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Abstract—The spacing metric by Schott and the distribution
metric by Goh and Tan are often used to quantify the quality of
the Pareto optimal front (POF) solution diversity. This paper
presents a hypothesis that both the spacing and distribution
metrics suffer from a pairwise grouping problem. This pairwise
grouping problem leads to inaccurate measurement results that
give a false indication of the POF solution diversity. In order to
verify the hypothesis, a new diversity metric based on crowding
distance is introduced. The vector evaluated particle swarm
optimization (VEPSO) algorithm is used to evaluate the three
POF solution diversity metrics. Results from the new diversity
metric verify the presented hypothesis.

I. INTRODUCTION

Many real life optimization problems consist of multiple
objectives that need to be optimized. In many cases, the objec-
tives are often in conflict with one another. These problems are
called multi-objective optimization problems (MOPs). MOPs
do not have a single solution, but rather have a set of solutions,
referred to as the Pareto optimal front (POF). Multi-objective
optimization (MOO) algorithms can be used to find sets of
solutions, or POFs, for a MOP.

Since the introduction of VEGA [1] by Schaffer in 1995,
various MOO algorithms, including NSGA-II [2], SPEA [3],
PAES [4], MOEA/D [5], OMOPSO [6], SMPSO [7], and
VEPSO [8], have been developed. Performance metrics can
be used to determine which of these algorithms perform well
for a given MOP. Performance metrics quantify how well a
MOO algorithm solve a MOP. Various performance metrics
have been developed to measure the quality of the found POFs.
In general, a MOO algorithm has two goals [9]:

1) Find a set of solutions as close to the true POF as
possible.

2) Find a set of solutions with as high a diversity as
possible.

In more recent research a clear distinction is drawn between
metrics that measure the diversity-, versus the uniformity
of the solutions that make up the POF. Wang et al. [10]
investigated diversity metrics for many-objective optimization
problems, MOPs with more than three objectives, and classi-
fied the metrics as measuring diversity, uniformity, or both.

While newer metrics have been developed [10], spacing by
Schott [11] and distribution by Goh and Tan [12] are often

used [12]–[17] to quantify and compare the diversity of the
solutions found by a MOO algorithm.

This paper presents a hypothesis that a weakness exists
in the well-known distribution and spacing metrics that lead
to inaccurate quantification of the POF diversity. A new
diversity metric based on distribution and spacing, without
the hypothesized flaw, is defined to evaluate the hypothesis.
Experimental results verifying the hypothesis, using the vector
evaluated genetic algorithm (VEGA) [1] inspired vector eval-
uated particle swarm optimization (VEPSO) algorithm [8], is
presented and discussed.

The remainder of this paper is organized as follows. Section
II describes the well-known distribution and spacing metrics.
Section III presents a hypothesis that a weakness exists in
the definitions of the distribution and spacing metrics. Section
IV introduces the crowding distribution metric that is used
to verify the aforementioned hypothesis. Section V discusses
all the components that make up the VEPSO algorithm.
Section VI presents the knowledge transfer strategies used
in this study. Section VII discusses the four archive deletion
approaches used in the experimental work presented in this
paper. Section VIII describes the experimental procedure and
test sets. Section IX presents an analysis and discussion of the
results obtained from the experimental work. Finally, section
X presents the findings and conclusions.

II. PARETO OPTIMAL FRONT DIVERSITY METRICS

Schott [11] introduced the spacing metric in 1995 to quan-
tify the diversity of the POF. The spacing metric is formally
defined as follows:

S =

√√√√ 1

|Q| − 1

|Q|∑
i=1

(
d̄− di

)2
(1)

with

di = min ~xj∈Q∧j 6=i

K∑
k=1

|xi,k − xj,k| (2)

and

d̄ =

|Q|∑
i=1

di
|Q|

(3)

where Q is the set of solutions that make up the POF.



