
Distributed Incremental wLPSVM Learning
Lei Zhu∗, Tao Ban†, Kazushi Ikeda‡, Paul Pang∗and Abdolhossein Sarrafzadeh∗

∗Unitec Institute of Technology, New Zealand
†National Institute of Information and Communications Technology, Japan

‡NARA Institute of Science and Technology, Japan

Abstract—Weighted linear proximal support vector machine
(wLPSVM) is known as an efficient binary classification algo-
rithm with good accuracy and class-imbalance robustness. In
this work, original batch wLPSVM is facilitated with distributed
incremental learning capability, which allows simultaneously
learning from multiple streaming data sources that are geograph-
ically distributed. In our approach, incremental and distributed
learning are solved as a merging problem at the same time.
A new wLPSVM expression is derived. In the new expression,
knowledge from samples are presented as a set of class-wised
core matrices, and merging knowledge from two subsets of data
can be simply accomplished by matrix addition. With the new
expression, we are able to conduct incremental and distributed
learning at the same time via merging knowledge from multiple
incremental stages and multiple data sources.

I. INTRODUCTION

Incremental learning and parallel learning has been exten-
sively studied for decades. Incremental learning which updates
the existing knowledge according to newly arrived training
samples is suitable for dealing with the streaming problem.
On the other hand, parallel learning which distributes compu-
tational costs among multiple cores or machines in a cluster,
serves as a natural solution when learning task is large in scale.
In the era of BigData, more and more learning tasks by nature
are both large-scale and streaming, thus these applications call
for algorithms that are capable of solving both streaming and
large-scale problem at the same time. Although there have
been many incremental and parallel learning algorithms, but
most of them focus only on one aspect, either streaming or
large-scale.

In this work, we update wLPSVM, an efficient batch binary
classification algorithm with class-imbalance robustness, into
an incremental parallel algorithm.

When take a closer look at the parallel learning, we can see
there are different levels of parallelization, depending on how
independently each node can execute its job. Early days studies
[1], [2] mainly concentrate on shared-memory multiprocessor
(SMP) systems. In these algorithms, intensive communication
are required between slave nodes and master node, because
the processes at slave nodes rely heavily on global information
which maintained at the master node and slave nodes update
global information frequently. Due to such constraint, the
scalability for SMP parallelization is very limited. And clearly,
SMP gives single entrance for training data.

Some recent parallelization works [3], [4] based on stan-
dard SVM are capable of distribute training load among
multiple machines. However, due to the iterative nature of

SVM optimization, for one set of data, slave nodes still need
multiple rounds communication with the master node, and the
communication overhead is positive correlated to the number
of instance. Thus, these algorithms are suitable for clusters in
which machines are interconnected with high speed links. And
each cluster gives single entrance for training data.

The parallel learning with highest degree of freedom is
known as distributed learning [5], in which each learning node
can absorb and learn from local training data independently,
with affordably low communication overhead between nodes,
a global result can be obtain upon all local data learned.
Algorithms in this type are capable of handling applications
that has many geographically distributed data sources. As only
learning result from local data rather than the raw data itself
is transferred between nodes, privacy for some critical data
source is also naturally preserved. Our approach and some
others [6], [7] fall into this category. Furthermore, we can see
that algorithm with higher parallelization level can be easily
adopted into lower level scenario, such as distributed learning
algorithm can be deployed onto SMP, but not vice versa.

wLPSVM is the weighted version of Linear Proximal Sup-
port Vector Machine (LPSVM). Due to its classification mod-
eling, wLPSVM can be implemented by matrix computation
in a few fixed steps. Thus it is much more efficient than
classic SVM, whose solution requires iterative optimization
and number of iteration is usually unknown before the system
converge. However, initial wLPSVM is still a serial batch
algorithm. In order to facilitate wLPSVM with distributed and
incremental learning capability, we study the way of merging
wLPSVM from different data.

