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Abstract—In this work, we study the effects of mutation
operators combined with a varying mutation schedule applied
to traffic signal optimization. An evolutionary algorithm with
specialized mutation operators coupled with a microscopic traffic
simulator tackles the optimization of traffic signal settings in
different mobility scenarios. Experimental results show that the
proposed mutation operators allow for an effective search in large
decision spaces, evolving small populations for a short number
of generations. The parameters of the evolutionary algorithm
are analysed and automatically-generated configurations are
discussed, suggesting alternative ways to effectively apply the
proposed variation operators for short term evolution.

I. INTRODUCTION

According to UN [1], 54% of the world population cur-
rently lives in urban areas. Inhabitants in those cities demand
acceptable levels of transportation service to accomplish their
activities every day. However, the infrastructure is not grow-
ing at the same pace of the demand, which causes severe
economic, social and environmental problems. In large urban
areas, especially in developing countries, citizens tend to use
more their own mobility means, increasing the number of
vehicles [2] and contributing to worsen the mobility problem.
A proper setting of traffic signals can help to alleviate the
traffic congestion with better use of the current transportation
network infrastructure. Several parameters define a traffic light
control system: first, the cycle length. Next the green times
of the different phases or traffic flows, and finally the offset
between the beginning of the cycles of consecutive signals
to coordinate them and induce continuous flows. The search
space is vast if we consider the number of signals, especially
in wide geographical areas. Regularly, urban planners deal
with the optimal settings and they are restricted to analyze
few signals in a small part of the zone of study. Evolutionary
algorithms (EA) have become a popular method to optimize
large and complex search spaces. In this work, we optimize
traffic signal settings to minimize travel time. We explore
alternative signal settings under various scenarios of mobility
by using activity based micro-simulation, which allows for
a detailed analysis of the system. Previous works have been
proposed for signal timing optimization. Several techniques
ranging from statistical based methods in the 60’s [3] [4] to
computational intelligence (CI) oriented to implement intelli-
gent transportation systems have been used. In the CI field, in
particular, among evolutionary computation (EC) algorithms,
genetic algorithms (GA) appear as favored optimizer tech-
nique. One early work [5] proposed a GA optimizer and a

mesoscopic traffic simulator. This work showed that applying
GA allows a reduction in average delay by using a small
test scenario consisting of four closely spaced intersection.
Another approach [6] considered travel demands on a small
network using a macroscopic simulation of traffic flows. The
solution representation considers a common network cycle
time for all of them. In [7] a network design problem (NDP)
bi-level approach is proposed, where one common cycle for
each solution was used. The reason is that to maintain signal
coordination, each junction in the considered area must operate
with a common cycle or a simple multiple of it [8]. This
assumption simplifies the complexity of the problem, but it is
not applicable to wide areas due to traffic system and network
particularities for each neighborhood. We have relaxed the
assumption of a common cycle to enable to build microzones.
However, the evaluation of several traffic lights is computation-
ally expensive due to the number of signals and also because
each solution considers the mobility plan and travel details of
a synthetic population of agents which are moving across the
area of study. This imposes limits on the number of fitness
evaluations, population size, the number of generations, and
on the number of times the stochastic evolutionary algorithm
can be run. Hence, this work aims to develop an EA to search
efficiently in large decision spaces under a small budget of
generations, performing a reliable short-term evolution to find
high-quality solutions. To achieve this, we design a set of
specialized mutation operators combined with a deterministic
varying schedule [9] to enable a fast convergence in short-term
evolution.

The rest of this paper is organised as follows. In Section
II, we describe the simulation method we use. In Section III
we detail the evolutionary algorithm components. Section IV
is devoted to the experiments and analysis of results. Finally,
Section V gives concluding remarks and future work.

II. METHOD

Figure 1 shows the interaction of the components of the
optimization system. The model components are the mobility
plan, the transportation network infrastructure and the evo-
lutionary algorithm (EA). The mobility plan is an activity-
based model considering three primary activities as destina-
tion locations: work, study and other. We use Multi-Agent
Transport Simulation (MATSim) [10] to evaluate the mobility
scenario. MATSim requires as inputs the initial mobility
plans for a set of agents and a model of the road network



infrastructure. It simulates traffic following the initial plans
of the agents trying various routes and iterates to optimize
individual plans and routes for all agents to provide a system
in an equilibrium state. Equilibrium state is defined as a stable
condition when no traveler can improve his travel time by
unilaterally changing routes [11].

