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Abstract—In many applications it is acceptable to allow a small
error in the result if significant improvements are obtained in
terms of performance, area or energy efficiency. Exploiting this
principle is particularly important for FPGA-based solutions that
are inherently subject to many resources-oriented constraints.
This paper devises an automated method that enables to ap-
proximate circuit components which are often implemented in
multiple instances in FPGA-based accelerators. The approxima-
tion process starts with a fully functional gate-level circuit, which
is approximated by means of Cartesian Genetic Programming
reflecting the error metric and constraints formulated by the
user. The evolved circuits are then implemented for a particular
FPGA by common FPGA synthesis and optimization tools. It is
shown using five different FPGA tools, that the approximations
obtained by CGP working at the gate level are preserved at the
level look-up tables of FPGAs. The proposed method is evaluated
in the task of 8-bit adder, 8-bit multiplier, 9-input median and
25-input median approximation.

I. INTRODUCTION

Thompson‘s evolutionary circuit design conducted in a

field programmable gate array (FPGA) in the middle nineties

proved that it is possible to evolve digital circuits directly at the

level of configuration bit stream in a reconfigurable chip [1].

This approach has been adopted for other reconfigurable

digital well as analogue reconfigurable platforms (such as [2],

[3]). Thompson‘s approach can be classified as the intrinsic

and unconstrained evolution. By the intrinsic evolution we

mean that all candidate circuits are evaluated directly in a

chip. The unconstrained evolution means that no restrictions

are posed on the parts of the chip where the reconfiguration

is carried out. In the case that only very specific parts of the

reconfigurable chip (such as look-up table (LUT) contents of

the FPGA) can be modified, the approach is referred to as

constrained evolution. However, most of the research in the

evolvable hardware field is performed at the level of extrinsic

evolution, where candidate circuits are evaluated using a circuit

simulator. The most innovative and efficient designs that truly

exploit properties of the reconfigurable platform and that

are optimized for a given environment have been evolved

in the intrinsic evolution scenario. These designs, however,

often show unwanted properties such as various reliability and

robustness issues. In order to eliminate them, some constraints

are always introduced in practice.

It is assumed in this paper that a mainstream FPGA

chip is the target platform. The objective is to create well-

optimized approximate circuit implementations intended for

small energy-efficient FPGA-based embedded systems. Ap-

proximate circuits, which have been developed in the field of

approximate computing [4], are characterized by significantly

improved parameters (such as power consumption, area and

delay) for the cost of some application-specific acceptable er-

ror with respect to their fully functional versions. Evolutionary

approximation is one of the methods developed for an efficient

circuit approximation [5].

As performing the unconstrained evolution directly at the

level of configuration bit stream is currently unsafe and ac-

tually almost impossible (because format of the configuration

bit stream is not documented), one can utilize the constrained

evolution in the FPGA, which consists in pre-synthesizing

some parts of the approximate circuit (typically the routing

of programmable components) and evolving the remaining

parts (typically the LUTs contents), see, for example, the on-

chip evolution of image filters using approximate elementary

components [6].

In this paper, we propose to evolve approximate circuits

extrinsically (i.e. candidate circuits are simulated using a

software tool) and then utilize a common FPGA synthesis

tool chain to safely obtain desired (i.e. approximate) circuits

for a particular FPGA. It has to be noted that common

FPGA synthesis tools do not directly support approximate

circuit design. The approximate circuits are evolved using

Cartesian genetic programming, following the method of the

evolutionary functional approximation that we have developed

for gate-level circuit approximation in our previous work [5],

[7]. The approximation process starts with a fully functional

circuit implementation, which is approximated by means of

CGP reflecting the error metric and constraints formulated

by the user. It is shown in the paper that circuit parameters

(particularly the area reduction) obtained by CGP working

at the gate level are almost perfectly preserved by common

FPGA synthesis tools producing circuits consisting of 6-input

LUTs. This paper extends our study devoted to the evolution-

ary approximation of general logic circuits [8]. In this paper

we discuss approximation of 8-bit adders, 8-bit multipliers,

and 9-input and 25-input median circuit. In addition to that,

evolved approximate circuits are employed and evaluated in

three common image processing components – image filters

and edge detectors.

The rest of the paper is organized as follows. Section II

briefly surveys the related research in evolutionary design



and approximate computing. Section III presents the proposed

method. Results are reported in Section IV and discussed

in SectionV. Conclusions are given in Section VI.

