
Path Planning of Aircraft Based on Adaptive
Multiobjective Estimation of Distribution Algorithm

Tao Lin
School of Astronautics,

Harbin Institute of Technology
Harbin 150001, China
laestsea2005@163.com

Ke Zhang
Beijing Electro-mechanical

Engineering Institute
Beijing 100074, China

zhangkehit6@yahoo.com

Naigang Cui
School of Astronautics,

Harbin Institute of Technology
Harbin 150001, China
cui naigang@163.com

Zhenbiao Tu and Hu Zhang
Beijing Electro-mechanical

Engineering Institute
Beijing 100074, China
jxzhanghu@126.com

Abstract—Path planning is able to effectively improve the sur-
vival probability and operational efficiency of a combat aircraft.
The essence of path planning of the aircraft is a multiobjective
optimization problem. To deal with this problem efficiently, this
paper proposes an adaptive multiobjective estimation of distribu-
tion algorithm named as AMEDA. In AMEDA, a novel clustering-
based multivariate Gaussian sampling strategy is designed. At
each generation, a clustering analysis approach is utilized to
discover the distribution structure of the population. Based on
the distribution information, with a certain probability, a local
or a global multivariate Gaussian model (MGM) is built for each
solution to sample a new solution. A covariance sharing strategy
is designed in AMEDA to reduce the complexity of building
MGMs, and an adaptive update strategy of the probability that
controls the contributions of the two types of MGMs is developed
to dynamically balance exploration and exploitation. Experiments
show that AMEDA is efficient to deal with the path planning
model of the aircraft. Meanwhile, it is convenient to provide
multiple flight paths with different characteristics for the decision
makers.

I. INTRODUCTION

The characteristic of modern warfare has been gradually
changed from mass destruction to accurate and effective
strike. For a combat aircraft, a good flight path is able to
effectively improve its survival probability and operational
efficiency. Therefore, path planning is very important for the
aircrafts. Typical path planning approaches include [1]: A*
search algorithm, dynamic programming algorithm, artificial
potential filed algorithm and evolutionary algorithms (EAs),
etc. Especially in recent years, with the rapid development of
EAs and their wide applications in dealing with complicated
engineering optimization problems, the scholars have carried
out a lot of research works on path planning of aircrafts based
on EAs [1], [2]. EA [3] is a type of nature inspired global
searching algorithm, its solving operations include crossover,
mutation and selection, etc. Since the operations do not depend
on the properties of the problems to be solved, thus EA is quite
suitable to be applied to deal with the complicated optimiza-
tion problems which are hard for the traditional deterministic
optimization approaches.

Since the path planning of aircrafts usually requires to take
multiple conflicting objectives into consideration [1], such as,
the shortest total length of flight path, the lowest flight altitude,
and the successful avoidance of all the threats, etc., the essence

of aircrafts’ path planning is a complicated multiobjective
optimization problem (MOP). However, at present, most of the
existing works usually use aggregation techniques to transform
multiple objectives into a single objective for solving the prob-
lems [2], and typical aggregation techniques are weighted sum
approach and constraint approach. Actually, the aggregation
techniques have their own shortages: (a) the solutions of the
MOPs obtained by the aggregation techniques greatly depend
on the adopted aggregation parameters, such as the weights
for each objective and the constraint parameters, etc.; (b) for
an actual path planning model, the aggregation parameters are
often hard to be set, especially when the mission information
is unknown, the parameter settings are much harder; (c) a
suite of aggregation parameters can only yield one flight path,
but during decision making, the decision makers often hope
to have more paths with different features for their decision.
Therefore, to improve the shortages of aggregation techniques,
it is necessary to study much more efficient path planning
approaches of the aircrafts. Multiobjective evolutionary algo-
rithm (MOEA) [4], [5], [6] is a type of EAs which can deal
with MOPs efficiently. Since MOEA is able to obtain a set
of solutions for a MOP through a single run, that is to say,
it is able to yield multiple flight paths for a path planning
model though a single run, consequently, more and more
scholars start to perform path planning using the MOEAs [2],
[7]. Similarly, this paper proposes to study path planning
based a multiobjective estimation of distribution algorithm
(MEDA) [8].

