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Abstract—Description Logics, defined as a family of knowledge
representation languages, have gained a lot of popularity, due to
their connection with the Semantic Web, and more precisely,
with the Web Ontology Language - OWL (OWL-DL). Vague
information cannot be considered negligible when dealing with
Semantic Web tasks. In this context, the definition of fuzzy
DLs has been emerged. The Semantics of any DL is defined
by an interpretation, which can be considered as a state of
a world, where a DL formula (crisp or fuzzy) holds. In our
method, we consider an uncertainty extension in a fuzzy DL, in
the sense that an axiom holds with a belief degree. In order
to represent these axioms, we assume Dempster-Shafer basic
probability assignments on states of world (interpretations). We
define the concept of Dempster-Shafer Fuzzy interpretation, in
order to define semantics for our DL.

I. INTRODUCTION

The Semantic Web applications [1] are strongly related
to knowledge representation mechanisms. The concept of
ontology, defined as an explicit and formal specification of
a conceptualization, as it is used in [1], is applied for the
definition of any domain of interest. Ontologies are defined
through the Web Ontology Language - OWL, with OWL2 being
the current version [2].

Description Logics (DLs) [3], [4], [5], have been applied ex-
tensively in Semantic Web applications, as they are the logics
behind the most widely used version of OWL, OWL-DL. DLs
allow for the representation of a domain of Knowledge, by pro-
viding Concepts (unary predicates) along with Roles (binary
predicates), e.g: CheapHotel ≡ Hotel u (≤ 100 hasCost).
This DL formula defines the Concept CheapHotel as a Hotel
with cost value less than 100. One main issue with this
formula is that it only provides for true/false statements,
i.e a hotel can be either cheap or not. Fuzzy DLs [6], [7],
have been defined as a way to represent vague statements,
i.e DL formulas with a truth value in [0, 1]. The fuzzy
extension allows for the definition of fuzzy DL formulas,
i.e CheapHotel ≡ Hotel u (hasCost.Cheap). Fuzzy DLs
apply membership functions to describe vague concepts. Thus,
Cheap can be described by a membership function, that
assigns each cost value a membership degree in [0, 1]. This
means that an individual belongs to the class CheapHotel
with a degree value in [0, 1].

Another aspect that we have to consider in Semantic Web
information is information incompleteness. Dempster-Shafer
theory [8] is an effective framework for representing informa-
tion incompleteness. In our example, let us suppose that we
know a hotel’s cost per night with a belief degree, i.e:

h1 : Hotel u (hasCost.{100}) with belief degree 0.8

If we want to compute the truthness of the DL formula

h1 : CheapHotel

then we have to consider the following:
• Fuzziness, as a result to the fuzzy Concept CheapHotel
• Information incompleteness, as the exact cost value is

missing
This means that any DL statement should be described by

two degrees, a fuzzy degree and an uncertainty degree.
Extending Semantic web concepts with fuzzy sets requires

a method for defining these sets. Fuzzy clustering [9] is
considered a method for deriving fuzzy sets. Fuzzy C-Means
is the most well known fuzzy clustering algorithm. A method
that applies fuzzy clustering in a semantic web ontology can
be found in [10]. Genetic Algorithms (GAs) [11] are also
considered a framework for fuzzy clustering procedures. In
our method, we consider existing fuzzy sets, by predefined
membership functions.

The rest of this paper is organized as follows: In Section
II, the concepts of uncertainty and vagueness are outlined. In
Section III, the basics of Description Logics, along with fuzzy
and uncertainty extensions are presented. In Section IV, the
Dempster-Shafer theory is presented and a fuzzy extension of
it is also considered. In Section V, our Dempster-Shafer Fuzzy
DL is defined, based on ALC crisp DL and a fuzzy framework
of it. In Section VI, we present a case example that illustrates
our method. Finally, in Conclusion, we consider some further
work that extends our model.

II. UNCERTAINTY AND VAGUENESS HANDLING IN
SEMANTIC WEB

Uncertainty and Vagueness constitute deficient knowledge
in Semantic Web community. These two concepts can be
described in the following way:



• Uncertainty: It refers to situations of information in-
completeness (epistemic uncertainty) or randomness be-
haviour of a system (aleatory uncertainty) [12]

• Vagueness: It refers to situations of imprecise information
[13]

As a special case, we have to consider situations where
both uncertainty and vagueness are present, like in our intro-
ductory example. Zadeh’s Z-numbers [14] can be considered
a framework for representing both degrees. More precisely, a
Z-number is defined as Z = (A,B), where A denotes the
restriction on the values a variable X can take and B is a
measure of reliability of A.