II. RELATED WORK

A. Circuit Design and Approximation

Conventional circuit synthesis and optimization tools (such

as ABC [9]) are typically constructed as deterministic systems.

In order to improve their results, non-deterministic heuristic

methods are introduced. For example, these heuristics can be

based on local resynthesis [10], simulated annealing [11] or

evolutionary algorithms [12]. Improvements in the quality of

optimization have been reported, but for the cost of runtime

and non-deterministic behavior of the optimization procedure.

Recently developed circuit approximation tools, however, re-

lies on non-deterministic heuristics [13], [14], [15].

This paper falls into the area of functional approximation

which is one of the methods allowing designers to approx-

imate circuits at the level of logic behavior. The idea is to

implement a slightly different Boolean function to the original

one providing that the error is acceptable and the area, power

consumption and other parameters are reduced adequately. The

approximations are obtained by a heuristic procedure which

modifies the original, accurate circuit. Examples of systematic

approximation methods that were evaluated for ASIC designs

are SASIMI [13], SALSA [14] and ABACUS [15].

In the context of FPGAs, circuit approximation has been

introduced and evaluated by means of the GRATER tool [16].

It uses a genetic algorithm to determine the precision of

variables within an OpenCL kernel. By selectively reducing

the precision, the number of parallel approximate kernels that

can be mapped in the fixed area budget of an FPGA can be

increased with respect to the original kernel implementations.

B. Evolutionary Approximation

Evolutionary circuit optimization and evolutionary circuit

approximation are in principle identical methods, which, in

fact, differ only in setting of the optimization objective and

constraints. In the former case, the error of the resulting

circuit is requested to be strictly smaller or equal to the error

dictated by the specification. In the latter case, increasing

the error can be exchanged for reducing the area, latency or

power consumption. In evolutionary algorithms, the quality of

candidate solutions is measured using a fitness function, which

can involve one or more objectives, for example, the error, area

and delay in the case of circuit approximation.

Evolutionary circuit optimization and approximation meth-

ods usually employ CGP, which is a form of genetic pro-

gramming [17], [5]. The circuit error, which is a crucial

optimization objective, is calculated according to the type of

circuit and user requirements. In approximate circuit design

methods, the arithmetic errors (such as the mean absolute error

or RMSE) are often employed. In order to obtain the error

for a given circuit, circuit responses are typically computed

for a training data set (i.e. a subset of all possible input

vectors) and compared with the requested values. However,

the resulting value is not the exact arithmetic error. For less

complex circuits, it is possible to apply all possible test vectors

(2n vectors for an n-input circuit) to get the exact arithmetic

error. In the case of complex circuits, the exact error can be

in some cases obtained by advanced formal methods [7].

As many candidate circuits are typically generated and

evaluated during the evolution, the circuit simulation has to

be very fast. A common solution for the gate-level CGP

executed on a processor is a bit-level parallel simulation, in

which several test vectors are encoded into w-bit operands

and executed using bit-wise logic instructions in parallel [17].

The obtained speedup is w on a w-bit processor (assuming

2n ≥ w). However, this approach is hard to apply for circuits

based on 6-input LUTs.

It is worth to mention that a sort of approximate com-

puting was performed by the evolvable hardware community

before the current “era” of approximate computing. Thompson

evolved very efficient tone discriminators in the FPGA, but

they showed various reliability issues [1]. This result inspired

Miller and his collaborators to introduce the concept of

“evolution in materio” which enabled to design very energy

efficient solutions directly in a suitable programmable ma-

terial. In 1999, Miller introduced a CGP-based method for

finite impulse response (FIR) filter design [18] that would be

called functional gate-level approximation nowadays. Kneiper

et al. traded the robustness of evolved classifiers (i.e. the

classification accuracy) for the area on a chip [19].

III. PROPOSED METHOD

The objective is to minimize the area of circuits that have to

be implemented into an FPGA, assuming that approximations

are allowed. The proposed CGP-based approximation method,

which is employed at the level of original circuits, before a

common FPGA tool is executed, is described in next sections.

