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Abstract—Fitness landscape analysis encompasses a selection
of techniques designed to estimate the properties of a search
landscape associated with an optimisation problem. Applied to
neural network training, fitness landscape analysis can be used
to establish the link between the shape of the objective function
and various neural network design and architecture properties.
However, most fitness landscape analysis metrics rely on search
space sampling. Since neural network search space is unbounded,
it is unclear what subset of the search space should be sampled to
obtain representative measurements. This study analyses fitness
landscape properties of neural networks under various search
space boundaries, and proposes meaningful search space bounds
for neural network fitness landscape analysis.

I. INTRODUCTION

Neural networks (NNs) have been studied and successfully

used in numerous practical applications for decades [1], [2],

yet the landscape properties of the objective functions associ-

ated with supervised NN training are still poorly understood

[3]. The inherent high dimensionality of NNs prevents intuitive

visualisation, and NNs are often treated as “black box” opti-

misation problems as a result. The presence of saddle points

[4], [5], as well as plateaus and narrow ridges [6], [7] in

NN error surfaces has been established, but the relationship

between these features and NN parameters such as the number

of neurons, the number of hidden layers, activation function

choice, etc., is still unclear.

One way to empirically study the link between the objec-

tive function landscape characteristics and the different NN

parameters is through fitness landscape analysis (FLA). FLA

is a young and evolving field of computational intelligence,

first applied in evolutionary computation for algorithm perfor-

mance prediction [8], [9]. The aim of FLA is to estimate and

quantify topographical properties of the given objective func-

tion landscape in order to better understand the optimisation

problem at hand [10], [11].

Fitness landscape properties are estimated by taking random

samples of the search space, calculating the objective function

value for every point in each sample, and analysing the rela-

tionship between the spatial and the qualitative characteristics

of the sample points. In the context of NNs, the search space

is made up of all possible weight combinations, and the NN

error measures corresponding to these weight combinations

make up the objective function landscape, also referred to as

the error landscape.

An important difference between NN training and many

other real-world continuous optimisation problems is that the

NN search space is unbounded. Even though the weights are

usually initialised on a small region around the origin [12],

the weights may take on any values in the course of training.

How can such a search space be sampled in a representative

way? If random sampling techniques are used to estimate the

FLA error landscape properties, what part of the infinite search

space should be considered? This work attempts to answer the

above questions by studying the FLA properties of a selection

of NN error surfaces under different search space boundaries.

The rest of the paper is structured as follows: Section II de-

scribes FLA measures used in this paper. Section III discusses

how FLA is applied to NN error surfaces. Section IV describes

the experimental procedure followed. Section V presents the

empirical study of the influence of search space boundaries on

the FLA measurements. Section VI concludes the paper.

II. FITNESS LANDSCAPE ANALYSIS

A fitness landscape is a representation of the search space

with regards to the objective function fitness values [8], [13].

The term was coined in the evolutionary optimisation com-

munity, but is applicable to any optimisation problem with a

well-defined objective function. The objective function values

calculated across the search space form a hypersurface that

the optimisation algorithm either minimises or maximises. The

aim of FLA is to estimate landscape features of the objective

function landscape in order to gain insight into the structure of

the problem and to better understand why a given algorithm

performs well or fails [10], [11].

The rest of this section describes the FLA measures used

in this study.

A. Gradients

An important characteristic of a fitness landscape is the

speed with which the fitness changes as the landscape is

traversed, i.e. the fitness gradient. Malan and Engelbrecht [14]

proposed two gradient measures to quantify the magnitude of

the fitness changes: the average estimated gradient, Gavg , and

the standard deviation of the gradient, Gdev . Gavg and Gdev



are calculated based on Manhattan random walks [14] through

the search space. Applied to NN error landscapes, Gavg is

defined as:

Gavg =

∑T−1

t=0
|g(t)|

T

where T is the number of steps in the random walk, and g(t)
is defined as:

g(t) =
∆et
distt

where ∆et is the difference between the error values of the

weight vectors defining step t of the random walk, and distt
is the Euclidean distance between the start point and the end

point of step t. Similarly, Gdev is defined as:

Gdev =

√

∑T−1

t=0
(Gavg − |g(t)|)2

T − 1

The Gavg measurement is essentially the mean magnitude

of change in fitness values, while Gdev is the corresponding

standard deviation. Lower values for Gavg and Gdev typically

indicate a simpler landscape that is easier to search. However, a

lack of gradients can also mean high neutrality (plateaus) in the

landscape [6], which may prove challenging to optimisation

algorithms that use gradient information to guide the search,

such as gradient descent.