In our approach, a new wLPSVM expression is derived. In
the new expression, knowledge from samples are presented as
a set of class-wised core matrices, and merging knowledge
from two subsets of data can be simply accomplished by
matrix addition. With the new expression, we are able to
conduct incremental and distributed learning at the same time
via merging knowledge from multiple incremental stages and
multiple data sources. Moreover, because of the class-wised
splitting, the class weight is represented as real value coeffi-
cient instead of the original weighting matrix form, thus the
class weight can be updated during the incremental learning.
The weight of classes can be real-time balanced against current
class-imbalance.

In summary, our proposed algorithm allows: 1) wLPSVM
model to be updated at any time according to instances being
added and/or removed; 2) the weighting for both classes is



balanced in real-time; 3) each learning node only works with
local data source, in case of multiple distributed data sources;
and 4) the distributed incremental learning result is exactly
equivalent to that of batch learning.

II. LINEAR PROXIMAL SVM

In this section, we introduce Linear Proximal SVM
(LPSVM) and its counter class-imbalance variant, wLPSVM,
which is the base algorithm we working on.

A. Batch LPSVM

Let S = {(x1, yi), (x2, y2), . . . , (xn, yn)} be a given
training dataset, X =

[
x1 x2 · · · xn

]T ∈ Rn×d and
Y =

[
y1 y2 · · · yn

]T ∈ {+1,−1}n×1 as its instance
matrix and corresponding label vector, respectively. A classic
SVM [8] learns a class separating plane

xTw + b = 0, (1)

which lies midway between two parallel bounding planes
formulated as,

xTw + b = +1
xTw + b = −1. (2)

In practice, bounding planes (2) bound two classes often with
some non-negative errors ξi

xTi w + b+ ξi ≥ +1 for yi = +1
xTi w + b− ξi ≤ −1 for yi = −1.

(3)

Here, the distance between these two planes equals to 2
‖w‖ ,

which is called the “margin” in literature. The w and b in (1)
and (2) are obtained by solving an optimization problem

min
‖w‖2

2
+ C

n∑
i=1

ξi

s.t. yi(x
T
i w + b) + ξi ≥ 1 ξi ≥ 0 ∀i ∈ {1, · · · , n} ,

(4)
where ‖w‖2

2 is for maximizing the margin, and
∑n
i=1 ξi

for minimizing the total training error. The regularization
parameter C balances the importance of error and margin [9].
In practice, the dual problem of (4) is solved to obtain a SVM
classifier [10], [11].

LPSVM [12] models a binary classification as a regular-
ized least square problem, which simplifies the above SVM
optimization and results in an extremely efficient training
algorithm. The optimization of LPSVM is given as,

min
C

2
‖ξ‖2 + 1

2
(wTw + b2)

s.t. D(Xw − eb) + ξ = e,
(5)

where ξ ∈ Rn×1 refers to the vector of training errors, D =
diag(Y ) ∈ Rn×n denotes a diagonal matrix of class labels,
and e = [1, . . . , 1]T ∈ Rn×1. By (5), classic LPSVM seeks a
class separating plane

xTw − b = 0 (6)

which lies midway between two parallel proximal planes

xTw − b = +1
xTw − b = −1. (7)

In contrast to classic SVM, LPSVM in (5) replaces the
inequality constraint of (4) with an equality condition. As a
result, the planes in (7) are not bounding planes anymore, but
can be seen as “proximal” planes around which the instances
of each class are clustered, as we have

xTi w − b+ ξi = +1 for yi = +1
xTi w − b− ξi = −1 for yi = −1,

(8)

and the error variable ξi is not necessary to be nonnegative.
These planes (7) are pushed as far apart as possible by the
term of (wTw + b2) in the LPSVM optimization (5), and
the total training error are minimized by the term of ‖ξ‖2.
To summarize from a geometrical perspective, both SVM and
LPSVM learn a separating plane that lies in the midway of
two parallel planes which are pushed as far apart as possible.
Parallel planes in classic SVM case bound two classes, and
in LPSVM these planes perform as “proximal” planes around
which the instances of each class are clustered.