A. Circuit Representation

The evolution could operate either at the level of gates

(components) used in the original circuits or at the level of

LUTs available in the FPGA. However, there are only a few

papers dealing with evolutionary circuit design at the level of

LUTs (e.g. [20]). Most CGP-based approaches deal with the

gate or component level utilizing two-input gates. The main

reason is that the bitwise parallel simulation is not directly

applicable for circuits consisting of 4- or 6-input LUTs and

the circuit evaluation is then one or two orders of magnitude

slower than a well-optimized gate-level simulator. Moreover,

employing CGP with 6-input LUTs (each of them encoded

using 64 bits) would lead to difficult search spaces and very

inefficient search procedures. Hence, the proposed method

operates with two-input nodes (gates) because it primarily

leads to the fastest evaluation of candidate solutions and well-

know types of search spaces.

A gate-level ni-input/no-output circuit is represented using

a directed acyclic graph which is encoded in a 1D array con-

sisting of nc gates. This array is internally stored using a string

of integers, the so-called chromosome. The set of available



Fig. 1. Example of a circuit in CGP with parameters: ni = 5, no = 2,

nc = 5, Γ = {0and
, 1or

, 2xor}. Chromosome: 2, 3, 0; 2, 4, 1; 5, 2, 1; 7, 6, 2;
7, 4, 1; 7, 8. Gate 9 is not used. Its logic behavior is: y1 = (x2 and x3) or x2;
y2 = y1 xor (x2 or x4)

logic functions is denoted Γ. The primary inputs are labeled

0 . . . ni−1 and the gates are labeled ni, ni+1, . . . , ni+nc−1.

For each gate, three integers are included in the chromosome

– two labels specifying indices where the gate inputs are

connected to and a code of function in Γ. The last part of the

chromosome contains no integers specifying either the nodes

where the primary outputs are connected to or logic constants

(’0’ and ’1’) which can directly be connected to the primary

outputs. Example is given in Fig. 1. The chromosome size

is 3nc + no genes (integers) if two-input gates are used. The

main feature of this encoding is that while the size of the

chromosome is constant (for a given ni, no and nc), the size

of circuits represented by this chromosome is variable as some

gates can remain disconnected.

B. Search method

The search method presented as Algorithm 1 follows the

standard CGP approach [17]. The initial population P is

seeded by the accurate circuit (p) and λ offspring circuits

created by a point mutation operator modifying h genes of the

parent individual p (h randomly chosen integers are replaced

by randomly generated integers). In order to generate a new

population, λ offspring individuals are again created by a point

mutation operator. The parent is either the accurate circuit

(in the first generation) or the best circuit of the previous

generation (in remaining generations).

One mutation can affect either the gate function, gate input

connection, or primary output connection. A mutation is called

neutral if it does not affect the circuit’s fitness. If a mutation

hits a non-used part of the chromosome, it is detected and

the circuit is not evaluated in terms of functionality because

Algorithm 1: CGP

Input: CGP parameters, fitness function

Output: The highest scored individual p and its fitness

P ← the accurate circuit p and its λ offspring created by1

mutation;

EvaluatePopulation(P );2

while 〈terminating condition not satisfied〉 do3

α← highest-scored-individual(P );4

if fitness(α) ≥ fitness(p) then5

p← α;6

P ← create λ offspring of p using mutation;7

EvaluatePopulation(P );8

return p, fitness(p);9

it has the same fitness (i.e. quality) as its parent. Otherwise,

the error is calculated. For further details about CGP and

its parameters setting, the reader is recommended to consult

standard references [17].

There are two design objectives for CGP: minimizing the

functionality (error) and the number of gates.

C. Fitness function

For different types of circuits, specific fitness functions

have to be constructed. In the case of arithmetic circuits, it

is natural to minimize the arithmetic error, for example the

mean absolute error, between candidate approximations and

the specification for all possible input combinations.

Generating and evaluating all possible input combinations

is tractable only for small circuits because the number of

all possible input vectors as well as required run-time grows

exponentially with the increasing number of input signals. To

overcome this problem, two approaches are used in practice.

The arithmetic error can efficiently be calculated either using

Binary decision diagrams (BDDs) or estimated using a subset

of all possible input combinations. The latter approach is

usually employed for circuits where the construction of BDDs

is intractable.

In our case, we will deal with relative small arithmetic

circuits with bit-widths not exceeding 8 bits. Hence, it is more

efficient to employ parallel simulation and calculate the error

using all possible input vectors (216 for the considered 8-bit

arithmetic circuits). Similarly to the BDD-based approach, the

simulation-based method keeps the resulting fitness accurate,

however, it is much faster. The main reason for that is

the presence of instructions available in the contemporary

off-the-shelf CPUs that enable to process up to 256 input

vectors in parallel. When employed in fitness function, tens of

microseconds (depending on the number of gates of a circuit)

are required to obtain response for all 216 input vectors [21],

[22].