B. First entropic measure of ruggedness

Another important property of a fitness landscape is the

frequency of change. A fitness landscape where the fitness

monotonously decreases or increases is much easier to min-

imise or maximise than a fitness landscape where the fitness

goes up and down all the time. The amount of change in

the landscape can be referred to as the degree of ruggedness

present in the landscape. Malan and Engelbrecht proposed two

ruggedness measures based on Vassilev’s [15] first entropic

measure (FEM). These measures are based on a progressive

random walk [16] through the search space, and quantify

the change in fitness values based on entropy [17]. The two

entropic measures of ruggedness used are:

• FEM0.01 – Micro-ruggedness, based on a random walk

with a maximum step size of 1% of the bounded search

space.

• FEM0.1 – Macro-ruggedness, based on a random walk

with a maximum step size of 10% of the bounded search

space.

The value of FEM is continuous and ranges between 0 and

1, where 0 indicates a flat landscape, and 1 indicates maximal

ruggedness.

C. Fitness distance correlation

The fitness distance correlation (FDC) metric was proposed

by Jones [18] as a measure of global problem hardness. FDC

gives an indication of the global shape of the landscape to be

searched. FDC measures the covariance between the fitness of

a solution and its distance to the nearest optimum.

Malan and Engelbrecht [19] proposed a new measure,

FDCs, that is based on a sample of solutions without known

optima. Applied to NN error landscapes, FDCs is defined as:

FDCs =

∑n
i=1

(ei − e)(di − d)
√

∑n
i=1

(ei − e)2
√

∑n
i=1

(di − d)2

where n is the size of a uniform sample of weight vec-

tors, W = {w1, ...,wn}, with associated error values E =
{e1, ..., en}; e is the mean of E, di is the Euclidean distance

from wi to the weight vector in the sample with the lowest

error value, and d is the mean of all di.
The range of the FDCs measurement is [−1, 1]. For min-

imisation problems, a value close to 1 indicates a highly

searchable landscape, a value close to 0 shows a lack of

information in the landscape, and a negative value indicates a

deceptive search landscape.

D. Information landscape negative searchability measure

Another measure of “problem hardness” was proposed by

Borenstein and Poli [20]. In [20], an “information landscape”

of a problem is generated by taking a random sample of

the search space and performing pairwise fitness comparisons

between the sampled points. To evaluate the amount and

quality of information in the given landscape, the difference

between the information landscape of the problem and the

information landscape of an “optimal” landscape is calculated.

Malan [10] proposed an information landscape negative

searchability (ILns) measure based on the Borenstein and Poli

[20] approach. In [10], a random sample R is generated, and

its information landscape is calculated. The spherical function

is chosen as the “optimal” landscape, as it remains robustly

searchable when scaled to higher dimensions. The spherical

function is shifted such that its minimum coincides with the

best solution in R. The difference between the information

landscape of the problem on sample R and the information

landscape of the spherical function on sample R is reported

as the ILns value.

ILns essentially measures the distance of the given fitness

landscape from the spherical function fitness landscape of the

same dimensionality. ILns is bounded to [0, 1], where a value

of 0 indicates maximum search information (no difference

between the optimal landscape and the actual landscape),

and a value of 1 indicates poor quality and quantity of the

information.

The next section describes how FLA metrics apply in the

NN context.