Fig. 1: Model Components

To run a scenario with traffic lights, MATSim simulates
traffic lights microscopically using fixed-time controls [12].
That means that traffic lights parameters are set statically
beforehand. We use the evolutionary algorithm to find op-
timal signal settings of a transportation system to minimize
average travel time. The EA evolves a population of candidate
solutions, each solution represents a configuration of signals
(signal control) for the transportation system. At each iteration,
the EA calls the transport simulator for each candidate solution
in order to evaluate it. Once all solutions are evaluated, the
evolutionary algorithm continues to the next iteration.

III. EVOLUTIONARY ALGORITHM

The optimizer is an elitist evolutionary algorithm. In
the following we detail the representation, main steps, and
operators.

Fig. 2: Traffic light components
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Fig. 3: Chromosome representation

1) Traffic Signals Problem Representation: The principal
components of a traffic signal are cycle length, phase, offset,
stage, green and inter-green time. Cycle length is the time

in seconds required for one complete color sequence of
the signal. A phase is the set of movements that can take
place simultaneously. An Offset is the time lapse in seconds
between the beginning of a corresponding green phase at an
intersection and the beginning of a corresponding green phase
at the next intersection. One stage is a green and inter-green
time sequence (see Figure 2). In this work we extend the
representation used in [7] to include a cycle per signal. In
addition we use integer instead of binary representation. We
do not expect meaningful changes in travel time, setting the
signals with a fraction of seconds. Thus, a signal S in junction
h is represented by a set of integer variables expressed by

Sh = (Ch, θh, φh,1, · · · , φh,r) , (1)

where Ch is cycle length, θh is the offset, and φh,1, · · · , φh,r
are the green times for the r phases of the signal. Signal
Sh represents one gene, and a set of signals constitute the
chromosome of an individual, i.e. a solution with the complete
specification of all signals considered in the system. Figure 3
illustrates the representation of a solution to a system with n
signals, each one with two phases. The ranges and constraints
of these variables are given in Eq.(2) – Eq.(8), where Ih,r
is the inter-green time at signal h for phase r and Ph is the
total number of phases at signal h. Equations Eq.(2) – Eq.(4)
represent the range for cycle length Ch, offset θh and green
time φh,r, respectively. Chmin is determined by identifying the
signal that needs the longest duration just to accommodate the
inter-green times and the minimum green times as shown in
Eq.(5). Cmax is set to 135 seconds. Inter-green per phase is
3 seconds and minimum green time duration is 17 seconds
for all signals as shown in Eq.(6). These values imply that
the minimum cycle time Cmin is 40 seconds in two phase
signals. Eq.(7) ensures that the sum of the green times in a
signal together with inter-green do not exceed the cycle length
set for the signal. Eq.(8) establishes the maximum green time
for the signal phase based on the cycle time, inter-green and
minimum green time.

Chmin ≤ Ch ≤ Chmax (2)

0 ≤ θh ≤ Ch − 1 (3)

φh,rmin ≤ φh,r ≤ φh,rmax (4)

Cmin =Maxh=1,2...,N

{(∑Ph

r=1 φh,r +
∑Ph

r=1 Ih,r

)}
(5)

φh,rmin = 17 sec ∀h, r (6)

Ch =
∑Ph

r=1 φh,r +
∑Ph

r=1 Ih,r ∀h (7)

φh,rmax = Ch −
Ph∑
r=1

Ih,r −
Ph∑

y=1y 6=r

φh,ymin (8)

Table I shows the range of the variables in seconds.