The same error metrics (i.e. the mean absolute error) can be

applied to measure the quality of non-linear signal processing

circuits. In this case, however, it seems to be sufficient to

generate a subset of all possible input vectors that is then used

to evaluate candidate approximation. It has to be emphasized,

however, that evolved circuit has to be evaluated using a test

data set after finishing the evolution in order to determine its

behavior for unseen input vectors.

Let A be a candidate circuit represented using CGP and S

an original circuit (specification). Let FA,FS : Bni → Bno

be Boolean functions computed by A and S, respectively. Let

T be a set (a subset in the case of signal processing circuits)

of all possible input combinations. The mean absolute error

Error(S,A) between S and A can be defined as follows:

Error(S,A) =
1

|T|

∑

~t∈T

|N(FA(~t))−N(FS(~t))|, (1)

where N(~x) represents a function N : Bni → Z returning a

decimal value of a binary vector ~x. In this paper, we consider



Fig. 2. The number of LUTs and number of gates (nG) for various approxi-
mate 8-bit adders synthesized using common synthesis tools.

Boolean functions manipulating binary numbers encoded us-

ing the two’s complement. Hence, N is a natural conversion

from two’s complement.

D. Evolutionary Approximation

In order to evolve circuits showing different compromises

between the error and size, a single-objective CGP is executed

multiple times with different parameters. Resulting solutions

are displayed using a Pareto front. Two approaches have been

proposed in literature.

In [7], a two-stage procedure was employed for a given

error ei. In the first stage, a given accurate circuit (S) is

gradually modified by CGP to exhibit error ei providing that

a 5% difference is tolerated with respect to ei (tolerating a

small error is acceptable; otherwise the search could easily be

stuck in a local extreme). In the second stage, the number of

gates is minimized, assuming that the error remains within the

required range.

Another way to obtain a Pareto front is to constrain the

number of components or gates to gi (gi < nG, where nG is

the number of gates needed to implement the accurate circuit)

that can be used for circuit implementation. CGP is then used

to minimize the error for a given gi [5].

In this paper, the two-stage approach which can easily be

embedded into the Algorithm 1 is employed. The following

fitness function is utilized in the first stage:

fitness(A) =

{
Error(S,A) if Error(S,A) ≤ ei

−1 otherwise,

In the second stage, the circuit size is optimized. Hence, the

fitness function is constructed as follows:

fitness(A) = −

{
|A| if |Error(S,A)− ei| ≤ 0.05ei

∞ otherwise,
,

where |A| denotes the number of gates employed in a candi-

date circuit A.

Fig. 3. The relation between improvement in the number of LUTs and in the
number of gates for approximate adder

IV. RESULTS

In order to assess the impact of CGP-based optimization and

approximation on the synthesis results, two classes of circuits

which differ in the size are considered: small arithmetic

circuits (8-bit adders and 8-bit multipliers) and non-linear

signal filtering circuits (over ten thousand gates).

The following experimental methodology was utilized. First,

we generated conventional gate-level implementations of the

considered circuits. In order to avoid a bias, the circuits

were highly optimized by ABC. Then, the optimized origi-

nal circuits were approximated using CGP for various error

ei. Finally, the gate-level circuits were converted to Verilog

netlists (one gate is represented by one logic expression) and

synthesized. The goal of synthesis is to minimize the area,

i.e. the number of (up to 6-input) LUTs. Results are presented

for ABC and four commercial tools: Precision RTL 2015.1.6,

ISE 14.7, Vivado 2015.2, and Quartus 14.1. Note that all

FPGA synthesis tools start with the same result of CGP in a

particular experiment. The circuit size and delay are extracted

from the resulting technology netlists. In the case of ABC,

the synthesis and optimization is performed by 15 iterations

of resyn2 script, followed by mapping if -K 6 -a. In

the case of Xilinx and Precision, the 6-LUT FPGA chip under

label Virtex7 XC7VX330 was chosen for the implementation.

The FPGA chip EP4S40G of Altera’s StratixIV family was

taken in Quartus. Only single-output LUTs are considered (i.e.