In order to deal with uncertainty and vagueness, the crisp
Description Logics should be extended in order to represent
these concepts. Following, we overview the basics of DLs and
present some of these extensions.

III. DESCRIPTION LOGICS

Generally speaking, Description Logics (DLs) are a family
of knowledge representation languages. In literature there exist
a lot of papers that introduce the basics of DLs [3], [4], [5].
Description Logics define a Knowledge Base as a triple:

< T ,R,A >

of axioms, where:

• T : It is the TBox of the Knowledge Base, which contains
axioms concerning DL Concepts

• R: It is the RBox of the Knowledge Base, which contains
axioms concerning DL Roles

• A: It is the ABox of the Knowledge Base, which contains
axioms concerning DL individuals

DLs employ naming convention which describes the char-
acteristics of the language. ALC, an acronym of Attribute
Language with Complement, is considered as the basic DL.

A DL interpretation I is defined as < ∆I , ·I >, where
∆I is the interpretation domain and ·I is the interpretation
function. An interpretation actually assigns a true/false value
to each DL axiom. In case an axiom τ is true wrt. I, this is
denoted as I |= τ . Subsumption, instantiation and consistency
checking are the main forms of reasoning in DLs.

A. The DL ALC

ALC is considered the basic DL language. Its syntax applies
the following sets, NC (the set of concept names), NR (the
set of role names) and NI (the set of individuals). Also,
a set of syntax rules is applied, in order to build complex
concepts. More precisely, ALC considers the following as
ALC concepts:

• >,⊥, A ∈ NC , where A is a primitive concept
• If C,D are ALC concepts, then CuD, CtD, ¬C, ∀r.C

and ∃r.C, where r is a DL Role, are ALC concepts.

An interpretation I = (∆I , ·I) performs the following map-
ping:

>I = ∆I ,⊥I = ∅, CI ⊆ ∆I , rI ⊆ ∆I ×∆I

(C uD)I = CI ∩DI , (C tD)I = CI ∪DI

(¬C)I = ∆I\CI

(∀r.C)I = {d ∈ ∆I : ∀d′, (d, d′) ∈ rI implies d′ ∈ CI}
(∃r.C)I = {d ∈ ∆I : ∃d′, (d, d′) ∈ rI and d′ ∈ CI}

Also ALC considers two kinds of assertions for an individual
α:
• C(α), meaning α is an instance of C (concept assertion)
• r(α, β), meaning the is a relation r between α, β (role

assertion)
A set of concept assertions {C(α1), . . . , C(αn)} is satisfied
in an interpretation I, iff αIi ∈ CI , i = 1, . . . , n. A set of
role assertions {r(α1, β1), . . . , r(αn, βn)} is satisfied in an
interpretation I, iff (αIi , β

I
i ) ∈ rI , i = 1, . . . , n.

B. DL Fuzzy extensions

A Fuzzy extension of a DL [6], [7], [15], [16] considers
axioms that have a truthness degree rather than a true/false
value. Any fuzzy extension is based on Fuzzy Sets and Fuzzy
Logic [17], [18], in order to define a fuzzy interpretation. This
means that an axiom is true in an interpretation I with a degree
value in [0, 1]. Semantics of a fuzzy DL is defined based on
the family of Fuzzy Logics [6].

DL fuzzy extensions consider a particular crisp DL and
define degrees of truth on DL axioms. In [15], the extension of
DL ALC is defined. This approach defines fuzzy assertional
axioms of the form < τ α >, meaning that τ is true with
degree α. Another approach is considered in [7] where the
concept of the concrete fuzzy domain predicate is considered,
as an extension to the concrete domain. A concrete domain
D is defined as a pair < ∆D,ΦD >, where ∆D is an
interpretation domain and ΦD is the set of concrete domain
predicates d with arity n and interpretation dD ⊆ ∆n

D.
A concrete fuzzy domain predicate d, with arity n has an
interpretation dD : ∆n

D → [0, 1]. The concrete fuzzy domain
predicates allow for defining fuzzy concepts.