Estimation of distribution algorithm (EDA) [9] is a special-
ized paradigm in EAs. An EDA does not adopt the well-known
traditional genetic operations (e.g. crossover and mutation).
Instead, it explicitly extracts globally statistical information
from the selected solutions, and builds a posterior probability
distribution model of promising solutions based on the extract-
ed statistical information. New solutions are sampled from the
model thus built. In the genetic-based MOEAs, the genetic
operations may disrupt the building of strong schemas of a
population, and thus movement towards optimal is extremely
difficult to predict. However, MEDAs are able to predict the
locations or patterns of the PFs or to predict the favorable
movements in the search spaces. By regulating the search
to follow the discovered or predicted favorable movement



directions, promising solutions can be generated better [10]. A
variety of MEDAs have been proposed and they yielded lots
of encouraging results [8].

Although MEDAs have been studied by more and more
scholars, they have not completely lived up to their a priori
expectations until now. This can be attributed to a number of
different causes, and three of them are the incorrect treatment
of population outliers; the loss of population diversity, and too
much computational effort being spent on finding an optimal
population model [11]. To improve the effectiveness of path
planning, this paper modifies the sampling strategy for gener-
ating new solutions, and proposes an adaptive multiobjective
estimation of distribution algorithm (AMEDA) to address the
path planning model. The features of AMEDA include:
• A novel clustering-based multivariate Gaussian sampling

(CMGS) strategy is designed. In CMGS strategy, a
clustering analysis approach is applied to cluster the
population. To model the population more accurately
and to enhance the searching ability of AMEDA, with
a certain probability, a local multivariate Gaussian model
(MGM) or a global MGM is built for each solution based
on the clusters to sample a new solution. To reduce the
modeling complexity, the solutions in the same cluster
share the same covariance matrix to build MGMs.

• An adaptive update strategy of the probability that con-
trols the contributions of local and global MGMs is devel-
oped. In the strategy, the control probability is adaptively
updated at each generation according to the reproduction
utility of the two types of MGMs over the last certain
generations, so that the balance between exploration and
exploitation can be dynamically maintained.

The rest of this paper is organized as follows. Section II
introduces the path planning model. Section III describe the
proposed AMEDA in detail. Section IV presents the experi-
mental results of applying AMEDA to conduct path planning.
The paper is concluded in Section V.

II. PATH PLANNING MODEL OF AIRCRAFT

Path planning model of an aircraft includes representations
of terrain and threats, design of optimization objectives, con-
straint conditions and optimization variables.

A. Representations of Terrain and Threats
1) Original Digital Terrain: Eq.(1) is used to simulated the

original digital terrain.

z1(x, y) = sin(y + a) + c cos
(
d
√
y2 + x2

)
+

b sin(x) + e sin
(
e
√
y2 + x2

)
+ f cos(y),

(1)

where x and y represent horizontal and vertical coordinates of
a point in the horizontal plane, respectively, and z1 represents
terrain altitude corresponding to point (x, y). Five constants,
including a, b, c, d, e, f are the terrain coefficients. Through
adjusting the terrain coefficients, it is able to generate a variety
of terrains with different features. The simulated terrains can
be utilized as the explored terrain to provide basic data for the
aircraft path planning.

2) Equivalent Terrains of Threats: During the flight, air-
crafts usually encounter a variety of threats including peaks,
enemy defense areas, etc. In order to conduct path planning
conveniently, all the threats are transferred into peak terrains
and contained in the path planning model of this paper. Eq.
(2) are adopted to yield peak terrains.

z2(x, y) =

k∑
i=1

H(i) exp

(
− (x−Xc(i))2

Xt(i)
− (y − Yc(i))2

Yt(i)

)
, (2)

where x and y represent horizontal and vertical coordinates of
a point in the horizontal plane, respectively, and z2 represents
terrain altitude corresponding to point (x, y). k is the number
of peak terrains and H(i) is the height of peak i. Xc(i) and
Yc(i) are horizontal and vertical coordinates, respectively, cor-
responding to the center of peak i. Xt(i) and Yt(i) represent
profile parameters of peak i. Through changing the parameters
in Eq. (2), it is able to simulate various equivalent terrains of
threats with different number and shapes.