LUT-combining is not permitted) to provide fair conditions

for all tools. The implicit setup of CGP parameters follows

the recommendations given in [17]: λ = 4, h = 5, nc = nG,

gmax = 104. Γ includes all 2-input gates. The results are

presented in the form of graphs based on the best obtained

circuit out of 20 independent runs of CGP. The experiments

were conducted on a 64-bit Linux machine running on Intel

Xeon X5670 CPU (2.93 GHz, 12 MB cache) equipped with

a 32 GB RAM.

A. Arithmetic circuits

The 8-bit Kogge-Stone CLA adder is the simplest circuit

in our benchmark set. CGP started with nG = 67 (fully



Fig. 4. The number of LUTs and number of gates (nG) for various approxi-
mate 8-bit multipliers synthesized using common synthesis tools.

functional adder) and then minimized the number of gates for

several target mean absolute errors, ei = {0.001%. . .2.5%}
of Emax, where Emax is the maximum absolute arithmetic

error Emax = 2w − 1 + 2w − 1. For 8-bit adder (i.e. w = 8
and ni = 2w = 16), Emax = 510. An approximate adder

exhibiting ei = 1%, for example, produces output values with

difference equal to 5.1 in average.

Figure 2 shows that the circuit size (in LUTs) was reduced

even for such a small circuit. Note that the x axis is in the

logarithmic scale. Xilinx ISE and Precision RTL provide the

most compact implementations of not only accurate but also

approximate adders. There is only one case (ei = 2.5%),

where Quartus was able to outperform results of Xilinx ISE

and Precision RTL. On the other hand, the accurate adder is

implemented using half of the LUTs compared to the same

accurate adder synthesized using Quartus.

Performance of synthesis tools is roughly similar except

the case of a fully functional adder, where ABC and Quartus

generate the most resources consuming implementations. As

evident, it makes no sense to introduce the approximations for

really small target errors as the resulting circuits can be more

complex than the fully functional ones.

A detailed analysis of the small circuits revealed that after

reducing the original implementation by less than 40% gates,

the number of LUTs is increasing for some tools. This is evi-

dent in Figure 3 that shows the relation between improvement

in the number of LUTs and in the number of gates. Except of

ABC and Quartus that have a lot of space for improving bad

implementation quality of the accurate adder, the remaining

synthesis tools were unable to exploit the reduction in the

number of gates. This observation corresponds with Xilinx’s

approach used for estimating the total capacity of FPGA which

counts from 6 to 24 two-input gates for one LUT depending

on the number of inputs used. The gate-level optimization has

to take this fact into account.

Figure 4 shows various approximations of the 8-bit Carry

Save Adder Multiplier. The fully functional multiplier is

five times more complex than the accurate adder from the

previous experiment. The maximum absolute arithmetic er-

Fig. 5. The relation between improvement in the number of LUTs and in the
number of gates for approximate multiplier

ror is Emax = (2w − 1) · (2w − 1). For 8-bit multiplier,

Emax = 65025. It means that a multiplier with ei = 1%
produces outputs whose average difference is more than 127×
higher compared to the adder. The accurate multiplier with

nG = 320 gates led to 95 LUTs (with ABC) and 130 LUTs

(with ISE). In approximate scenario and for errors smaller than

0.01%, ABC is the best performing tool. For higher error rates,

Precision is the best tool.

As the multiplier is more complex than the adder, the

improvement in the area obtained at the gate level is preserved

at the LUT level almost perfectly. Hence Figure 5 presents

almost linear mapping.

In summary, the gate-level approximation of arithmetic

circuits that have to be implemented using LUTs in FPGAs

has to be conducted with caution especially in the case of

small desired errors where introducing of small errors usually

yield none or only neglible improvement.

B. Non-linear signal processing circuits

The 9-input (i.e. 3× 3 filtering window) and 25-input (i.e.

5 × 5 filtering window) median filters were chosen as an

example of typical circuit of image processing applications.

In order to approximate the median circuits, we used standard

CGP with Γ = {min,max} (operating over 8 bits). The

number of generations was restricted to gmax = 3 · 106

for the 9-median and gmax = 300 · 103 for the 25-median

which corresponds to 3 hour CGP runs. For purposes of

the fitness evaluation, 104 training vectors were randomly

generated for the 9-median and 105 vectors for the 25-median.