To solve (5), the equality constraint is substituted to the
objective function, thus (5) is transformed to an unconstrained
optimization problem,

min G =
C

2
‖D(Xw − eb)− e‖2 + 1

2
(wTw + b2). (9)

Set the partial derivatives of G to 0, we have

∂G

∂w
= CXTD(D(Xw − eb)− e) +w

= CXTXw +w − CXTeb− CXTDe

= 0

∂G

∂b
= −CeTD(D(Xw − eb)− e) + b

= −CeTXw + CeTeb+ b+ CeTDe

= 0,

(10)

where DD = I and eTe = ‖e‖2 = n.
Solving the linear system (10), the solution of LPSVM

optimization (i.e., (5) is obtained,[
w
b

]
=

[
XTX + I

C −XTe
−eTX n+ 1

C

]−1 [
XTDe
−eTDe

]
=

[
I
C +

[
XT

−eT
] [
X −e

]]−1 [XTDe
−eTDe

]
.

(11)

Let E =
[
X −e

]
and O =

[
w
b

]
, (11) can be formulated as

O = (
I

C
+ETE)−1ETDe. (12)

To simplify (12), we use M and v to denote the matrix term
I
C +ETE and vector term ETDe in (12) respectively. Then,
(12) can be rewritten as

O =M−1v, (13)



and the LPSVM decision function is obtained

f(x) = xTw − b =
[
xT −1

]
O

{
> 0 ⇒ y = +1
< 0 ⇒ y = −1.

(14)

In summary, the algorithm of batch LPSVM can be stated as
Algorithm 1.

Algorithm 1 Batch LPSVM Algorithm [12]
Input: Instance matrix X ∈ Rn×d; Class label vector Y ∈ {+1,−1}n×1;

Regularization parameter C.
Output: O ∈ R(d+1)×1.
1: Form identity matrix I ∈ R(d+1)×(d+1) and column vector e =

[1, . . . , 1]T ∈ Rn×1;
2: Expand the instance matrix X into E, E =

[
X −e

]
;

3: Transform the class label vector Y into diagonal matrix D, D =
diag(Y );

4: Compute M = I
C

+ETE and v = ETDe;
5: Compute O = M−1v.

B. wLPSVM for Class Imbalance Learning

The class imbalance problem arises when samples of the
class of interest are relatively rare as compared with the
other class. The total training error ‖ξ‖2 in (5) comes from
two classes, the error thus can be represented as ‖ξ‖2 =
‖ξ+‖2 + ‖ξ−‖2. In the presence of class imbalance, the
LPSVM optimization (5) has ‖ξ+‖2 << ‖ξ−‖2. As a result,
LPSVM shifts its positive class proximal plane away from the
separating plane, which enlarges the margin at the price of an
augmented ‖ξ+‖2. Consequently, the separating plane biases
to the positive class, and results in the worse recognition of
the positive class.

For LPSVM class imbalance learning, Fung et. al proposed
a weighted LPSVM (wLPSVM) [13], [14], in which the classic
LPSVM optimization (5) is revised to

min C
2 ξ

TNξ + 1
2 (w

Tw + b2)
s.t. D(Xw − eb) + ξ = e,

(15)

where N is a diagonal weighting matrix with,

N ii =

{
σ+ if yi = +1
σ− if yi = −1,

(16)

in which the class-wise weight σ is used, σ+ for the positive
class and σ− for the negative class, to balance the impacts
of two classes to the LPSVM separating plane. In practice, σ
is determined by the number of samples for each class. For
example in [15], σ+ and σ− are calculated as the ratio of the
corresponding class size (i.e., l− or l+) to the size of the whole
dataset,

σ+ = l−/(l+ + l−)
σ− = l+/(l+ + l−).

(17)

By a similar approach as (9)-(12), (15) can be solved and the
wLPSVM solution is obtained as,

O = (
I

C
+ETNE)−1ETDNe. (18)

Algorithm 2 presents the batch wLPSVM algorithm that
implements (18).