3) Equivalent Digital Terrain: Based on the principle of
information fusion of digital terrains, the equivalent terrains
of threats and the original digital terrain are fused to generate
the equivalent digital terrain by Eq. (3):

z(x, y) = max (z1(x, y), z2(x, y)) . (3)

In Eq. (3), through selecting much higher terrains, it is able
to reflect the influence range of the threats more realistically.
Digital terrain obtained by Eq. (3) is applied to conduct path
planning directly.

B. Optimization Objectives

Total length of flight path, flight altitude and turning angle
are selected as the optimization objectives of the path planning.

1) Total Length of Flight Path: In order to save fuel and
fight time, the total length of flight path of aircraft from
the start point to the target point is required as short as
possible. Supposing p0,p1, · · · ,pn,pn+1 are waypoints, thus
p0, pn+1 represent start point and target point, respectively,
p1, · · · ,pn denote n waypoints obtained by planning, and
pi = (xi, yi, zi)

ᵀ represents 3D coordinate of waypoint i. As
a result, total length of the flight path can be expressed below:

f1 =

n+1∑
i=1

di,i−1, (4)

where di,i−1 = ||pi − pi−1|| represents distance between
waypoints i and i− 1.

2) Flight Altitude: When the aircraft passes through enemy
defense area, flying along the terrain can strengthen ground
cover for it. Therefore, under the premise of satisfying required
lowest flight altitude, the flight altitude of the aircraft is
the lower the better. The optimization objective of the flight
altitude is expressed as follows:

f2 =

n∑
i=1

zi, (5)

where zi is the flight altitude of waypoint i.



3) Turning Angle: Due to the limited maneuverability of
the aircraft, thus when flying, under the constraint of allowed
maximum turning angle, the turning angle of the aircraft
should be as small as possible. The optimization objective of
the aircraft’s turning angle is expressed as follows:

f3 =

n∑
i=1

(1− cos(θi)) =

n∑
i=1

(
1− aᵀ

i ai+1

||ai||•||ai+1||

)
, (6)

where ai represents the projection of path segment i on the
horizontal plane, that is, ai = (xi − xi−1, yi − yi−1)ᵀ.

C. Constraint Conditions

Due to the limitation of aircrafts design performance and
according to the requirements of tactical use, aircraft is re-
quired to satisfy various constraints when flying. In this paper,
constraints to be considered are as follows:

1) Allowed Highest Flight Altitude: In order to guarantee
the flight safety, the aircraft must fly below a certain altitude.
Supposing the allowed highest flight altitude of the aircraft is
Hmax, and the flight altitude of path segment i is Hi, so the
constraint follows:

Hi ≤ Hmax, i = 1, · · · , n+ 1. (7)

2) Required Lowest Flight Altitude: The optimization ob-
jective f2 requires the flight altitude of aircraft to be as low
as possible so as to improve penetration effect. Actually, the
flight altitude is not the lower the better, since a quite low
flight altitude will increase the probability of the aircraft’s
crash. The flight of the aircraft should be as low as possible
under the condition of satisfying required lowest flight altitude.
Supposing the required lowest flight altitude of the aircraft is
Hmin, so the constraint follows:

Hi ≥ Hmin, i = 1, · · · , n+ 1. (8)

3) Required Shortest Length of Path Segment: In general,
in order to fulfill flight mission effectively, the aircraft is
required to fly straightly for a certain distance before and after
maneuvering. This distance is defined as the minimum step
size Lmin. and the length of each path segment should be
longer than or equal to Lmin, that is to say:

di,i−1 ≥ Lmin, i = 1, · · · , n+ 1. (9)