The accurate 9-median (25-median, respectively) constructed

using bitonic-sorting algorithm requires 38 min/max com-

ponents (220 components, respectively). The aforementioned

CGP-based process was repeated with constrained resources,

leading to approximate median circuits with the mean error

ei = {0 . . . 10%}. In order to obtain gate-level representations,

the min and max operations were synthesized using ABC

(66 gates needed for each component). The resulting flattened

netlist contains 2356 (13702) gates in the case of the accurate

9-median (25-median).



Fig. 6. Parameters of various approximations of the 9-input median circuit

Figure 6 and Figure 8 show the number of LUTs for a given

mean absolute error. The tools compared in this study provide

very different results (consider that the y-axis is logarithmic),

where the area can differ by 100%. Hence in order to imple-

ment a median outputting circuit using constrained resources,

it is recommended to use a better tool allowing a deep area

optimization of the accurate solution rather than to introduce

approximations using an average-performing synthesis tool.

Figure 7 shows relation between improvement in the number

of LUTs and in the number of gates for approximate 25-input

median. Despite the spread in the number of LUTs achieved

across various tools, the improvement in the area obtained at

the gate level is preserved at the LUT level almost perfectly.

C. Approximate Circuits in Real Applications

Not only the circuit parameters but also an impact on real

applications needs to be quantified. In order to evaluate the

effect of the proposed approximations, we approximated three

basic image operators – Sobel operator, Gaussian filter and

Median filter. The image operators were chosen intentionally

because many problems from image processing domain exhibit

a great degree of error resilience caused by limited human

Fig. 7. The relation between improvement in the number of LUTs and in the
number of gates for approximate 25-input median

Fig. 8. Parameters of various approximations of the 25-input median circuit

perception capabilities. Hence, it is possible to introduce an

error to a corresponding image processing chain without a

significant degradation in quality. This gives us a possibility

to reduce the power consumption because the lower number

the LUTS, the lower power consumption.

The Sobel operator and Gaussian filter are typical examples

of convolution filters, i.e. filters giving on their output a

weighted sum of inputs pixels. While Gaussian filters need to

be implemented using multipliers and adders, Sobel operator

can be implemented solely from the adders because the con-

volution kernel contains only two coefficients. Both operations

represent a basic building block that forms usually a part of

more complex systems.

The Sobel operator is one of the most popular edge detectors

that is defined on 3 × 3 pixel window. It is a discrete

differentiation operator that computes an approximation of the

gradient (G) of the image intensity function. The gradient is

determined using horizontal (Gx) and vertial (Gy) changes

that are calculated by means of a convolution kernel that is

used in direct and 90-degree rotated version. The gradient

magnitude is computed using the square root function as

G =
√

Gx
2 +Gy

2 which is often replaced with the absolute

value G̃ = |Gx|+ |Gy| to reduce the computational require-

ments. The directional changes Gx and Gy as well as the final

gradient G can be determined using adders as follows. The

multiplication by two is implemented by arithmetic shifting.

Subtraction is composed of adders and a set of inverters. The

absolute value is obtained by an inversion controlled by the

most significant bit representing a negative sign. In total 15

additions, 16 inverters and 15 XORs are required.

There exists several approaches to measure the quality of

filtered images. The structural similarity index (SSIM) repre-

sents probably the most advanced approach which attempts

to quantify the visibility of errors (differences) between a

distorted image and a reference image [23].

SSIM calculated for various approximate Sobel operators

evaluated on a set of 25 test images having 384x256 pixels

each is given in Figure 9. Three architectures were considered:

a) the accurate Sobel operator G whose output serves as a



Fig. 9. Filtering quality of Sobel operator approximated using 8-bit precise
adder (error=0) and various approximate adders whose average error is ranging
from 0.0015% to 2.5%

reference, b) the approximate Sobel operator G̃ implemented

using accurate 8-bit adders, and c) the approximate Sobel

operator implemented using approximate adders. Note that

eight different approximate Sobel operators were created. For

the simplicity, all additions were replaced with the same

approximate adder exhibiting error ei.

The similarity index changes only slightly when approxi-

mate adders exhibiting error lower than 0.1% are employed.

As the error increases, however, the average similarity index

decreases dramatically. According to the results, it is reason-

able to employ adders exhibiting average arithmetic error not

worse than 0.5%. Otherwise, the output quality is poor. We

assume that the Sobel filter is very sensitive to the maximal

absolute error and it would be probably necessary to include

an additional constrain to the fitness function to improve the

results.