C. DL Uncertainty extensions

Uncertainty extensions approaches usually consider inter-
pretations as possible worlds. This means that a DL axiom
is true/false in an interpretation. Following, these approaches
assign a distribution (probabilistic/possibilistic) on the set of
possible worlds.

The probabilistic knowledge base defined in [13] is built
upon the probabilistic logic. A probability distribution, P ,
is defined on the set of possible worlds. A probabilistic
interpretation defines a mapping, µ from the set of possible
worlds W as: µ :W → [0, 1].

The probability degree of a formula φ is defined as:

P(φ) =
∑
I|=φ

P(I)



where I is an interpretation (possible world) and I |= φ means
that φ is true in I .

In addition, a possibilistic knowledge base defined in [13]
annotates DL formulas with a possibility and necessity mea-
sures, based on theory of possibility [19].

IV. DEMPSTER-SHAFER THEORY AND FUZZY SETS

Dempster-Shafer theory [8] is a framework for representing
incomplete information. It applies the concept of Belief func-
tion in order to define a measure of evidence that supports an
event.

A Dempster-Shafer framework considers the Frame of Dis-
cernment, W , which is defined as the set of exhaustive and
mutually exclusive events. Let 2W the powerset of W and
A ∈ 2W . Then, the following functions are defined: Based on
these sets, the following functions are defined:
• Basic probability assignment m: It is defined as a function
m : 2W → [0, 1]

• Belief and Plausibility functions Bel and Pl: They are
defined as:

Bel(A) =
∑
B⊆A

m(B), P l(A) =
∑

B∩A6=∅

m(B)

where A ∈ 2W .
Dempster’s rule of Combination [12] is defined on two basic
probability assignments m1, m2, derived from independent
sources:

m1

⊕
m2(B) =

∑
Ai

⋂
Aj=B

m1(Ai)×m2(Aj)

1−
∑
Ai

⋂
Aj=∅m1(Ai)×m2(Aj)

A. Dempster-Shafer and Fuzzy Sets

The basic probability assignment m, is defined upon the
concept of a compatibility relation C [20]. More precisely, if
we consider two spaces, X and W , along with a probability
distribution p on X , then the following statement holds:

x ∈ X is compatible to y ∈ W , denoted as xCy, if it is
possible x is an answer to X and y is an answer to W at

the same time

Based on the compatibility relation, the granule of an
element x ∈ X is defined as: G(x) = {y | y ∈ W, xCy}.
Then, the basic probability assignment m(A), A ⊆ W is
defined as:

m(A) =

∑
G(xi)=A

p(xi)

1−
∑
G(xi)=∅ p(xi)

In [21] a generalization of Dempster-Shafer theory in order
to account for fuzzy sets is defined. The theory is based on
joint possibility distributions. More precisely, the compatibility
relation is now defined as follows:

C(x, y) = ΠΨ,Ω(x, y), x ∈ X, y ∈ W

where C is the compatibility relation, Π is a joint possibility
distribution and Ψ,Ω are variables that take values from spaces
X and W respectively.

The granule G(x) is now defined as:

G(x) = ΠΩ|Ψ=x

The basic probability assignment of a fuzzy subset A ⊂ W
is induced by the equation

m(A) =

∑
G(xi)=A

p(xi)

1−
∑
G(xi)=∅ p(xi)

In this approach, a method for inducing a belief degree for
a fuzzy set B from a set of non-fuzzy focals is outlined. More
precisely, the Belief-Plausibility degrees are considered as
lower-upper probabilities of the set. Then, the Belief degree of
the set B induced by a set of non-fuzzy focals A is the optimal
solution to the linear program

∑
xi∈ B

∑
jm(xi : Aj), where

Aj ∈ A.