Goh and Tan [12] introduced the distribution metric in
2007, based on the spacing metric. The distribution metric
is formally defined as follows:

D =
1

|Q|

√√√√ 1

|Q|

|Q|∑
i=1

(
di − d̄

)2
(4)

with

d̄ =
1

|Q|

|Q|∑
j=1

dj (5)

where di is the Euclidean distance in objective space between
i and its nearest neighbor in Q.

Note that the calculations for both these metrics are very
similar and the main difference is the switch from Manhattan
distance, in S, to Euclidean distance, in D.

When the solutions are near uniformly spread, the resulting
distribution, D, and spacing, S, metric values will be small.

III. PAIRWISE HYPOTHESIS

A more detailed analysis of the distribution, D, and spacing,
S, calculations reveals a potential weakness. Distribution cal-
culates di as the Euclidean distance in objective space between
solution i and its nearest neighbor in Q. Similarly, spacing
calculates di as the Manhattan distance between solution i and
its nearest neighbor in Q. In each case, the distance between
solution i and its nearest neighbor in Q is used in the diversity
calculation.

Using the nearest neighbor solution in objective space
creates a pairwise combination problem where two solutions
select each other during the diversity calculation. Fig. 1 depicts
two example POFs for discussion purposes. Fig. 1(a) illustrates
a well-spread POF with a nearly equal distribution of solutions.
Potential nearest neighbor pairings for the first example are
(A,B), (B,C), (D,E), and (E,F ). Note that the (C,D)
pairing is not used in any calculation as it is not the nearest
neighbor pairing. In the second example illustrated in Fig.
1(b), the solutions that make up the POF are clustered. In this
case, the nearest neighbor pairings would be (A,B), (C,D),
(E,F ), and (F,G). The diversity calculations will not take
the larger distances between B and C or D and E into con-
sideration, which in turn, would lead to misleading diversity
measurement values. As long as the distances between the
solutions that make up the nearest neighbor pairings are close
to equal, the spacing and distribution measurement values
would indicate a good diversity.

Adapting the distribution and spacing calculations to take
more than one nearest neighbor into account would not solve
the problem. In Fig. 1(b) a grouping of three solutions,
(E,F,G), can easily be formed without taking the distance
between D and E into account. Similarly, in actual POFs,
solutions can be grouped into groups of three or more solutions
that would still be susceptible to the same problem as the
pairwise groupings; that is, not to take all the distances
between solutions into account.
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Fig. 1. POF solution distribution examples

IV. CROWDING DISTANCE BASED DISTRIBUTION

In order to verify the hypothesis that the nearest neighbor
pairwise groupings affect the resulting distribution and spacing
metric a new diversity metric is introduced. The new diversity
metric is based on crowding distance and avoids the pairwise
problem by using sorted sets to determine the next neighbor for
the distance calculation. The crowding distribution is defined
as follows:

C =
1

|Q| − 1

|Q|∑
i=1

|d̄− di| (6)

with

d̄ =
1

|Q|

|Q|∑
j=1

dj (7)

and

di =

K∑
k=1

(
di,k − xi,k

)
(8)

where

di,k =

{
min{xj,k} if ~xj ∈ Q : xj,k > xi,k

0 otherwise
(9)

and K is the number of objectives. di is calculated for solution
~xi ∈ Q ⊆ RK , similar to the crowding distance, as the sum
of the difference between xi,k and xi+1,k where xi+1,k is the
next solution in the set Q ordered by the k’th objective. Fig. 2
illustrates the crowding distance hypercube and the distances
used by the crowding distribution calculation. fk : i+1 denotes
the next solution in the set Q ordered by the k’th objective.

(a) Crowding distance (b) Crowding distribution

Fig. 2. Crowding distance and distribution calculation hypercubes



The crowding distribution is not subject to the pairwise
problem due to the use of the crowding distance based
calculation of di.