III. ERROR LANDSCAPES OF NEURAL NETWORKS

In fully-connected feed-forward NN architectures, each neu-

ron in a layer is connected to every neuron in the next layer,

and each connection bears a weight. Given m weights, the

solution space of all possible classifiers for a NN is a m-

dimensional space of all possible weight vectors. Some of

these weight vectors may yield a poor measure of error, while

some may be good. The complete search space of all possible



NN weight vectors with associated error values is referred to

as the “error landscape” of a NN in this study.

NN error landscapes have been investigated before from

various perspectives. Gallagher [6] used techniques such as

principal component analysis to simplify error landscape rep-

resentation in order to visualise NN error landscapes. It was

determined that error landscapes have many flat areas with

sudden cliffs or ravines. It was also theoretically proved using

random matrix theory that NN error landscapes exhibit more

saddle points than local minima, and that the number of

local minima diminishes exponentially as the dimensionality

of the problem increases [4]. Choromanska et al [21] have

drawn theoretical parallels between NN error landscapes and

spin-glass models, once again concluding that saddle points

are a more prominent feature of a NN error landscape than

local optima. Malan and Engelbrecht’s FLA metrics have

been successfully applied to investigate the effect of multiple

hidden layers on the resulting NN error landscapes [22].

However, Rakitianskaia et al [22] have only considered FLA

measurements taken on the [−1, 1] interval for every weight.

Error landscapes of NNs are in many ways similar to fitness

landscapes of continuous optimisation problems, but there is

an important difference: NN error landscapes are unbounded,

whereas optimisation problems usually have bounded decision

variables. NN weights do not have any meaning by themselves,

and can be any numbers in R
m, as opposed to decision

variables in optimisation problems that relate to some limited

resource in the real world.

The unbounded search spaces of NNs pose a problem to

FLA, since the sampling algorithms used by FLA metrics,

such as the progressive random walk [16] and the Manhattan

random walk [14], require knowledge of the minimum and

the maximum values per dimension. A range also needs to be

specified to generate a random sample for the FDCs and the

ILns metrics.

No such range is defined for NNs. It is known, however,

that NN weights are usually initialised in a small range around

zero [12]. One reason behind choosing a small range is the

avoidance of preliminary saturation. Saturation is the phe-

nomenon when the hidden units of a NN predominantly output

values close to the asymptotic ends of the activation function

range. Indeed, if very large weights are used, the weighted

sum of inputs is likely to have a large magnitude, causing the

bounded activation functions to output near-asymptotic values.

Saturated units make gradient descent learning slow and

inefficient due to small derivative values near the asymptotes

[23]. It was also shown that non-gradient descent learning can

be hindered by NN saturation [24].

Therefore, it is not unreasonable to study the NN error

landscapes on a small area around the origin, since that is

exactly where the search for a solution begins. The search

space, however, is unbounded, therefore the properties of the

error landscape on a larger scale may provide insight into

the dynamics of a training algorithm and the complexity of

the problem. Performing FLA on large and small subsets of

the search space would also demonstrate how FLA metrics

scale, and whether the metrics converge to a similar value for

different problems when the scale is increased. The purpose of

this study was to perform FLA on a selection of NN problems,

under various search space boundaries, and to determine the

relationship between the FLA metrics and the search space

boundaries imposed.

IV. EXPERIMENTATION

This section details the experimental set-up used in this

study. Section IV-A outlines the benchmark problems and the

corresponding NN architectures used. Section IV-B describes

the selection of search space boundaries tested.

A. Benchmark problems

Four classification benchmark problems outlined in Table I

were used in this study. References next to the data set titles

indicate the sources from which the data was borrowed. Each

input and hidden layer had a bias unit, set to −1. All NNs
employed the identity activation function in the input layer,

and the sigmoid activation function in the hidden and output

layers, defined as f(x) = 1/(1 + e−x), where x is the net

input signal. All input values were scaled to [−1, 1] interval
to lie within sigmoid’s active domain, and the binary target

values were scaled to tk ∈ {0.1, 0.9} to lie within sigmoid’s

output range, (0, 1).