Algorithm 2 Batch wLPSVM Algorithm [13]
Input: Instance matrix X ∈ Rn×d; Class label vector Y ∈ {+1,−1}n×1;

Regularization parameter C.
Output: O ∈ R(d+1)×1.
1: Calculate weights σ+ and σ− following weighting function such as (17);
2: Form weight matrix N following (16);
3: Expand the instance matrix X into E, E =

[
X −e

]
;

4: Transform the class label vector Y into diagonal matrix D, D =
diag(Y );

5: Compute M = I
C

+ETNE and v = ETDNe;
6: Compute O = M−1v.

III. PROPOSED DISTRIBUTED INCREMENTAL WLPSVM
In order to train a wLPSVM in incremental and distributed

manner, we conduct distributed updating of M and v, and
then compute O as above. As we can see, the computational
cost for computing O from M and v is a constant, if d is
given. When the training data is huge and streaming, the major
computational cost is spend on computing M and v, as their
complexity increases with the number of instances.

We consider incremental and distributed learning of M
and v as one problem: reformulate these terms in an easily
mergeable way. Take M for instance, if we can obtain M on
data S = Sa ∪ Sb from simply merging Ma (on Sa) and
M b (on Sb) i.e., M = f(Ma,M b), then both incremental
and distributed learning are solved. For incremental learning,
we let the system to compute M and v terms for newly
incoming data and then merge them with existing terms; and
for distributed learning, we let each node to calculate M and
v terms from their local data, and then merge all local terms
into a global model.

Add

Retire

Update

Time

Class ratio

at time ti

Fig. 1. Class imbalance variation in incremental learning

It is also worth notice that the weighting of two classes
also need to be updated in incremental learning, as the class
ratio may change over time during continuous data adding
and removing, Figure 1 gives an demonstration. However, the
weight for two classes in wLPSVM model is in presentation
of a diagonal matrix N , and this weighting matrix is also
involved in multiplication with other matrices. This makes
weighting update nearly impossible in the original wLPSVM
form (18). Thus we need consider making weight update-able
in our M and v reformulation. From now on, we introduce
how to reformulate these terms and how to merge.

A. wLPSVM Reformulation
If leave weight N updating aside, i.e., consider σ+ and σ−

as constant. The merging for M and v are straightforward.



Using basic matrix block computation, we can easily know
that

Lemma 1: Let
[
X Y

]
=

[
Xa Y a

Xb Y b

]
, E =

[
Ea

Eb

]
=[

Xa −e
Xb −e

]
, D =

[
Da 0
0 Db

]
and N =

[
Na 0
0 N b

]
. Then,

ETNE = ET
aNaEa +E

T
bN bEb

ETDNe = ET
aDaNae+E

T
bDbN be

ETE = ET
aEa +E

T
b Eb

ETe = ET
a e+E

T
b e.

(19)

The first two formulas actually merge Ma, M b into M
and va, vb into v, in condition that Sa and Sb has the same
class ratio, i.e., Na, N b and N consist the same σ+ and σ−.
From now on, the question remains is how to update σ+ and
σ−.

To make σ+ and σ− easy to change (update), we consider
extract them from matrix form N , and turn them into real
number coefficient. By applying Lemma 1 repeatedly, we can
see that any left hand term in (20) can be expressed as a
summation of all instance-wised terms. Thus all these terms
are independent to the ordering of instances, we have

Lemma 2: Let S be a dataset with n samples,
i.e., S = {(x1, y1), (x2, y2) . . . , (xn, yn)}. η =[
1 2 · · · i · · · j · · · n

]
identifies a sequence

of data samples. Applying η to the dataset, we form instance
matrix Xη =

[
x1 x2 · · · xi · · · xj · · · xn

]T
and

label vector Y η =
[
y1 y2 · · · yi · · · yj · · · yn

]T
,

and corresponding matrices Eη , Dη and Nη . Given another
sample sequence η′ =

[
1 2 · · · j · · · i · · · n

]
and

corresponding Eη
′
, Dη′

and Nη′
. Then,

EηTNηEη = Eη
′T
Nη′

Eη
′
=
∑n
i=1E

T
i N iEi

EηTDηNηe = Eη
′T
Dη′

Nη′
e =

∑n
i=1E

T
i DiN ie

EηTEη = Eη
′T
Eη

′
=
∑n
i=1E

T
i Ei

EηTe = Eη
′T
e =

∑n
i=1E

T
i e

(20)
Since we have this sample ordering independency, we can

re-order samples in wLPSVM and then split them as in (1),
such that subset Sa and Sb consist only samples from positive
and negative class respectively. Then we have a reformulated
wLPSVM model, transforming the weighting matrix N into
two simple weight coefficients σ+ and σ−.