It should be noted that the distance calculations used in the
distribution and spacing calculations cannot be changed to use
the next solution from a sorted, by objective function, set Q,
as this approach will not scale to more than two objectives.
The proposed crowding distribution metric can be used on
problems with more than two objectives.

V. VECTOR EVALUATED PARTICLE SWARM OPTIMIZATION

VEPSO [8], [18]–[20] is an extension of particle swarm
optimization (PSO) [21] to deal with MOPs. Each objective
of the MOP is represented and optimized by a separate
swarm. The swarms exchange information through the use of
a knowledge transfer strategy (KTS). The KTS is implemented
by replacing the global guide, ~̂yi(t), in the PSO velocity update
equation with a guide selected by the KTS. The VEPSO
velocity update equation is formally defined as follows:

~vi(t + 1) =w~vi(t− 1) + c1~r1(t)(~yi(t)− ~xi(t))

+ c2~r2(t)(~̂yi(t)− ~xi(t)) (10)

where ~vi(t) is the velocity of particle i at iteration t, w is the
inertia weight, c1 and c2 are acceleration constants, ~r1(t) and
~r2(t) are random vectors with components sampled uniformly
from (0, 1) at iteration t, ~xi(t) is the position of particle i at
iteration t, ~yi(t) is the local (also referred to as the personal
best position) guide of particle i at iteration t, and ~̂yi(t) is the
global guide of particle i at iteration t.

At the end of each iteration, the non-dominated solutions
are inserted into the archive if they are not dominated by any
solution already in the archive. Solutions in the archive that
are dominated by the newly inserted solutions are removed.
Once the archive reaches the specified size limit, a deletion
approach is used to remove solutions from the archive until
the size limit criterion are satisfied again.

The VEPSO algorithm (for two objectives) can be summa-
rized as follows:

1: Create and initialise all particles in swarms S1 and S2.
2: repeat
3: for all swarms S ∈ {S1, S2} do
4: for all particles Pi in the swarm S do
5: Select global guide, ~̂yi(t), for swarm S using a

KTS.
6: Update particle velocity using equation 10.
7: Update particle position.
8: Update the archive if the new particle position is

non dominated.
9: end for

10: end for
11: until all swarms converge or iteration limit is reached.

VI. KNOWLEDGE TRANSFER STRATEGIES

The experimental work presented in this paper made use of
two KTSs. The first KTS, the Random Personal Best KTS,

selects the global guide, ~̂yi(t), randomly from a randomly
selected swarm [22]. The random KTS has been shown to
perform well for a variety of problems [22].

The second KTS, the Parent Centric Crossover Archive
(PCXA) KTS, calculates the global guide, ~̂yi(t), as the off-
spring of the parent centric crossover (PCX) operator [23]
applied to three randomly selected non-dominated solutions
from the archive [24]. The PCXA KTS have been shown to
perform well in terms of POF solution diversity for a variety
of problems [24].

VII. ARCHIVE MANAGEMENT

Four different archive deletion approaches were used in the
experimental work presented in this paper.

The first deletion approach is the Crowding Distance based
deletion approach. Deb et al. [2] introduced the crowding
distance to estimate the density of solutions surrounding a
particular solution. The crowding distance is calculated as the
average distance to the solutions either side of the specified
solution along each of the objectives. The solution with
the lowest crowding distance is removed from the archive.
Crowding distance based archives are used by the OMOPSO
[6] and SMPSO [7] algorithms.

The second deletion approach is the Distance Metric [25]
deletion approach. The distance metric deletion approach
removes the solution with the lowest relative distance in the
archive. The relative distance is calculated as follows:

fdel,i =
∑
∀j 6=i

(√√√√ K∑
k=1

( xi,k − xj,k

maxk −mink

)2)−1
(11)

where fdel,i is the relative distance for solution i in the archive,
K is the number of objectives, xi,k and xj,k is the k’th
objective function value for the i’th and j’th solutions in the
archive respectively, maxk and mink are the maximum and
minimum values reached by an archive member for the k’th
objective.