TABLE I: Variable Range Constraints (s)

Var min max
Ch 40 135
φh,r 17 65
θh 0 134
Ih,r 3 3

2) Main Steps of the Algorithm: Initial Population: We use
a population P of size 20. The initial population is created
deterministically, covering the full range values of the cycle
length, as follows. We prepare 20 cycle lengths in the range
[40, 135] seconds in steps of 5. All solutions are set with a
different cycle length, but all signals of a solution are set to
the same cycle length. The offset times of all signals are set
to zero and green times per phase are set to the same value
according to the cycle length, i.e. green time = (cycle length -
inter-green) /2 for a two phase signal. That is, all signals are
synchronized to start at the same time but are not coordinated.
Parent Selection: Individuals are selected for reproduction
using binary tournaments among randomly sampled solutions.
Recombination and Mutation: The offspring population Q
is created applying crossover to the selected parents with
probability Pc followed by mutation. A first configuration
of the algorithm uses a step mutation operator per variable
of the signal. Pm

(Ct), Pm
(Ot), and Pm

(Gt) are mutation
probabilities for cycle, offset and green times, respectively.
To mutate, we first decide which mutation operator will be
applied using the probabilities of the operators. Then we apply
the chosen mutation operator with probability Pm per signal.
A second configuration combines a neighborhood mutation
operator with step mutation. A third configuration enhances
the second one with a deterministic varying schedule for the
mutation probability Pm.
Evaluation: To evaluate each individual we first run the traffic
simulator. The parameters of the simulation are the signals
settings contained in the variables of the individual. The fitness
value of the individual is calculated from the output of the
simulation using Eq.(10).
Survival Selection: The nElite best individuals from the
current population P and the offspring population Q are
combined. For the next generation, we select the best |P |
individuals from this combined population.

A. Crossover

In this work we implement one and two point crossover
taking each signal as an atomic unit. The crossing point is
selected randomly with equal probability in the range [1,n - 1],
where n is the number of signals. Then the crossover operator
interchanges complete signals between parents.

B. Step Mutation Operators

Cycle length mutator (CyM): This operator increases or
decreases randomly with equal probability the cycle length
of a signal using step size stepCt. If the new cycle length is
out of the specified range, we adjust it accordingly to be either
Chmin or Chmax. After that, it is necessary to check whether

offset time violates its constraint. If offset is larger than the
new cycle length, it is reset to new cycle length - stepOff,
where stepOff is the offset step size. Finally, for each signal
phase the green times are adjusted proportionally to the new
cycle length. Due to the correlation of offset and green times
to the cycle length, this operator may act as a macro-mutation
operator.
Green time mutator (GtM): This operator decreases the green
time of one phase and adds it to another phase using step size
stepGt. To determine the phase that will decrease its green
time, we randomly visit the phases until we find one in which
the decrement does not violate the constraint for minimum
green time φh,rmin. The phase to which the green time is
added is also determined randomly among all phases, except
the one in which time was reduced.
Offset time mutator (OffM): This operator increases or de-
creases randomly with equal probability the offset time of a
signal using step size stepOff. If offset becomes negative, it
is reset to 0. Likewise, if offset is greater than the maximum
cycle length Chmax, it is reset to Chmax - stepOff.
The effects of the above operators tested under several settings
were reported in [13], [14].

C. Neigborhood mutation operators

Neighborhood operators aim to improve traffic flow along
the two main directions of circulation, namely, South-North-
South (SNS) and West-East-West (WEW). The idea is to
favor traffic signal coordination along the two directions by
simultaneously modifying the parameters of a signal and its
neighbors. In particular, cycle times are copied and offsets are
adjusted taking into account the distance and the average free
speed between the interacting signals. For each signal Sh we
pre-calculate the distance d and the average free speed to its
two neighbors along each propagation direction. At execution
time, when the operator is applied, the propagation direction is
stochastically selected with probability 0.85 for NSN direction
and 0.15 for WEW direction, respectively, in agreement with
the characteristical traffic flow and the most common mobility
patterns in the city. Notice that, since in our encoding each
parameter of a signal corresponds to one decision variable, the
new operators are forcing variable interactions in the decision
space. Their implementation is detailed as follows.
Cycle length mutator and neighborhood cycle propagation
(NCyP): This operator propagates the cycle length (Ch) of
the reference signal (Sh) selected for mutation to its neighbor-
hood. Ch can be either mutated or not previous its propagation.
The procedure for this operator is listed in Algorithm 1. There,
if the parameter ctmut is true, Ch is first mutated with the
above operator CyM and then propagated. Otherwise, if ctmut
is false, Ch is propagated without changing it first.
Cycle length mutator and neighborhood cycle propagation
with distance-based offset (NCyOffP): This operator, similar
to the above operator NCyP, propagates the cycle length
(Ch) of the reference signal (Sh) selected for mutation to its
neighborhood. In addition, it sets the offsets of the neighboring
signals based on the time required to cover the distance from



Sh to the neighbor traveling at free speed (tff ). As in NCyP,
Ch can be either mutated or not previous its propagation. The
procedure for this operator is listed in Alg. 2.