B. Dempster-Shafer and Logic view

The logical view of Dempster-Shafer theory has been stud-
ied in various works in the literature [22], [23], [24], [25], [26].
In [24] a set of first-order formulas is annotated with belief and
plausibility degrees. Formulas are of the form φ[a, b], where φ
is first-order formula and a, b constitute the Belief-Plausibility
degrees. A set of classical first-order interpretations, I, is
considered, and a bf-interpretation is defined as:

M : 2I → [0, 1]

A bf-interpretation is constrained by the following:

BelM(2I) = 1

if X ∪ Y 6= 2I , then

BelM(X ∩ Y ) ≥ BelM ×BelM (Y )

where Bel denotes the belief degree of elements in 2I . Also,
the concept of hyper-interpretation is employed, defined as an
element of 2I .

V. A DEMPSTER-SHAFER FUZZY DESCRIPTION LOGIC

In this section we define a DL suitable for representing
vague incomplete information. Our intention is to have DL
formulas with semantics based on Fuzzy Logic and Dempster-
Shafer framework. As opposed to current uncertainty and
vagueness handling approaches, our method represents fuzzy
statements in an uncertainty framework. In our approach, we
consider the classical DL interpretation as a possible world. In
each interpretation, a set of DL axioms holds. More precisely,
we present a Dempster-Shafer extension of the fuzzy ALC(D),
which is defined in [15].

Following, we introduce the basic concepts of the fuzzy
ALC.

A. Fuzzy ALC
The fuzzy extension of ALC is defined in [15]. In this

approach, the fuzzy statements are only the assertions of the
DL Knowledge Base, i.e the ABox.

The syntax of the fuzzy ALC considers fuzzy assertions
of the form < a n >, where a is a crisp DL assertion and
n ∈ [0, 1].



The crisp DL interpretation is now extended into a fuzzy
interpretation. Generally, concepts are considered as fuzzy
subsets of ∆I , and roles as fuzzy subsets of ∆I × ∆I .
More precisely, a fuzzy interpretation I assigns to each fuzzy
Concept C a function CI : ∆I → [0, 1] and each fuzzy Role
R a function RI : ∆I ×∆I → [0, 1].

This means that, in the semantics of the assertions, there is
a truthness degree that is defined as follows:
• CI(aI) constitutes the membership degree of individual
aI in fuzzy subset CI

• RI(aI , bI) constitutes the membership degree of individ-
ual (aI , bI) in fuzzy subset RI

B. Dempster Shafer Fuzzy ALC
Our method extends the fuzzy DL described previously,

with Dempster-Shafer modules. Our extension is based on the
fuzzy extension defined in [21].

More precisely, we consider fuzzy subsets of a domain. In
addition, we consider the set of all the interpretations W and
define a basic probability assignment on subsets of it. As we
consider fuzzy interpretations, W is an infinite set. In our
approach, we assume thatW is defined as {I1, I2, . . . }, where
each Ii contains DL assertions along with their membership
degree under a fuzzy DL interpretation. As an example of a
Ii let us consider the following:

Ii = {{0.5/CheapHotel(a), 0.8/CloseToMetroStation(a)},
{0.7/CheapHotel(a)}}

Following, we define the syntax and semantics of our DL.

C. Syntax

Definition 1. A Dempster-Shafer Fuzzy assertion is defined
as

< a : k >, (1)

where a is a fuzzy ALC DL assertion and k ∈ [0, 1].

In this assertion, k represents the belief degree lower bound.
For example

< CheapHotel(c) 0.5 : 0.6 >

denotes that c is a CheapHotel with fuzzy lower degree 0.5
and belief lower degree 0.6.

Next, we define a Dempster-Shafer Fuzzy Knowledge Base
KBDS as a set of Dempster-Shafer Fuzzy assertions.

Definition 2. A Dempster-Shafer Fuzzy ABox is defined as a
set of assertion axioms, as follows:

< C(i) n : k >, i ∈ NI (2)
< R(i1, i2) n : k >, i1, i2 ∈ NI (3)

where C is an ALC DL concept, R a ALC DL Role and

n, k ∈ [0, 1].

D. Semantics
In our approach, we interpret Concepts as fuzzy subsets of a

domain ∆IDS and Roles as fuzzy subsets of a domain ∆IDS×
∆IDS . Also, we consider Zadeh’s semantics, in order to define
interpretation of the ALC concepts, described in Section III. In
that sense, our interpretation resembles the fuzzy interpretation
described in Section V-A.

In the crisp ALC, an assertion axiom is satisfied in an
interpretation I, iff the axiom is true in this interpretation,
denoted that the axiom holds in I. The fuzzy extension
considers a truthness degree of satisfaction. Thus, a fuzzy
axiom holds with a certain degree.