TABLE I
BENCHMARK PROBLEMS

Problem In Hidden Out Dimensionality

Iris [25] 4 2 3 19

Diabetes [26] 8 6 2 68

Glass [26] 9 9 6 150

Heart [26] 32 6 1 205

For the purpose of this study, the mean squared error (MSE)

was used as the NN error measurement, given by:

Emse =

∑P
p=1

∑K
k=1

(tkp − okp)
2

PK

where K is the total number of outputs per pattern, and

P is the total number of patterns. The MSE quantifies the

magnitude of the distance between the generated outputs, okp,
and target outputs, tkp. The aim of training algorithms is to

minimise MSE, i.e. minimise the distance between the outputs

and the targets. The fitness landscape generated by MSE was

analysed under a selection of boundaries discussed in the next

section.

B. Search space boundaries

From the MSE perspective, the search space is infinite.

However, from the perspective of a training algorithm, only

a subspace of the infinite search space is ever traversed.

Therefore, the part of the search space actually visited by

a training algorithm has the most practical significance. The

question is, what part of the search space does a training



algorithm typically visit, and how much does the visited sub-

space vary per problem and per algorithm?

According to [12], the interval defined by

[−fanin−1/2, fanin−1/2], where fanin is the number

of connections leading into the node, is a good interval

for weight initialisation, as it avoids saturation at early

stages of training. For the architectures shown in Table I,

fanin−1/2 varies from 0.17 (heart) to 0.58 (iris). The larger

the architecture, the smaller the weight initialisation range

will be, and vice versa, but in all cases, fanin−1/2 ≤ 1.
The weights are thus typically initialised within the [−1, 1]

interval. Do the training algorithms ever leave this interval?

The easiest way to determine this is to train a NN and

observe the resulting distribution of the weights. Figure 1

illustrates the weight distributions after 1000 iterations of

30 runs of the stochastic backpropagation algorithm with a

learning rate of 0.1 and a momentum of 0.9 on the four

problems listed in Table I. All weights were initialised in

the corresponding [−fanin−1/2, fanin−1/2] intervals, but, as
Figure 1 shows, the final weights lay within the [−15, 15]
interval, a significantly wider interval than the initial interval.

Thus, the initial [−1, 1] interval is not representative enough

for the purposes of FLA.

Backpropagation is indeed not the only training algorithm

used in practice. In [27], a selection of particle swarm op-

timisation (PSO) algorithms was used to train NNs, and it

was shown that a non-regularised PSO produces weights in

the [−200, 200] interval for the iris problem. It has also been

shown in [28] that PSO tends to diverge on NN training

problems, producing very large weights. Perhaps the shape of

the error landscape is one of the reasons behind such divergent

behaviour.

Another important property of NN error landscapes is

their inherent symmetry [29]. Various permutations of hidden

neurons in a layer yield identical NN models [29]. Flipping

the signs of all the incoming and outgoing weights of a single

neuron will also leave the neuron’s output unchanged [29].

Reducing the search space to an asymmetric subspace can

thus yield a less redundant search subspace, potentially easier

to search.

Based on all the insights above, a selection of

intervals for random sampling for the FLA metrics,

both symmetric and asymmetric about the origin,

was chosen for this study. The intervals used were

[−N,N ], N ∈ {0.001, 0.01, 0.1, 1, 10, 100, 1000}, and

[0, N ], N ∈ {0.001, 0.01, 0.1, 1, 10, 100, 1000}.

V. EXPERIMENTAL RESULTS

Experimental results obtained under various search space

boundaries for the four problems considered are presented in

this section. The six FLA metrics mentioned in Section II were

used to analyse the NN error landscapes with respect to MSE.

Section V-A discusses the gradient measures. Section V-B

discusses the ruggedness measures. Section V-C discusses the

searchability measures. All reported results are averages over

30 independent runs.
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Fig. 1. Gradients

A. Gradients

Figure 2 shows the Gavg and Gdev measures obtained under

different search space boundaries. The first notable feature of

the gradient metrics is that even inside the smallest bounds

([−0.001, 0.001], [0, 0.001]), reasonably large Gavg and Gdev

were obtained for all problems. This result can be explained

by the presence of a staircase-like, or “layered” structure of

the error landscape, with sudden jumps from one layer to the

next, as previously described in the literature [6], [7], [21].