Algorithm 1: NCyP(Sh, ctmut)
Data: Sh = (Ch, θh, φh,1, · · · , φh,r) , ctmut

1 phase=getPhase(h);
2 N=getNeighborhood(h, phase);
3 if ctmut=true then
4 CyM(h)
5 end
6 for i = 0 to |N | do
7 changeSignalSettings(nhi.id, Ch);
8 end

Algorithm 2: NCyOffP(Sh, ctmut)
Data: Sh = (Ch, θh, φh,1, · · · , φh,r) , ctmut

1 offsetprevious=θh;
2 phase=getPhase(h);
3 N=getNeighborhood(h, phase);
4 if ctmut=true then
5 CyM(h)
6 end
7 for i = 0 to |N | do
8 timefreeflow= d(Sh,nhi)

avgfreespeed(Sh,nhi)
;

9 newoffset=offsetprevious + timefreeflow;
10 changeSignalSettings(nhi.id, Ch,newoffset);
11 offsetprevious=offsetprevious+newoffset;
12 end

D. Varying mutation schedule

Varying mutation operators allow to modify strategy pa-
rameters during the run of the algorithm. The combination
of a high selection pressure introduced by elitism together
with varying mutation operators have been shown to improve
the convergence speed of genetic algorithms [9], [15]. In this
work we implement a time-dependent schedule that determin-
istically varies mutation rate Pm in a hyperbolic shape [9]
expressed by

Pm
(t) =

(
1

Pm
(0)

+

1
Pm

(T ) − 1
Pm

(0)

T − 1
t

)−1
, (9)

where T is the maximum number of generations, t ∈
{0, 1, ..., T−1} is the current generation, Pm

(0) and Pm
(T ) are

the desired mutation probabilities per signal at time 0 and T ,
respectively. This approach has been used to reduce mutation
rates, i.e. Pm

(0) > Pm
(T ). In our case, we also use it to

investigate the effect of increasing mutation rate by setting
Pm

(0) < Pm
(T ).

E. Fitness Function

MATSim sets the configuration of the signals with solution
passed by the evolutionary algorithm, simulates the move-
ments of the agents following the plans in the equilibrium
state, and outputs the time it takes each agent to travel each
link in its route. We minimize average travel time expressed
by

min

∑V
i=1

∑L
l=1 til

V
, (10)

where til is the travel time on link l for vehicle i, V is
the number of vehicles being simulated and L is the number
of links in the network, subject to signal timing design and
feasibility constraints shown in Eq.(2)- Eq.(8) [7].

IV. SIMULATION RESULTS AND DISCUSSION

A. Experimental Setup

For each type of experiment, we conduct ten runs of the
algorithm, setting the number of generations to 50, using
different random seeds but starting from the same initial
population. Population size is 20 and the number of elite
individuals is nElite=10. We set crossover rate to Pc = 1.0.
When constant mutation is applied, mutation rate per signal
is set to Pm = 4/n, where n is the number of signals.
For varying mutation we set its range to [20/n, 4/n]. In our
experiments n = 70. For neighborhood operators, a neighbor-
hood per direction (SNS and WEW) for each signal is set in
advance according to its geographical location. The neighbor-
hood includes the next and previous signal to the reference
signal. Step sizes for mutation operators are stepCt = 5,
stepGt = 3 and stepOff = 10. Mutation probabilities per
operator are detailed in Table II. The simulation in MATSim
takes approximately 5 hours to reach the equilibrium state and
3 minutes to evaluate each solution.