Our innovation considers the set of possible worlds, denoted
as W = {I1, I2, . . . }.

We introduce the following definitions:

Definition 3. An assertion < C(a) n : k > holds in an
interpretation or possible world Ij , j = 1, . . . , n, denoted as
Ij |=< C(a) n >, iff CIj (aIj ) ≥ n, where CIj (aIj ) is
the membership degree of aIj being CIj .

Definition 4. An assertion < R(a, b) n : k > holds in
an interpretation or possible world Ij , j = 1, . . . , n, denoted
as Ij |=< R(a, b) n >, iff RIj (aIj , bIj ) ≥ n, where
RIj (aIj , bIj ) is the membership degree of (aIj , bIj ) being
RIj .

From now on, if τ is a Dempster-Shafer Fuzzy assertion, we
denote as µIj (τ) the membership degree of the corresponding
individual a (or (a, b)) that τ describes, under the interpreta-
tion Ij .
Definition 5. A Dempster-Shafer Fuzzy interpretation IDS is
defined as:

IDS = (∆IDS , ·IDS ,W,m) (4)

where ∆IDS is the interpretation domain, ·IDS is an interpre-
tation function 1, W is the set of possible worlds and m is a
basic probability assignment on subsets of W . Any Ij ∈ W ,
such that m(Ij) > 0 is called a focal possible world.

Also, we define the fuzzy counterpart of a Dempster-Shafer
Fuzzy assertion τ =< a : k >, as τFuzzy ≡ a.

The satisfaction of a Fuzzy counterpart assertion τfuzzy in
a set of possible worlds {I1, I2, . . . , Im} is defined as:

Definition 6. A set of possible worlds T = {I1, I2, . . . , Im}
satisfies a fuzzy assertion < C(a) n >,
iff:

∀Ij ∈ T , Ij |=< C(a) n >

Definition 7. A set of possible worlds T = {I1, I2, . . . , Im}
satisfies a fuzzy assertion < R(a, b) n >,
iff:

∀Ij ∈ T , Ij |=< R(a, b) n >

1We consider that the interpretation function performs the same mappings
as in the fuzzy ALC case



Definition 8. A set of possible worlds T = {I1, I2, . . . , Im}
does not satisfy a fuzzy assertion < C(a) n >,
iff:

∃Ij ∈ T , Ij 6|=< C(a) n >

Definition 9. A set of possible worlds T = {I1, I2, . . . , Im}
does not satisfy a fuzzy assertion < R(a, b) n >,
iff:

∃Ij ∈ T , Ij 6|=< R(a, b) n >

If an assertion < a n > is satisfied under a set T , then it
is denoted as:

T |=< a n >

If an assertion < a n > is not satisfied under a set T ,
then it is denoted as:

T 6|=< a n >

The insertion of the basic probability assignment m on W
imposes the definition of a belief degree for the DL assertions.
In order to derive such degrees, we consider the focal possible
worlds of W with a basic probability assignment to play the
role of non-fuzzy focal elements, described in Section IV.

In that sense, we define the Belief degree of a fuzzy assertion
τfuzzy , under W , as follows:

Definition 10.

Bel(τfuzzy) =
∑

T |=τfuzzy

m(T )× infIj∈T µIj (a) (5)

where µIj (a) is the membership degree of aIj in CIj (Resp.
(aIj , bIj ) ∈ RIj ) in possible world Ij .

In the same way, we define the Plausibility degree as
follows:

Definition 11.

Pl(τfuzzy) =
∑

T |=τfuzzy

m(T )× supIj∈T µIj (a) (6)

where µIj (a) is the membership degree of aIj in CIj (Resp.
(aIj , bIj ) ∈ RIj ) in possible world Ij .

The intuition behind the definition of the Belief degree
is that it can be considered as a lower probability of a in
a way similar to [21]. In order to define this measure, we
consider Belief degrees of Fuzzy sets derived from non-fuzzy
focal elements. More precisely, we consider subsets of the
set of W , as non-fuzzy subsets. Therefore, a Dempster-Shafer
interpretation assigns a mass degree on each subset. Any mass
degree value greater than zero, results in a non-fuzzy focal
element, or a focal-set-possible world. This can be derived by

considering a minimization linear programming problem, as it
has been defined in [21] and presented in Section IV.