The fact that very small intervals yield high gradients implies
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Fig. 2. Gradients

that the “layered” structure is not a result of neuron saturation,

since saturation does not occur for such small weights.

The magnitude of gradients increased with an increase in

problem dimensionality. Thus, the jumps between layers be-

come more and more drastic as the dimensionality grows. This

corresponds to previously made observations that increasing

dimensionality in NNs increases the number of saddle points

surrounded by high error plateaus in the error landscapes [4].

This observation is also confirmed by the growing gap between

Gavg and Gdev , where Gdev > Gavg , associated with the

dimensionality increase, as shown in Figure 2. Malan [10]

theorised that Gdev >> Gavg is indicative of landscapes with

step-like, sudden fitness changes.

The gradient measures remain mostly consistent for sym-

metric and asymmetric bounds alike for all N ≤ 1. This is in
fact the recommended weight initialisation range. The picture

changes as the boundaries are widened: Gdev goes steadily

upwards on all problems considered. The corresponding Gavg

remains stable (iris, glass) or also increases (diabetes, heart).

Wider boundaries used for the gradient metrics imply that the

size of the step in the random walk becomes larger, too. For

the estimation of gradients, Manhattan random walks are used:

the maximum step size is fixed to 1% of the search space,

but at every step, only one randomly chosen dimension is

incremented or decremented by the given step. Thus, Gavg

and Gdev also indicate how fast the gradients change in

reaction to a change in one random dimension only. As the

boundaries increase, Gdev grows faster than Gavg , indicating

high variance in Gavg . Thus, bigger steps through the search

space, even if made in one dimension (i.e. weight) only, are

likely to change the fitness of the solution drastically. This

effect will be further enhanced in higher-dimensional NNs.

Asymmetric bounds yielded similar or lower gradients than

symmetric bounds on all problems for N ≤ 10, which can

be attributed to the fact that a smaller subspace of the search

space was considered. However, the results were not consistent

on problems of higher dimensionality. For the glass problem

(150 weights), Gavg evidently decreased on large asymmetric

regions. Perhaps asymmetric regions contained a higher degree

of neutrality, or plateaus, due to saturation. Indeed, if all

weights are positive and potentially large (∀w ∈ [0, 1000]),
the likelihood of a large net input signal is higher, resulting

in higher degree of saturation.

For the heart problem (205 weights), both Gavg and Gdev

yielded much higher values on large asymmetric regions

than on the corresponding symmetric regions. Even though



the heart problem had more weights in total, it used only

one neuron on the output layer. The glass problem, on the

other hand, used 6 output neurons. Thus, the final error was

calculated over six outputs for the glass problem, and over one

output for the heart problem. It can be argued that with six

outputs, the chances of output unit saturation are multiplied

by six, yielding more plateaus.

B. Ruggedness

Figure 3 shows the FEM values obtained under differ-

ent search space boundaries. For all problems considered,

FEM0.01 and FEM0.1 were within the range [0.2, 0.3] for all
N ≤ 0.1, indicating mostly non-rugged, consistent landscapes.

The picture changed drastically as N increased from 0.1 to 1.

For all problems considered, macro-ruggedness on the sym-

metric [−1, 1] region exceeded 0.5, indicating a change from

mostly uniform to mostly rugged. Corresponding asymmetric

regions did not exhibit an increase in FEM0.1, or exhibited

a less drastic increase. Thus, weights with absolute values

between [0.1, 1] constitute a rich search landscape with high

variability of fitness values. However, if the search space

consists of positive weights only, the variability is greatly

decreased. Therefore, asymmetric regions may have less in-

formation for NN training.