SSIM for various 8-bit Gaussian filters evaluated on the

same set of 25 test images are given in Figure 10. Three

window sizes (3 × 3, 5 × 5, and 7 × 7) depending on the

chosen standard deviation σ are considered. Two architectures

were implemented: a) the Gaussian filter implemented using

accurate 8-bit multipliers and a single accurate adder that

sums up the products, and b) the approximate Gaussian filter

implemented using approximate multipliers and an accurate

adder. The test images were utilizes as reference for determin-

ing SSIM. Similarly to the Sobel operator, nearly no change

in quality is observable when we employ an approximate

multiplier with error not worse than 0.1%. In this case, the

0.1% error corresponds with a noticeable reduction of the

number of LUTS (see Figure 4).

Finally, SSIM for median filters is summarized in Figure 11.

The median filter is typically used in robust statistics to remove

outliers. Its great resilience to the errors is kept even when

it is approximated. For 9-input median filter, SSIM is larger

than 99.9% for approximations exhibiting error ei < 0.7%.

When ei = 10%, SSIM decreases to 92% which is a slight

drop in performace compared to the results for Sobel operator

and Gaussian filter. According to the results, it is possible to

introduce a small error (1% in case of 25-median, 4% for

Fig. 10. Filtering quality of Gaussian filter approximated using 8-bit accurate
(error=0) and approximate multipliers.

9-median) without any significant degradation in the output

quality. This error is practically invisible in filtered images

assuming that the approximate median is employed in image

processing. As a consequence of that, 37% reduction in area

is achieved for 25-input median, which is a significant result.

Fig. 11. Filtering quality of various 9-input and 25-input median approxima-
tions

V. DISCUSSION

The complexity of the chosen benchmark circuits is roughly

identical with circuits used for the evaluation of methods such

as SASIMI [13], SALSA [14] and ABACUS [15]. Targeting

these methods towards middle-size circuits is reasonable as

approximations are typically introduced to carefully selected

subcircuits which significantly contribute to power and area

characteristics of the whole complex circuit. A typical case

is the approximation of small multipliers employed in deep

neural networks which enables to increase the number of

neurons on a chip or reduce power consumption.

Although a direct comparison with other approximation

methods is hard to perform (neither the implementations of

the methods nor the benchmark circuits are available), we

can provide only a rough comparison. For example, an 8-bit

multiplier was approximated by SASIMI, which resulted in a

37% area reduction and the average error of 0.32% [13]. In



our case, the same error corresponds with reductions about

60% of LUTs. In the case of 9-median, Pareto fronts reported

in this paper are at least of the same quality as reported

in [24]. The CGP runtimes are typically in the order of tens of

minutes for small circuits and up to three hours for medians

(2.93 GHz CPU). As no execution times are usually reported

in the literature dealing with circuit approximation, we can

only give the execution times of SALSA [14] which, on a

server with an AMD Opteron 6176 (2.29 GHz) processor,

ranged from 4 minutes to 2.5 hours depending on the circuit

complexity (2.29 GHz CPU).

An interesting result is that the gate-level optimization and

approximation conducted by CGP is preserved by common

FPGA synthesis tools, assuming that the original circuit is

of a reasonable complexity and the allowed error is not very

small. Interestingly, this result is valid even if the number of

LUTs required to implement a given circuit is relatively low

as it was demonstrated in the case of 8-bit adders consisting

of less than 25 LUTs.

VI. CONCLUSIONS

We introduced a CGP-based methodology enabling to ap-

proximate various arithmetic circuits intended for FPGA im-

plementations. The methodology was evaluated for two classes

of circuits (arithmetic circuits, non-linear signal processing

circuits) and using five FPGA synthesis tools. Due to the

limited space we did not discuss the circuit delay; however, it

has never been worsened by introducing the approximations

in this study. By modifying only the fitness (error) function

the method can easily be extended to approximate other

types of combinational circuits such as common logic circuits.

Here, the Hamming distance determined using BDDs may be

employed.

We have shown that the results provided by commercial

FPGA design tools vary significantly. This is noticeable espe-

cially in the case of median circuits consisting of a large num-

ber of gates. In this case, some tools provided very inefficient

implementations independently whether it was approximate or

accurate circuit. Hence, selection of the right synthesis tool

seems to be a very important design step. In addition to that,

we demonstrated that results provided by commercial FPGA

design tools can significantly be improved by introducing an

approximation conducted by CGP.

Our future work will be focused on circuit approximation

at the LUT level and accelerating the design method.
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