B. Initial Mobility Plans

We model the initial mobility plans based on activities
[16]. In this work the agents perform two trips or legs. One
from home to their activity destination and then the return
trip from their activity to home, as illustrated in the top
left side of Figure 1. The number of simulated agents with
their home located in a given district is proportional to the
actual population of that district. The home coordinates of
the agents are assigned sampling uniformly these areas. We
consider three types of activity: work, study, and others such
as leisure, business, shopping, etc. The proportion of agents
for each activity is 32%, 33% and 36% respectively according
to mobility survey data [17]. The location coordinates for each
type of activity are determined using different procedures.

We have defined a range of starting times and activity du-
rations according to the type of activity. The activity duration
and start times are assigned sampling uniformly from these
ranges. In this work, the simulation scenario considered a large
part of the city (5x8 Km2) where 70 traffic signals were
allocated. We simulate the mobility of 20.000 agents. This
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number represents approximately the 30% of the estimated
number of vehicles for the inhabitants of the area of study
[17] and allows to perform the simulation in a reasonable
computation time. With this number of agents, MATSim re-
quires approximately 8 hours to reach the equilibrium state and
around 2.5 minutes per individual to compute its fitness. We
create three different scenarios. In the first scenario the trips
are distributed from early morning to late evening, i.e. 06:00h
to 24:00h, as illustrated in Figure 4. In the following we refer
to this scenario as S124h. In the second and third scenarios the
trips are distributed from 06:00h to 09:00h and from 15:00h to
20:00h, respectively, as illustrated in Figure 5. These mobility
plans aim to study the system under congested scenarios
during morning and afternoon peak hours. In the following we
refer to those scenarios as S2M and S2A, respectively. Since
all scenarios simulate the mobility of 20,000 agents, the less
congested scenario is S124h and the most congested one is
S2M.

C. Effects of Operators on One Day Scenario

In this section, we analyze the effect of step mutation
operators, neighborhood operators, and varying mutation on
mobility scenario S124h. We perform five different experi-
ments and group them in three sets using the settings shown
in Table II.

Figure 6 shows the transition of mean travel time in all runs
over the generations for all experiments. Figure 7 shows box
plots of the best solution at the last generation and Table III
shows their mean, standard deviation and inter-quartile range.

First, we look at the first set of experiments E0 and E1.
E0 is a reference experiment where step mutation operators
are used for cycle, offset, and green time [14]. E1 uses the
neighborhood cycle propagation operator NCyP instead of
the step cycle operator CyM . These experiments have the
same settings of mutation operators probability (see Table
II). These operator probability settings gave the best travel
time when only step mutation operators were used [14]. Note
that the travel time transition by E0 and E1 are similar as
shown in Figure 6. However, in experiments E1, where cycle
propagation is applied, a considerable reduction of solutions
variance can be achieved as shown by the inter-quartiles in

TABLE III: Mean travel time, standar deviation and interquar-
tile range of best solutions in experiment E0-E4 and E4DVM.

Exp. Travel Time

avg std iqr

E0 810.83 77.42 107.31
E1 811.89 107.75 51.37
E3 776.44 30.64 34.04
E4 749.34 20.36 26.53
E4DVM 746.50 17.43 21.20

Figure 7 and Table III. Yet, some outliers are still observed
and their effect can be noticed in the standard deviation.

In the second set of experiments E3 and E4 we include the
NCyOffP operator, instead of the step cycle and step offset
mutation operators, and analyze the effect of cycle propagation
and offsets defined by the distance between neighbors. E3
emphasizes cycle and offset propagation over green time
step mutation and E4 vice versa, as shown by the operator
probability for cycle and green time in Table II. Note from E3
and E4 in Figure 7 that when cycle propagation with offsets
is included, variance reduced further and better travel times
can be achieved. Emphasis on green times (E4) eliminates
outliers at the end of the run giving even better results than
emphasis on cycle propagation (E3), marked in bold in Table
III. Looking at Figure 6 we note that emphasis in mutation of
green times (E4) also allows for faster convergence. This is
because the cycle propagation rapidly finds appropriate values
for cycles, but reduces diversity in the population and loses
its effectiveness to create new solutions in later stages of the
search. Thus, a smaller rate for cycle propagation combined
with a relatively larger constant rate for exploration of green
times leads to faster and better convergence.