Proposition 1: Given a wLPSVM model (18) over dataset
S, and let M+ = ET

+E+, M− = ET
−E−, v+ = ET

+e
and v− = ET

−e, then the wLPSVM model (18) can be
reformulated as,

O = (
I

C
+ σ+M+ + σ−M−)

−1(σ+v+ − σ−v−). (21)

Proof:
As S is a 2-class dataset decomposable into S+ and S−,

we apply Lemma 2 and Lemma 1 to the term ETNE in (18),
and have

ETNE = ET
+N+E+ +ET

−N−E−. (22)

As N+ = σ+I and N− = σ−I , term ETNE can be further
written as,

ETNE = σ+E
T
+E+ + σ−E

T
−E−. (23)

Similarly, applying Lemma 2 and Lemma 1 to the term
ETDNe in (18), we have

ETDNe = ET
+D+N+e+E

T
−D−N−e. (24)

As D+ = I and D− = −I , also N+ = σ+I and N− =
σ−I , we have

ETDNe = σ+E
T
+e− σ−E

T
−e. (25)

Substituting (23) and (25) into (18), and replacing ET
+E+,

ET
−E−, ET

+e and ET
−e with M+, M−, v+ and v− respec-

tively, we obtain

O = (
I

C
+ σ+M+ + σ−M−)

−1(σ+v+ − σ−v−). (26)

�
Recall Lemma 1 we can see that M+, M−, v+ and v− are

can be easily obtained by merged corresponding terms from
subsets of training data.

B. Incremental wLPSVM

Given an initial wLPSVM model (18) on dataset S. If Sl
denotes the set of data that remains after retiring Sr, and S′
denotes the updated dataset after the addition and retirement,
then we have

S = Sl ∪ Sr
S ′ = Sl ∪ Sa.

(27)

Then, the incremental learning of wLPSVM is to compute a
updated wLPSVM model O′ based on Sa, Sr, and a trained
wLPSVM model (i.e., (21)) on the current dataset S.

By (21), a batch wLPSVM on the updated dataset S′ can
be written as,

O′ = (
I

C
+ σ′+M

′
+ + σ′−M

′
−)
−1(σ′+v

′
+ − σ′−v′−). (28)

In (28), the weighting σ′+ and σ′− can be simply updated by,

σ′+ = l′−/(l
′
+ + l′−)

σ′− = l′+/(l
′
+ + l′−),

. (29)

in which
l′− = l− − lr− + la−
l′+ = l+ − lr+ + la+,

. (30)

And then, we consider the updating of M+, M−, v+ and
v−.

As seen in 27, S+ is a union of Sl+ and Sr+, S′+ is a
union of Sl+ and Sa+, we can apply Lemma 2 and Lemma
1 to decompose M+ and M ′

+, and have

M+ = ET
+E+ = ET

l+El+ +ET
r+Er+ (31)

M ′
+ = E

′T
+ E

′
+ = ET

l+El+ +ET
a+Ea+ (32)

(32) minus (31), we obtain the updating of M+ as,

M ′
+ =M+ −ET

r+Er+ +ET
a+Ea+. (33)



Here, ET
r+Er+ and ET

a+Ea+ can be computed from new
coming data, and M+ is a part of existing model. By an anal-
ogous process, we can update M−,v+ and v− respectively
as,

M ′
− =M− −ET

r−Er− +ET
a−Ea−

v′+ = v+ −ET
r+e+E

T
a+e

v′− = v− −ET
r−e+E

T
a−e.

(34)

With all components ready, we can now calculate O′ using
(28). The pseudo-code of the proposed incremental wLPSVM
is given in Algorithm 3 below.