For all problems considered, both FEM0.01 and FEM0.1

increased as the symmetric search space widened, and FEM0.1

produced larger values than FEM0.01 at all times. Thus, the

error landscapes were relatively smooth and consistent on the

micro scale (FEM0.01), but rather rugged on the macro scale

(FEM0.1). This can be attribted to the aforementioned layered

structure of the NN error landscapes: little change is observed

on a given “level”, but a transition from one level to the next

represents a significant change in fitness.

FEM characteristics of the symmetric regions were more

consistent than that of the asymmetric regions. The instabil-

ity of FEM observed on the asymmetric regions indicates

that the asymmetric regions chosen did not provide a good

representation of the error landscapes. Sudden dips in FEM

may correspond to the neutralities dominating the saturated

part of the search space. Shifting the search space region

to the positive weights only also implied that some of the

random walks would start from the origin, while symmetric

regions guaranteed that the random walks would start on the

outer boundaries of the selected regions. Inconsistencies in the

asymmetric FEM values indicate that the view of the search

space as seen from the origin is quite different from the view

as seen from the boundaries of the search space. It would be

interesting to design a training algorithm that starts the search

on the boundaries, and gravitates towards the origin, somewhat

similar to NN weight regularisation. Implementation of such

learning strategy is left for future research.

C. Searchability

Figure 4 shows the FDCs and ILns measures obtained under

different search space boundaries. ILns consistently increased

as the boundaries increased, indicating that wider search

spaces contained less and/or poorer information to guide

the search. This applied to both symmetric and asymmetric

bounds. Indeed, a wider search space implies larger weights,

and larger weights imply a higher degree of saturation, while

saturated regions of the search space are known to be hard to

search. The amount of information quantified by ILns also

decreased as the dimensionality of the problem increased,

rightfully indicating that higher-dimensional problems are

harder to search.

FDCs, similar to ILns, identified higher-dimensional prob-

lems as less searchable, which is to be expected. FDCs

decreased as the boundaries increased, and on most problems

the transition from N = 0.1 to N = 1 yielded a drastic

drop in searchability. It was previously observed that the same

transition yielded a drastic increase in FEM0.1 values. Thus,

higher fitness variability corresponded to poorer searchability,

and the regions identified as “more searchable” by the FDCs

may simply be more flat.

Symmetric regions were quantified as less searchable than

the asymmetric regions by FDCs. Indeed, the asymmetric re-

gions were less redundant, and thus contained less variability.

For higher-dimensional problems (glass, diabetes), the FDCs

measurements of the asymmetric regions strongly correlated

with the corresponding gradient measures shown in Figure 2.

Lower gradients resulted in lower searchability, while steep

gradients were associated with high searchability. Indeed, an

absence of gradients would leave a training algorithm with

nothing to go on.

VI. CONCLUSION

This study investigated the behaviour of various FLA met-

rics on NN search spaces under different bounds. All FLA

metrics used in this study exhibited a sensitivity to the bounds

chosen. NNs generate complex error landscapes indeed, and

the properties of landscapes observed on a small area around

the origin do not apply to the entire unbounded search space.

High gradient values were obtained on both small and large

search subspaces, indicating that steep gradients constitute an

inherent NN error landscape property. Gradient magnitudes

increased with increase in problem dimensionality. Increasing

search space boundaries increased the variance of gradients,

indicating that away from the origin, the step-like jumps

between plateaus become more and more drastic.

According to the ruggedness metric, the NN error land-

scapes exhibited very little variation in [−0.1, 0.1] region, but
the entropy increased drastically for weights with absolute

values within [0.1, 1]. It is worth exploring the potential of this

interval for weight initialisation. For increased search space

boundaries, the micro-ruggedness increased slower than the

macro-ruggedness, indicating relevant consistency for small

steps through the search space, and more drastic changes for

larger steps.

Searchability metrics indicated a decrease in searchability

associated with the increase of search space boundaries and

dimensionality. Asymmetric regions appeared less steep, less

rugged, and more searchable than the symmetric regions. This
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Fig. 3. FEM

behaviour is attributed to a higher saturation degree exhibited

by all-positive weights, as well as a lower level of optima

redundancy. Evaluating the maximum fitness of the weight

vectors in asymmetric subspaces is left for future research.