The third deletion approach is the Nearest Neighbor dele-
tion approach [16]. The nearest neighbor deletion approach
removes the solution with the lowest nearest neighbor distance.
The nearest neighbor distance is calculated similarly to the
distance metric, except, instead of using all the solutions, only
the n nearest neighbors are used. Similar to [16], n is set to
2 for the experimental work presented in this paper.

Finally, the fourth deletion approach is the Random deletion
approach. The random deletion approach randomly selects
solutions to be removed from the archive.

VIII. EXPERIMENTAL SETUP

The experimental work presented in this study analyzed the
distribution, spacing, and crowding distribution metrics with
each of the four archive deletion approaches described earlier
with an archive size limit of 50. Each of the algorithms ran
for 2000 iterations. Results were taken over 30 independent
runs. Each of the subswarms had 50 particles. Known well-
performing values for the inertia weight, w = 0.729844, and
the acceleration constants, c1 = c2 = 1.49618, were used [26].



The Zitzler, Deb and Thiele (ZDT) [27] test set was used to
provide a mix of challenges to evaluate the algorithms. Table
I present a summary of the properties of each of the problems
in the ZDT test set.

All algorithm and problem implementations were done and
executed using the CIlib framework [28], [29].

IX. ANALYSIS

Figs. 3(a) – 15(e) depict the measurement values for the
three metrics, the number of solutions in the archive for ZDT1
through ZDT6 over 2000 iterations as well as a selection of
the resulting POFs.

For VEPSO (Random) on ZDT1, ZDT2, and ZDT3, the
crowding distribution, C, measurement values stopped de-
creasing around iteration 400 for the distance metric and ran-
dom archive approach algorithms. The discontinuation in the
decrease of the measurement values for C deviates from the
measurement values for distribution, D, and spacing, S where
a continued decrease can be noted. From Figs. 5(a) – 5(c) it can
be noted that the archive limit is reached around iteration 400.
This corresponds to where the C measurement values start to
deviate from the D and S measurement values. Figs. 7(a) –
8(e) show the POFs obtained for iterations 100, 250, 500,
750, and 1000 for the VEPSO (Random) algorithm with the
distance metric archive deletion and nearest neighbor archive
deletion approaches. A large gap in the POF in Fig. 7(e) can be
noted. The nearest neighbor deletion approach POF, in turn,
shows a much better spread of solutions. The POFs clearly
confirms that the C measurement values represent the actual
spread of solutions whereas the D and S measurement values
give a misleading indication of the actual spread of solutions.

The POFs shown in Figs. 9(a) – 10(e) confirm that a similar
misleading indication between the actual spread and the D and
S measurement values exists. In this case a degredation in the
visible diversity of the solutions can be noted between the POF
for iteration 500 shown in Fig. 10(c) and the POF at iteration
1000 shown in Fig. 10(e).

The ZDT4 results were erratic for all three diversity metrics.
It should also be noted that none of the ZDT4 algorithms
reached the archive size limit. The ZDT6 C results show
that the distance metric and random archive deletion approach
algorithms had a higher diversity than the crowding or nearest
neighbor algorithms. The D and S results did not reveal the
same trend. The POFs shown in Figs. 11(a) – 12(e) confirm
that the D and S measurement values are misleading and

TABLE I
PROPERTIES OF THE ZDT PROBLEMS

Name Separability Modality Geometry

ZDT1 separable unimodal convex
ZDT2 separable unimodal concave
ZDT3 separable unimodal/multimodal disconnected
ZDT4 separable unimodal/multimodal convex
ZDT6 separable multimodal concave

that there is a notable difference in the spread of solutions
as indicated by the C measurement values.

