position-related variables
x1 ∼ x4. That is, the regression model in random forest is
able to correctly distinguish between distance- and position-
related variables. In method rf, the variables that have larger
variable importance get more chance to recombine. So we can
find solutions which have better convergence by giving high
crossover chance to distance-related variables.

In addition to WFG1, we applied the same algorithms to two
instances of WFG3 and DTLZ3 that have different function
features from WFG1. Table III reports the average GD- and
IGD-values obtained by all algorithms of WFG3 and DTLZ3,
computed at the last generation of the 30 runs. We can see
significantly better GD- and IGD-values of rf than those of
org except for IGD in DTLZ3. Fig. 4 and Fig. 5 show
the GD- (left) and the IGD- (right) values obtained by the
algorithms over the generations on WFG3 and DTLZ3. Fig.
6 and Fig. 7 show the boxplot of variable importance for each
variable by rf at some points of generations on WFG3 and
DTLZ3. Note that we have 4 position-related variables and
6 distance-related variables in WFG3, and 1 position-related
variable and 9 distance-related variables in DTLZ3. Looking
at Fig. 4 and Fig. 6, the method rf has better GD- and
IGD-values than org through all generations, and there is a
difference in between position- and distance-related variables
from the beginning of the generation unlike WFG1. From these
results, it appears that the proposed method is able to identify
the distance-related variables. In this case, ideal has better
IGD-values than rf. The estimate of distance-related variables
on WFG3 is better than that on WFG1 so the distance-related
variables get higher chance to undergo crossover on WFG3
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Fig. 7. VI in DTLZ3



than on WFG1.
Looking at Fig. 5 and Fig. 7, it can be seen that there is

not much difference in IGD and there are small differences
in GD. The method rf does not have better GD-values at
generation 300 but it improves over org after 500 generations.
In the beginning, the variable importances of distance-related
variables are lower than those of position-related variables. So
crossover is applied to position-related variables frequently.
This might be why rf obtains worse GD-values before 500
generation.

Looking at Fig. 4 and Fig. 5, we cannot see large
differences in GD and IGD metric values between algorithms
as with WFG1. This might be due to a limit in the variation
operators ability to keep generating improving solutions, and it
depends on the features of test problems. We attribute this limit
to the solution search ability of the SBX crossover operator,
which we use in all the algorithms. If SBX was more effective
on the WFG3 and DTLZ3 problems, we would expect to see a
larger advantage in terms of GD-values for the ideal method,
and consequently a larger advantage of the rf method over the
org method. Even so, the proposed rf approach requires half
the number of generations to obtain GD-values comparable to
those of the org method.

V. CONCLUSIONS

In this work, we investigated how to learn, online, which
variables favor Pareto improvements, and how to guide varia-
tion operators accordingly. This machine learning-based ap-
proach uses random forest to perform a regression of the
Pareto ranking over decision variables in order to estimate
variable importance at each iteration. We compared the con-
vergence ability of a baseline algorithm (AεSεH), a version
enhanced with the proposed method, as well as an ideal version
with a perfect knowledge of the variables that are important
for convergence on WFG1, WFG3 and DTLZ3 test problems.
We showed that the machine learning-enhanced algorithm
achieves a significantly better convergence using GD and IGD
metric. An overall clear statistical difference in performance
in favor of the proposed method can be seen. We verified
that the regression model is able to distinguish correctly

between distance- and position-related variables throughout
the generations based on the estimated variable importance.

However, we understood that there is a limit to the searching
ability of SBX operator in terms of convergence. We cannot
exceed the searching ability of the ideal algorithm using SBX
in this paper even though we attempt to learn important
variables for convergence.

In the future, we plan to explore other machine learning
alternatives to compute variable importance. It will also be
interesting to extend the proposed method in order to guide
mutation in addition to recombination, and then study the
effect of variable importance-aware variation on problems
with three and more objectives. Moreover we need to apply
the proposed method to other variation operators because we
notice that SBX has limits in its ability to get close to the true
POS.
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