In the final experiment E4DVM we apply configuration
E4 with a deterministic varying mutation schedule in the
range Pm = [20/n, 4/n] instead of using constant mutation
rate Pm = 4/n. Figure 8 shows the expected number of
mutated signals by P

(Ct)
m and P

(Gt)
m when constant and

varying mutation are applied. From Figure 6 note that a very
fast convergence is achieved when the deterministic varying
mutation schedule is applied to E4. Note also that travel
time, standard deviation and inter-quartile range reduce further
compared to E4.

These results show that the combination of cycles propaga-
tion, setting of offsets based on distance, emphasis on mutation
of green times, and the application of a varying mutation
schedule works well to explore a large space and quickly finds
good solutions for the problem at hand.

D. Varying Mutation on Denser Scenarios

In this section we analyze the behavior of the algorithm
in scenarios where there is a higher volume of traffic in
shorter periods of time compared to the scenario used in
the previous section. Here we focus on E4 and E4DVM
configurations to verify the search ability and convergence of
the algorithm under congested situations. Figure 9 shows the



TABLE II: Algorithm experimental setup

Exp. Op.Prob. Operators Observations
P

(Ct)
m , P

(Ot)
m , P

(Gt)
m Ct Off Gt

Constant mutation Pm = 4/70
E0 0.5,0.3,0.2 CyM OffM GtM Step operators

E1 0.5,0.3,0.2 NCyP OffM GtM Cycle propagation,
step offset and green time

E3 0.7, – ,0.3 NCyOffP – GtM Cycle prop. with offsets,
step green time

E4 0.3, – ,0.7 NCyOffP – GtM
Deterministic varying mutation P (t)

m = [P
(0)
m = 20/70, P

(T )
m = 4/70]

E4DVM 0.3, – ,0.7 NCyOffP – GtM Cycle prop. with offsets,
step green time
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transition of mean travel time over the generations by the E4
configuration with constant and deterministic varying mutation
(DVM) schedules on scenario S2M. Here 20,000 vehicles
move from home to the activity destinations, all trips take
place from 06h00 to 09h00 with a high peak between 07h30
and 08h30, as shown in the left side of Figure 5. Similarly,
Figure 10 shows results on scenario S2A, where the same
vehicles move back home, but the trips are distributed in a
larger period of time from 15h00 to 20h00, as shown in the
right side of Figure 5. Note that E4DVM shows faster and
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better convergence results than E4 with constant mutation.
Also, note that a larger performance difference in terms of
travel time is seen for congested scenarios.

E. Crossover Effect

In this work we focus mostly on the design of appropriate
mutation operators and their schedule. However, the effect
of crossover should also be considered. In all previous ex-
periments we use one-point crossover. It is well known that
one-point crossover could be too disruptive, particularly in
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rugged landscapes [18], [19]. In this section we verify the
performance of the algorithm with no crossover, one-point
crossover and a less disruptive two-point crossover. Figure 11
shows the transition of the average travel time over generations
for configuration E4DVM changing the crossover operator on
the densest scenario S2M. From this figure note that the use
of crossover helps to achieve better convergence, however,
there is no significant difference between one-point and two-
point crossover. It could be interesting in the future to study
specialized crossover operators for this problem.

F. Algorithm’s Parameters Analysis

The proposed algorithm combines a strong selection pres-
sure given by elitism with higher varying mutation. In the
following we verify if the parameter settings of the algorithm
are appropriate and whether there are other configurations that
can lead to similar or better results.

We analyze the parameters settings of configuration
E4DVM with respect to algorithm performance using Se-
quential Model-based Algorithm Configuration (SMAC) [20].
SMAC constructs a model to predict algorithm performance
based on supervised machine learning and random forests. The
analyzed parameters are the initial P (0)

m and final mutation

probability P (t)
m of the deterministic varying mutation sched-

ule, cycle mutation probability PCt
m , and crossover rate Pc. The

green time mutation probability is determined by 1−PCt
m . The

algorithm’s observed performance is travel time.
We performed three independent runs, 50 evaluations each.