Before proceeding into the minimization process, we intro-
duce the sets Wτ and |=τ of a Dempster-Shafer Fuzzy axiom
τ :

Definition 12. TheWτ set of a Dempster-Shafer Fuzzy axiom
is defined as a fuzzy set {µI1/I1, µI2/I2, . . . }, where each
µIi , i = 1, 2, . . . is the membership degree of τfuzzy under
interpretation Ii.

Definition 13. The |=τ set of a Dempster-Shafer Fuzzy axiom
is defined as a fuzzy set {µIa/Ia, µIb/Ib, . . . }, where each
µIi , i = a, b, . . . entails τfuzzy , i.e Ii |= τfuzzy .

In order to apply this minimization process in our Dempster-
Shafer Fuzzy DL, we consider the following associations:
• The fuzzy set |=τ is regarded as a Dempster-Shafer Fuzzy

subset B.
• A focal-set possible world Tj is regarded as a non-fuzzy

focal element Ai.
• Tj |= τfuzzy iff Tj ⊆|=τ

By using the correspondence above, the minimization problem
is defined as: ∑

Ii∈|=τ

∑
j

m(Ii : Tj)

Also, m(Ii : Tj), where Tj is focal-set possible world, is
constrained by the following:

m(Ii : Tj) ≥ 0, j = 1, . . . , l (7)
m(Ii : Tj) = 0,∀Ii 6∈ Tj (8)
m(Ii : Tj) = m(Tj),∀j = 1, 2, . . . , l (9)

The optimal solutions of the aforementioned problem are
denoted as, m∗(|=τ : Tj) and m∗(|=τ : Tj). The Belief and
Plausibility measures are computed by adding the optimal
solutions for all Tj , j = 1, . . . , l and assigning all the mass
of Tj to the element of Tj that has the lowest or highest
membership degree in |=τ :

m∗(|=τ : Tj) = m(Tj)× infI∈Tjµ|=τ (I)

m∗(|=τ : Tj) = m(Tj)× supI∈Tjµ|=τ (I)

Adding these optimal solutions, we get the Belief and
Plausibility degree of |=τ :

Bel(|=τ ) =
∑
Tj⊆W

m(Tj)× infx∈Tjµ|=τ (x)

Pl(|=τ ) =
∑
Tj⊆W

m(Tj)× supx∈Tjµ|=τ (x)

Finally, we make the following assumptions:
• Bel(|=τ ) ≡ Bel(τfuzzy)
• Pl(|=τ ) ≡ Pl(τfuzzy)
• Tj ⊆ W ≡ T |= τ , since m(Ii : Tj) = 0,∀Ii 6∈ Tj



By considering the assumptions , we get the formulas of
Belief and Plausibility as defined above.

Definition 14. A Dempster-Shafer Fuzzy interpretation IDS
is a model (or satisfies) a Dempster-Shafer Fuzzy assertion
< E : k > iff Bel(E) ≥ k.

Definition 15. A Dempster-Shafer Fuzzy interpretation IDS
is a model of a set of Dempster-Shafer Fuzzy assertions Ψ iff
it satisfies each ε ∈ Ψ.

Definition 16. A Dempster-Shafer Fuzzy assertion E is a
logical consequence of a Dempster-Shafer Fuzzy Knowledge
Base K iff every model of K satisfies E .

VI. A MATCHMAKING CASE STUDY

Matchmaking problems can be considered as ontology
applications for the Semantic Web. In its typical form, a
matchmaking problem consists of two groups, denoted as
”sellers” and ”buyers”. Each seller and buyer defines a set of
constraints, as requirements and preferences. A very common
situation in constraint setting is the vagueness that describe
them [6] [27]. As an example let us consider a job recruitment
process, with the following constraints:
• Job Seeker Constraints:

– Job with salary no less than 25, 000 per annum
– Ideal job salary 30, 000 per annum

• Job Advertisement Constraints:
– Job with salary no more than 26, 000 per annum
– Ideal job salary 23, 000 per annum

The constraints are defined in a way that an ideal value
exists and as the value increases or decreases the satisfaction of
the seeker/recruiter goes down. In a formal way, the constraints
are defined through the following membership functions:

µSeeker(x) =

 0, for 0 ≤ x ≤ 25000
x−25000

5000 , for 25000 ≤ x ≤ 30000
1, for 30000 ≤ x


µAdvertisement(x) =

 1, for 0 ≤ x ≤ 23000
26000−x

3000 , for 23000 ≤ x ≤ 26000
0, for 26000 ≤ x


The first function is called a right-shoulder membership

function, whereas the second is called a left-shoulder mem-
bership function. So, the Job Advertisement salary constraint
is represented through the left-shoulder membership function,
with its value denoted as f1, whereas the the Job Seeker con-
straint is represented through the right-shoulder membership
function, with its value denoted as f2.

This means that for a job individual, j, we have the
following axioms:

τ1fuzzy :< j f1 >

τ2fuzzy < j f2 >

Also, we define a set of weights considering Seeker and
Advertisement requirements, in a way similar to [6], denoting
the credibility of the Seeker and Advertisement. This is defined
by regarding the constraints as a set C of the following form:

C = {s1, . . . , sk, a1, . . . , al}

with si denoting a Seeker constraint and ai denoting an
Advertisement constraint. Then, weights are defined through
a basic probability assignment mweight:

mweight : 2C → [0, 1]

In our case study, we have the following set:

C = {s1, a1}

as we have one Seeker and one Advertisement constraint.
The fuzziness describing constraints along with weights

definitions pave the way for the application of our Dempster-
Shafer Fuzzy DL in the matchmaking procedure.

If we consider Seeker and Advertisement as two fuzzy
interpretations, ISeeker and IAdverstisement, each of them
being a model of τ1fuzzy and τ2fuzzy , as follows:

ISeeker |= τ1fuzzy

IAdvertisement |= τ2fuzzy

Formally, these two interpretations are represented as:

ISeeker = {∆ISeeker , ·ISeeker}
IAdvertisement = {∆IAdvertisement , ·IAdvertisement}

where

∆ISeeker ≡ ∆IAdvertisement ≡ N

and ·ISeeker , ·IAdvertisement are defined based on the mem-
bership functions µSeeker and µAdvertisement. Also, N is the
Salary value domain.

Now, let us suppose that we have a job posting, with salary
25, 000. This, in an ontology context, is represented as an
individual j : Job u (hasSalary.{25000}).

Also, let have weights of 0.8 for the Seeker and 0.2 for the
Advertisement formally represented as mweight({s1}) = 0.8
and mweight({a1}) = 0.2. These weights have been arbitrarily
chosen in order to describe our case example.

Our goal is to compute a matchmaking degree that depicts
the satisfaction value of the job individual, based on fuzzy
constraints and uncertainty. In order to do this, we consider
the following fuzzy axiom:

τfuzzy :< j f >

where f is defined as min{f1, f2}.
Then, ISeeker and IAdverstisement are models of

τfuzzy :< j f >

i.e, ISeeker |= τfuzzy and IAdvertisement |= τfuzzy .
To sum up, each job individual is related to two fuzzy

constraint degrees:



Fig. 1. Matchmaking Ontology

• Fuzzy constraint degree of Seeker
• Fuzzy constraint degree of Advertisement

Also, by considering a basic probability assignment mod-
elled as weights on Seeker and Advertisement constraints, we
have each fuzzy degree associated to a mass degree. This,
paves the way for the application of our Dempster-Shafer DL.

So, the matchmaking degree is computed through the belief
degree based on Definition 10 and represented as a Dempster-
Shafer Fuzzy axiom.

Following, we overview our matchmaking ontology, de-
picted in Fig 1. Our ontology is based on the one defined
in [27].

In order to represent our world, we consider the following
classes:

• Job Seeker: It is defined as an OWL class and represents
the part who searches for a job position

• Job Advertisement: It is defined as an OWL class and
represents the part who posts a job position

• Job: It is defined as an OWL class and represents the jobs
of interest

• Crisp: It is defined as OWL class and relates a Job
individual with a salary value and an uncertainty value

• LeftShoulderConstraint: It is defined as an OWL class
and defines a Left-Shoulder membership function

• RightShoulderConstraint: It is defined as an OWL class
and defines a Right-Shoulder membership function

The constraints are defined in the following way:

JobSeeker ≡ Jobu
hasSalary.RightShoulderConstraint

JobAdvertisement ≡ Jobu
hasSalary.LeftShoulderConstraint

Each LeftShoulderConstraint and RightShoulderConstraint
is related to a fuzzy degree through the hasFuzzy data property,
whereas each job individual is related to an uncertainty degree
through the hasUncertainty data property.