Algorithm 3 The Proposed Incremental wLPSVM Algorithm
Input: initial wLPSVM model:
{O,M+,M−,v+,v−, l+, l−, C}; Xr and Y r to retire;
Xa and Y a to add; and regularization parameter C.

Output: updated wLPSVM model:{
O′,M ′

+,M
′
−,v

′
+,v

′
−, l
′
+, l
′
−, C

}
.

1: if input model is empty then
2: Generate Ea+ and Ea− from Xa and Ya

3: Compute M+ = ET
a+Ea+, M− = ET

a−Ea−, v+ = ET
a+e and

v− = ET
a−e;

4: Compute σ+ and σ− according to (17);
5: Compute O according to (21);
6: else
7: Generate Ea+, Ea−, Er+ and Er− from Xa, Ya, Xr and Yr ;
8: Compute M ′

+,M ′
−, v+,v− according to (33) and (34)

9: Compute σ′+ and σ′−, according to (29) and (30);
10: Compute O′ according to (28).
11: end if

C. Distributed Incremental wLPSVM

Let’s first look at the distributed wLPSVM learning problem
alone. Assume we have t distributed nodes n1, . . . , nt and each
of them have their local training data S1, . . . ,St respectively.
The distributed learning of global O on S = S1 ∪ . . . ∪ St,
is actually a problem of merging all local models mi =
{M i+,M i−,vi+,vi−, li+, li−}. From Lemma 1, we can
easily know the merging rules as

M+ =
∑t
i=1M i+

M− =
∑t
i=1M i−

v+ =
∑t
i=1 vi+

v− =
∑t
i=1 vi−.

(35)

For the number of samples, we have l+ =
∑t
i=1 li+ and l− =∑t

i=1 li−. Using (17) we can calculate σ+ and σ−. Eventually,
we obtain global O computed as (21).

When we consider distributed and incremental learning all
together, of course we can obtain ET

r Er, ET
aEa, ET

r e and
ET
a e by merging the corresponding local terms as in (35), and

then computeO′ via (33), (34) and (28). But in this sense, each
slave node will have to transmit local terms about both sample
adding and removal, and these terms will do a subtraction as
in (33) and (34) after merging. To reduce communication cost,
we conduct this subtraction at slave nodes.

For the i-th slave node ni, given Xir and Y ir to be
retired, Xia and Y ia to be added, it generates the following

information from local change. The change of instance number
for both class are computed as

lic+ = lia+ − lir+
lic− = lia− − lir−.

(36)

The changes to terms M+, M−, v+ and v− respectively as

M ic+ = −ET
ir+Eir+ +ET

ia+Eia+

M ic− = −ET
ir−Eir− +ET

ia−Eia−
vic+ = −ET

ir+e+E
T
ia+e

vic− = −ET
ir−e+E

T
ia−e.

(37)

Then ni submits its local change mi towards the master node,
mi is in form of {lic+, lic−,M ic+,M ic−,vic+,vic−}.

For the master node, who has a current wLPSVM model
{O,M+,M−,v+,v−, l+, l−, C} maintained, when it re-
ceives all updates mi from slave nodes n1, . . . , nt, it updates
M and v terms as

M ′
+ =M+ +

∑t
i=1M ic+

M ′
− =M− +

∑t
i=1M ic−

v′+ = v+ +
∑t
i=1 vic+

v′− = v− +
∑t
i=1 vic−.

(38)

The number of instance is updated as

l′+ = l+ +
∑t
i=1 lic+

l′− = l− +
∑t
i=1 lic−.

(39)

Since we know∑t
i=1M ic+ = −

∑t
i=1E

T
ir+Eir+ +

∑t
i=1E

T
ia+Eia+

= −ET
r+Er+ +ET

a+Ea+∑t
i=1 vic+ = −

∑t
i=1E

T
ir+e+

∑t
i=1E

T
ia+e

= −ET
r+e+E

T
a+e,

(40)
and so for the negative class side, updating (38) is actually
equivalent to (33) and (34). Using (29) to have class weight
computed, the master node can eventually compute the up-
dated classifier O′ via (28).