The number of training instances was set to 10 and the number
of threes on random forest to 100. Table IV shows the values
of the parameters corresponding to the SMAC solutions

Figure 12 shows the average travel time transition of SMAC
solutions compared with E4DVM on scenario S2M . As can
be observed, convergence is similar in all experiments.Figures
13 and 14 show the expected number of mutated signals in
cycle and green time, respectively. That is, P (t)

m ×P (Ct)
m × 70

and P (t)
m × (1− P (Ct)

m )× 70.
There are three schedule trends. Sol1 decreases the expected

number of mutations, Sol2 increase them and Sol3 keep them
almost constant. In all cases, the number of expected cycle
time mutations are lower than the expected number of green
time mutations. Although Sol1 and E4DVM reduce mutations
with time, mutations in Sol1 are much higher than in E4DVM.
However, note that crossover rate is lower in Sol1 than in
E4DVM.

When deterministic varying mutations are used, typically
the schedule reduces mutations with time [9], [15], such as
E4DVM and Sol1. On the contrary, Sol2 is a search strategy
with a schedule that increases mutations with time, giving at
the end of the run relatively more emphasis to cycle time
than to green times compared to the other SMAC solutions.
However, note also that crossover rate in Sol2 is the smallest.

Sol3 uses a schedule in which the expected number of
cycle mutations approaches 1, the expected number of green
time mutations is high, almost half the number of signals,
and crossover rate is the second lowest. This suggests that in
this problem constant mutation with small rate for cycle time
and very high rate for green times is an alternative to varying
mutation.

Regarding crossover, note that SMAC favors configurations
that apply crossover with rate in the range [0.5, 0.6], which is
different to the rate 1.0 used in E4DVM. Since the proposed
algorithm applies crossover with probability Pc followed by
mutation, in E4DVM with Pc = 1.0 offspring is always
created by crossover followed by mutation. On the other hand,
in SMAC’s suggested configurations only 50–60 percent of
the offsprings are created applying varying mutation after
crossover. The rest of the offsprings are created by the vary-
ing mutation operator alone. To summarize, E4DVM always
applies crossover with relatively smaller range of varying
mutations, whereas SMAC suggests configurations with higher
varying mutations but smaller rates of crossover. These are
scenarios that help reduce interference between crossover and
high mutation [15].

V. CONCLUSION

This work presented an evolutionary algorithm for short-
term evolution with small populations for a traffic signal



TABLE IV: SMAC solutions: EA parameters

Pc P 0
m PT

m P (Ct) tt avg.
Sol1 0.60 0.93 0.63 0.19 564.10
Sol2 0.50 0.28 0.61 0.29 554.52
Sol3 0.55 0.47 0.52 0.027 558.83
E4DVM 1.00 0.29 0.06 0.3 555.90

550

600

650

0 10 20 30 40 50

Generation

T
ra

v
e
lT

im
e

Solution

Sol1

Sol2

Sol3

E4DVM

Fig. 12: Mean travel time, scenario S2M.

optimization problem. We used the multi-agent transport sim-
ulator MatSim to study the optimization of 70 traffic sig-
nal controls spread over a wide area using three different
mobility scenarios with 20.000 agents moving in the city.
The proposed algorithm combines a strong selection pressure
given by elitism with crossover followed by varying mutation.
The combination of step mutations, propagation of cycles
to neighboring signals, setting of offsets based on distance
between adjacent signals, and a varying mutation schedule
works well to explore a large search space and converge
quickly to good solutions. The crossover was shown to help
convergence of the algorithm, but no significant difference
between one and two point crossover was found. We conducted
an analysis of parameters of the algorithm using sequential
model based algorithm configuration (SMAC) that showed that
alternative configurations applying relatively higher varying
mutations but smaller rates of crossover lead to similarly
good results. In the future, we would like to include multi-
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Fig. 13: Mutation sched-
ule for cycle time P

(t)
m ×

P
(Ct)
m × 70
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Fig. 14: Mutation schedule
for green time P (t)

m × (1 −
P

(Ct)
m )× 70

objective formulations for the multi-modal transport network
(car, bike, public transportation) and study ways to improve
the sustainability of transportation and mobility systems.
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