The FLA measures for NN error landscapes clearly depend

on the search space boundaries chosen. Based on the obser-

vations made in this study, a range of regions rather than a

single region should be used if FLA properties of a NN are to

be studied. The two suggested regions are the region in which

weights are initialised, as well as the region explored by the

training algorithm of choice. More regions can be added to

gain more insight into the problem.

Larger regions of the search space were classified as highly

rugged, with extremely steep gradients and little information

to guide a training algorithm. This explains why weight-

dampening techniques such as regularisation are so effective.

In general, it is desirable to make training algorithms gravitate

towards the origin while allowing exploration. Development of

such gravitational approach in the particle swarm optimisation

context is a topic of future research.

REFERENCES

[1] C. M. Bishop, Neural Networks for Pattern Recognition. Oxford, UK:
Oxford University Press, 1995.

[2] G. Dreyfus, Neural networks: methodology and applications. Berlin,
Germany: Springer, 2005.

[3] A. Choromanska, Y. LeCun, and G. B. Arous, “Open problem: The
landscape of the loss surfaces of multilayer networks,” in Proceedings

of The 28th Conference on Learning Theory, 2015, pp. 1756–1760.

[4] Y. N. Dauphin, R. Pascanu, C. Gulcehre, K. Cho, S. Ganguli, and
Y. Bengio, “Identifying and attacking the saddle point problem in
high-dimensional non-convex optimization,” in Advances in Neural

Information Processing Systems, 2014, pp. 2933–2941.

[5] L. G. Hamey, “XOR has no local minima: A case study in neural network
error surface analysis,” Neural Networks, vol. 11, no. 4, pp. 669–681,
1998.

[6] M. R. Gallagher, “Multi-layer perceptron error surfaces: Visualization,
structure and modelling,” Ph.D. dissertation, University of Queensland,
St Lucia 4072, Australia, 2000.

[7] D. R. Hush, B. Horne, and J. M. Salas, “Error surfaces for multilayer
perceptrons,” IEEE Transactions on Systems, Man and Cybernetics,
vol. 22, no. 5, pp. 1152–1161, Oct. 1992.

[8] T. Jones, “Evolutionary algorithms, fitness landscapes and search,” Ph.D.
dissertation, The University of New Mexico, 1995.

[9] P. Merz and B. Freisleben, “Fitness landscape analysis and memetic
algorithms for the quadratic assignment problem,” IEEE Transactions

on Evolutionary Computation, vol. 4, no. 4, pp. 337–352, 2000.

[10] K. M. Malan, “Characterising continuous optimisation problems for
particle swarm optimisation performance prediction,” Ph.D. dissertation,
University of Pretoria, 2014.

[11] E. Pitzer and M. Affenzeller, “A comprehensive survey on fitness
landscape analysis,” in Recent Advances in Intelligent Engineering

Systems. Springer, 2012, pp. 161–191.

[12] Y. A. LeCun, L. Bottou, G. B. Orr, and K.-R. Müller, “Efficient



 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

0.001 0.01 0.1 1 10 100 1000

F
D

C
s
, 
IL

N

FDCs, [-N:N]
IL, [-N:N]

FDCs, [0:N]
IL, [0:N]

(a) Iris

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

0.001 0.01 0.1 1 10 100 1000

F
D

C
s
, 
IL

N

FDCs, [-N:N]
IL, [-N:N]

FDCs, [0:N]
IL, [0:N]

(b) Diabetes

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

0.001 0.01 0.1 1 10 100 1000

F
D

C
s
, 
IL

N

FDCs, [-N:N]
IL, [-N:N]

FDCs, [0:N]
IL, [0:N]

(c) Glass

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

0.001 0.01 0.1 1 10 100 1000

F
D

C
s
, 
IL

N

FDCs, [-N:N]
IL, [-N:N]

FDCs, [0:N]
IL, [0:N]

(d) Heart

Fig. 4. FDC and IL

backprop,” in Neural networks: Tricks of the trade. Springer, 2012,
pp. 9–48.