For VEPSO (PCXA) on ZDT1, the distance metric and
random archive deletion approaches had higher C values than
that of the crowding distance and nearest neighbor archive
deletion approach algorithms. Again, this pattern does not
match the D results where all the algorithms performed
similarly. For ZDT1 the random archive deletion approach
algorithm had an unstable S value as visible in Fig. 4(a).
Similar to the ZDT1 result, the S values for ZDT2 were
unstable for the random archive deletion approach. No notable
difference in D values could be noted for the four algorithms.
The distance metric and random archive deletion approach had
slightly higher C values.

For ZDT3 the C measurement values again show varying
performance for the four algorithms whereas the S and D
measurement values showed no notable difference between
the four algorithms. Figs. 13(a) – 15(e) clearly show that the
algorithms achieved notably different spreads as reflected in
the C measurement values. Fig. 14(e) is an excellent example
of the pairwise grouping problem. Clusters of solutions are
clearly visible and the corresponding S and D measurement
values give no indication of the degraded spread of solutions.

Similar to the VEPSO (Random) results for ZDT4, the
diversity metrics were erratic. For ZDT6, in contrast to the
D and S results, the C values showed notable differences in
the results achieved by the four algorithms.

Overall, the results indicate that the distribution, D, and
spacing, S, measurement values were misleading whereas the
crowding distribution, C, measurement values gave a more
accurately indication of the actual spread of solutions on the
POF. The results confirm the hypothesis that the distribution,
D, and spacing, S, metrics are susceptible to a pairwise
grouping problem where larger distances in the actual spread
of solutions are ignored. This in turn leads to misleading
measurement values.

X. FINDINGS AND CONCLUSIONS

This paper presented an analysis of the distribution and
spacing metrics. A detailed analysis of the distribution and
spacing calculations revealed a potential design flaw. It is
hypothesized that this potential design flaw, the pairwise
grouping problem, could lead to an inaccurate measurement
of the POFs diversity. In order to test the hypothesis, a new
diversity metric, crowding distribution, was introduced. The
VEPSO algorithm was used to evaluate the performance of
all three metrics. Two knowledge transfer strategies, namely
random and PCXA, was used in conjunction with four archive
deletion approaches.

The experimental results showed that the crowding distribu-
tion results did not exhibit the same behavior as the distribution
and spacing results. This deviation in the results along with
an analysis of the POFs confirms the hypothesis presented in
this paper. The distribution and spacing metrics are unable
to accurately measure the POF solution diversity. The newly
introduced crowding distribution reported the diversity more
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Fig. 3. VEPSO (Random) Spacing, S, Distribution, D, Crowding Distribution, C, with archive size 50 for ZDT1 through ZDT6
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Fig. 4. VEPSO (PCXA) Spacing, S, Distribution, D, Crowding Distribution, C, with archive size 50 for ZDT1 through ZDT6
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Fig. 5. VEPSO (Random) number of solutions
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Fig. 6. VEPSO (PCXA) number of solutions
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Fig. 7. VEPSO (Random) with distance metric archive deletion POF for ZDT1

0.0

0.3

0.6

0.9

1.2

0.00 0.25 0.50 0.75 1.00

f1(x)

f 2
(x

)

(a) t = 100

0.0

0.3

0.6

0.9

0.00 0.25 0.50 0.75 1.00

f1(x)

f 2
(x

)

(b) t = 250

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

f1(x)

f 2
(x

)

(c) t = 500

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

f1(x)

f 2
(x

)

(d) t = 750

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

f1(x)

f 2
(x

)

(e) t = 1000

Fig. 8. VEPSO (Random) with nearest neighbor archive deletion POF for ZDT1

accurately and was nonsusceptible to the pairwise grouping
problem.

From the experimental results presented in this paper, it can
be concluded that using distribution and spacing, as presented
in this paper, should be avoided and alternative metrics should
be used instead.

The development of new performance metrics that more
accurately measure the quality of the POF for comparisons
between algorithms is currently underway.
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