The slave and master node pseudo-code for the proposed
distributed incremental wLPSVM are given respectively as
below.

Algorithm 4 The Proposed Distributed Incremental wLPSVM
Algorithm at Slave Node
Input: Xir and Y ir to be retired, Xia and Y ia to be added.
Output: message mi = {lic+, lic−,M ic+,M ic−,vic+,vic−}.
1: Generate Eia+, Eia−, Eir+, Eir−, lia+, lia−, lir+ and lir− from

Xia, Y ia, Xir and Y ir ;
2: Compute lic+ and lic− as (36);
3: Compute M ic+, M ic−, vic+ and vic− as (37);

Algorithm 5 The Proposed Distributed Incremental wLPSVM
Algorithm at Master Node
Input: initial wLPSVM model {O,M+,M−,v+,v−, l+, l−, C},

messages mi from all slave nodes.
Output: updated wLPSVM model

{
O′,M ′

+,M
′
−,v

′
+,v

′
−, l
′
+, l
′
−, C

}
.

1: Update M+,M−,v+,v− as (38);
2: Update l+, l− as (39);
3: Compute σ′+ and σ′− using (29);
4: Compute O′ as (28).



IV. EXPERIMENTS

Since the good classification capability and the robustness
to class-imbalance of wLPSVM has been shown in [13], [14],
and proposed distributed incremental wLPSVM theoretically
gives the same learning result, here our experiments here focus
on result equivalence demonstration and efficiency evaluation.

We implement our algorithm using Matlab Parallel Envi-
ronment. All experiments are conducted on a laptop with 4-
core 2.4GHz CPU and 8 GB memory. The data used are all
downloaded from the public UCI repository [16].

A. Learning Result Equivalence to Batch wLPSVM

Although we have shown the theoretical equivalence be-
tween proposed algorithms and the original batch algorithm,
here we further verify this equivalence using numerical ex-
periment. We compare the learning result (classifier) from
incremental, distributed and distributed incremental learning
against that from batch learning. Since the classifier learned
here is a vector, we use 2-norm of the vector difference as
measurement. Here we set the incremental learning as two-
step (i.e., learn 50% of the data and then the rest 50%), and
we conduct the distributed learning using two nodes.

TABLE I
LEARNING RESULT DIFFERENCE AGAINST BATCH WLPSVM.

Dataset # Instance # Feature Inc Dist DistInc
Heart 303 75 0 0 0

BreastWisconsin 569 32 0 0 0
AnonymousWeb 37, 711 294 0 0 0

CoverType 581, 012 54 0 0 0

Here we measure the learning result differences on four
datasets with various sizes and dimensions. For datasets that
are originally multi-class problem, we transform them into
binary one-against-rest data. The characteristic of each dataset
and corresponding learning result differences are reported in
Table I.

Not surprisingly, the differences for all four cases are all
zero, i.e., the classifiers learning from proposed incremental,
distributed and distributed incremental wLPSVM learning al-
gorithms are all exactly equals to that from batch learning. The
theoretical equivalence is verified by numerical experiment.

B. Parallelization Effectiveness

To evaluate the parallelization effectiveness, i.e., how well
the training is accelerated using more learning nodes, we first
fix the training data size and measure the training time variant
with respect to the number of cores used. Here, we also
interested in how data size affects such effectiveness. Thus
we conduct above comparison on different proportion of data.

The data we used here is binary CoverType, which has 581k
instances. We let the number of cores varies from 1 to 4, and
the data proportion varies from 12.5% to 100%. We conduct
training at each setup for 10 rounds, and the average training
time are shown in Table II

First look at the effect of speedup, let the training speed
using 1-core to be the basis, we calculate how much times

TABLE II
AVERAGE TRAINING TIME AT DIFFERENT DATA SIZE AND NUMBER OF

CORES.