The matchmaking processing derives a matchmaking degree
factor, defined as:

Matchmaking ≡ JobSeeker u JobAdvertisement

This degree factor is a combination of fuzzy constraints and
uncertainty of salary crisp value.

Considering the constraints, we define for each salary crisp
value a membership degree for each constraint. The definition
of membership degrees is performed through the rules plugin
in Protégé. A rule variable is defined by the symbol ?x, where
x is a user defined variable. The Left Shoulder Constraint is
defined through the following set of rules:

LeftShoulderConstraint(?l), hasCrisp(?j, ?c),

hasElement(?f, ?l),

hasFuzzy(?j, ?f), hasIdealV alue(?l, ?i),

hasThresholdV alue(?l, ?t),

hasV alue(?c, ?v), lessThanOrEqual(?v, ?i)

− > hasFuzzyFactor(?f, 1.0)

LeftShoulderConstraint(?l), hasCrisp(?j, ?c),

hasElement(?f, ?l),

hasFuzzy(?j, ?f), hasIdealV alue(?l, ?i),

hasThresholdV alue(?l, ?t),

hasV alue(?c, ?v), greaterThanOrEqual(?v, ?t)

− > hasFuzzyFactor(?f, 0.0)

LeftShoulderConstraint(?l), hasCrisp(?j, ?c),

hasElement(?f, ?l),

hasFuzzy(?j, ?f), hasIdealV alue(?l, ?i),

hasThresholdV alue(?l, ?t),

hasV alue(?c, ?v), divide(?d, ?s1, ?s2),

greaterThan(?v, ?i),

lessThan(?v, ?t), subtract(?s1, ?t, ?v),

subtract(?s2, ?t, ?i)

− > hasFuzzyFactor(?f, ?d)

A Right Shoulder Constraint is defined in an analogous way.



We model the Belief Degree of the job individual through
the following rule:

FuzzyElement(?f1), FuzzyElement(?f2),

LeftShoulderConstraint(?l),

RightShoulderConstraint(?r), hasCrisp(?j, ?c),

hasElement(?f1, ?l),

hasElement(?f2, ?r), hasFuzzy(?j, ?f1),

hasFuzzy(?j, ?f2), hasFuzzyFactor(?f1, ?fa1),

hasFuzzyFactor(?f2, ?fa2), hasWeight(?f1, ?u1),

hasWeight(?f2, ?u2), add(?s, ?m1, ?m2),

multiply(?m1, ?fa1, ?u1),

multiply(?m2, ?fa2, ?u2)− > hasBel(?j, ?s)

In our case example, we derive a matchmaking degree of
0.12 for the job posting. This value is the belief degree of
Job ?j being a job that matches Seeker and Advertisement
constraints. The derivation of the belief degree value comes
as a result of our rules definition.

In addition, we have developed a matchmaking application
for job recruitment, integrating fuzzy logic, Dempster-Shafer
and ontologies, which is presented in [27]. In this application,
the Seeker and Advertisement preferences are represented as
concepts and roles in our ontological model. A set of data
(job postings) is considered as a real-world case example of
our method. In order to draw a matchmaking degree, a set of
rules has also been defined.

VII. CONCLUSION

In our approach, we have defined a unified framework for
representing uncertainty and vagueness in a DL environment.
Our model considers the assertional part of the DL, i.e the
ABox. We annotate fuzzy formulas belief conditions and con-
sider the interpretations as a set of possible worlds. We have
defined our framework in ALC DL. Semantics of our DL is
defined through a Dempster-Shafer Fuzzy interpretation. As a
case study of our method, we have considered a matchmaking
problem regarding job offerings. As a next step, we will
consider the annotation of TBox and RBox axioms, along with
a rule framework for reasoning upon them. We have to mention
that, currently, we work in an application of our model into
web size data.
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