[13] K. M. Malan and A. P. Engelbrecht, “A survey of techniques for
characterising fitness landscapes and some possible ways forward,”
Information Sciences, vol. 241, pp. 148–163, 2013.

[14] ——, “Ruggedness, funnels and gradients in fitness landscapes and the
effect on PSO performance,” in Proceedings of the IEEE Congress on

Evolutionary Computation. IEEE, 2013, pp. 963–970.

[15] V. K. Vassilev, T. C. Fogarty, and J. F. Miller, “Smoothness, ruggedness
and neutrality of fitness landscapes: from theory to application,” in
Advances in evolutionary computing. Springer, 2003, pp. 3–44.

[16] K. M. Malan and A. P. Engelbrecht, “A progressive random walk
algorithm for sampling continuous fitness landscapes,” in Proceedings

of the IEEE Congress on Evolutionary Computation. IEEE, 2014, pp.
2507–2514.

[17] ——, “Quantifying ruggedness of continuous landscapes using entropy,”
in IEEE Congress on Evolutionary Computation. IEEE, 2009, pp.
1440–1447.

[18] T. Jones and S. Forrest, “Fitness distance correlation as a measure of
problem difficulty for genetic algorithms,” in Proceedings of the 6th

International Conference on Genetic Algorithms. Morgan Kaufmann
Publishers Inc., 1995, pp. 184–192.

[19] K. M. Malan and A. P. Engelbrecht, “Characterising the searchability of
continuous optimisation problems for PSO,” Swarm Intelligence, vol. 8,
no. 4, pp. 275–302, 2014.

[20] Y. Borenstein and R. Poli, “Information landscapes,” in Proceedings

of the 7th annual conference on genetic and evolutionary computation.
ACM, 2005, pp. 1515–1522.

[21] A. Choromanska, M. Henaff, M. Mathieu, G. Ben Arous, and Y. LeCun,
“The loss surfaces of multilayer networks,” in Proceedings of the Eigh-

teenth International Conference on Artificial Intelligence and Statistics,
2015, pp. 192–204.

[22] A. Rakitianskaia, E. Bekker, K. Malan, and A. Engelbrecht, “Analysis
of error landscapes in multi-layered neural networks for classification,”
in Proceedings of the IEEE Congress on Evolutionary Computation.
Vancouver, Canada: IEEE, 2016, in press.

[23] X. Glorot and Y. Bengio, “Understanding the difficulty of training deep
feedforward neural networks,” in International Conference on Artificial

Intelligence and Statistics, 2010, pp. 249–256.
[24] A. Rakitianskaia and A. Engelbrecht, “Saturation in PSO neural network

training: Good or evil?” in Proceedings of the IEEE Congress on

Evolutionary Computation. Sendai, Japan: IEEE, 2015, pp. 125–132.
[25] R. A. Fisher, “The use of multiple measurements in taxonomic

problems,” Annals of Eugenics, vol. 7, no. 2, pp. 179–
188, 1936. [Online]. Available: http://dx.doi.org/10.1111/j.1469-
1809.1936.tb02137.x

[26] L. Prechelt, “Proben1: A set of neural network benchmark problems
and benchmarking rules,” Fakultät für Informatik, Universität Karlsruhe,
Karlsruhe, Germany, Tech. Rep. 21/94, September 1994.

[27] A. Rakitianskaia and A. Engelbrecht, “Weight regularisation in particle
swarm optimisation neural network training,” in Proceedings of the IEEE
Symposium on Swarm Intelligence. Florida, USA: IEEE, 2014, pp. 1–8.

[28] A. B. Van Wyk and A. P. Engelbrecht, “Overfitting by PSO trained
feedforward neural networks,” in Proceedings of the IEEE Congress on

Evolutionary Computation, 2010, pp. 1–8.
[29] A. M. Chen, H.-m. Lu, and R. Hecht-Nielsen, “On the geometry of

feedforward neural network error surfaces,” Neural computation, vol. 5,
no. 6, pp. 910–927, 1993.