Proportion 1 core 2 core 3 core 4 core
100% 18.33s 10.36s 8.52s 7.90s
75% 14.02s 8.00s 6.57s 6.07s
50% 9.31s 5.48s 4.40s 4.05s
25% 4.92s 2.94s 2.35s 2.15s

faster when using more than one cores to process the same
amount of data. The speedup curves at different data size are
plotted in Figure 2.

Fig. 2. Speedup against number of cores

As we can see here, with the increase of number of cores,
the training speed increases. The parallelization of proposed
algorithm truly accelerates training by investing more com-
putational nodes. However, this increase is not linear (i.e.,
n-times faster when use n-cores) as we expected, and the
marginal benefit for adding one more core decreases with
the number of cores already used. This can be explained by
two facts: 1) in theory, parallelized M and v computing
can achieve linear speedup, but the computation at master
node has fixed cost, thus proposed algorithm can only achieve
near linear speedup at large dataset; and 2) Matlab parallel
environment need extra time to coordinate multiple nodes, and
this extra cost increases with the number of node in action,
thus the more node used the more speedup effect is neutralize.

Regrading the data size, we can see here the speedup
performs better with the increase of data size. The reason
is that the time to process small dataset is not dominant
compared with the time consumed by nodes communication
and task arrangement. When the size of dataset increase,the
time of intensive computation becomes dominant, so the speed
up increases. Therefore, proposed algorithm can process large
datasets efficiently.

Next we look at the aspect of sizeup, which measures
how much times longer the given system takes to learn when
the dataset is m-times larger. The sizeup curves at different
number of cores are given in Figure 3.



Fig. 3. Training time against data size

As we can see here, the training time grows linearly with
the data size, regardless the number of cores used, and the
slope is less than one. This means when the data is m-times
larger, proposed algorithm only takes less than m-times time
to learn, which also indicates the effectiveness of proposed
algorithm on learning large datasets.

C. Incremental Effectiveness
To evaluate the effectiveness of proposed incremental learn-

ing, we progressively expand the training set by adding
more new instances and measure the training time cost by
batch, parallel, incremental and parallel incremental wLPSVM
respectively. For all parallel algorithms, we set the number of
cores used as four, and the result is shown in Table III below.

TABLE III
TRAINING TIME FOR DIFFERENT ALGORITHMS

# new Instances batch Incremental Parallel Parallel Inc.
30 k 4.36s 4.36s 1.97s 1.97s
15 k 6.54s 2.20s 2.95s 1.01s
7.5 k 7.62s 1.09s 3.44s 0.49s
3.75 k 8.13s 0.56s 3.70s 0.25s

As we can see here, the training time for proposed incre-
mental and parallel incremental wLPSVM decreases as the
new data becomes smaller, and the training time for algorithms
without incremental capability grows continuously. This is
because proposed incremental algorithms only learn from the
newly introduced data thus the training time is determined
by the size of new data. On the other hand, non-incremental
variants have to learn from all data thus the training time is
determined by the size of accumulated data. When we compare
the parallel algorithms with the non-parallel ones, we can see
that the training time is clearly reduced by parallelization.
We can easily conclude that the combination of parallel and
incremental wLPSVM learning is more suitable for solving
big data learning problems.

V. CONCLUSION AND FUTURE WORK

In this work, we update wLPSVM into an distributed incre-
mental algorithm, which capable of simultaneously learning

from multiple streaming data sources that are geographi-
cally distributed. The incremental and distributed learning of
wLPSVM in solve at the same time as a merging problem. We
derive a new wLPSVM expression, in which knowledge from
samples are presented as a set of class-wised core matrices,
and merging knowledge from two subsets of data can be
simply accomplished by matrix computation. With the help
of such merging, we are able to conduct incremental and
distributed learning at the same time via merging knowledge
from multiple incremental stages and multiple data sources.

In the experiments, the effectiveness of proposed algorithm
on learning big datasets is roughly evaluated based on our
Matlab prototype. Due to the limitations of Matlab and our ex-
perimental environment, we can not fully showcase proposed
algorithm, such as the capability of learning from multiple
data sources. In the future, we will implement our algorithm
in MapReduce. That will also makes it easier to adopt our
algorithm in real world applications.
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