4) Allowed Maximum Turning Angle: The design perfor-
mance of the aircraft determines that aircraft can only turn
within the range of the predefined allowed maximum turning
angle. Supposing the allowed maximum turning angle of the
aircraft is φ, and turning angle i of the aircraft is θi, thus the
constraint of turning angle is as follows:

cos(θi) ≥ cos(φ), i = 1, · · · , n
cos(θi) =

aᵀ
i ai+1

||ai||•||ai+1|| .
(10)

5) Allowed Maximum Total Length of Flight Path: There
exists a limit of allowed maximum flight distance for each type
of aircraft. Supposing the maximum allowable flight distance
of aircraft is expressed as Lmax. The constraint follows:

n+1∑
i=1

di,i−1 ≤ Lmax. (11)

6) Allowed Maximum Climb Angle/Dive Angle: Since re-
stricted by the restriction of longitudinal overload, the allowed
maximum climb/dive ability of the aircraft is limited. The
allowed maximum climb angle/ dive angle of the aircraft is
supposed to be ϕ. The constraint follows:

|zi − zi−1|
||ai||

≤ tan (ϕ), i = 1, · · · , n. (12)

D. Optimization Variables
In the path planning model of an aircraft, the variables

that need to be optimized are the coordinates (x, y, z) of
all the waypoints. In this paper, the coordinates are di-
rectly employed to encode for the path planning. In the
operations of AMEDA, each solution is represented by
(x1, · · · , xn, y1, · · · , yn, z1, · · · , zn)ᵀ, that is to say, each so-
lution actually denotes a set of waypoints.

III. PROPOSED ALGORITHMS

A. Framework
The basic idea of AMEDA is that more MGMs are built

by using a computationally cheap approach to describe the
population more accurately; a number of different MGMs are
employed to generate diverse new solutions, and the contri-
butions of different types of MGMs are adaptively controlled
to dynamically maintain the balance between exploration and
exploitation. Algorithm 1 presents the framework of AMEDA.

Algorithm 1 AMEDA
1: Initialize population P = {x1, · · · ,xN}, control probability β.
2: for t = 1 to T do
3: Set an auxiliary archive A = ∅.
4: Partition the population into local clusters, {LC1, · · · ,LCk} =

AHC(P,K).
5: Construct a global cluster GC.
6: Calculate covariances of LCk and GC as ΣLCk and ΣGC,

respectively, k = 1, · · · ,K.
7: for each xi ∈ P, i = 1, · · · , N do
8: Decide a covariance matrix Σi for xi, Σi ={

Σi
LCk if rand() < β

ΣGC otherwise .

9: Generate a new solution yi = SolGen(Σi,xi).
10: Store the new solution A = A ∪ {yi}.
11: end for
12: Update the population P = EnvSel(A ∪ P).
13: Update β based on reproduction utility.
14: end for
15: return final population P .

In Algorithm 1, N is the population size. K is the maximum
number of clusters defined in agglomerative hierarchical clus-
tering (AHC) [12] approach. T is the maximum evolutionary



generations. GC and LCk denote the global cluster and the
k-th local cluster, respectively. Σi

LCk is the covariance matrix
of the k-th local cluster that xi locates in. β is a probability
to control which covariance matrix is decided for xi. rand()
generates a uniformly distributed random number in [0, 1].

At each generation of AMEDA, the population is firstly
partitioned into K local clusters by a AHC approach (line 4),
and a solution is randomly selected from each local cluster to
construct a global cluster (line 5). Afterwards, the covariance
matrix of the global cluster and all the covariance matrices
of the local clusters are estimated as ΣGC and ΣLCk (k =
1, · · · ,K) (line 6). Next, for each solution xi, a covariance
matrix Σi is set using Σi

LCk or ΣGC with probability β and
1−β, respectively (line 8), a new solution yi is sampled from
the MGM built by xi and Σi (line 9), and yi is preserved
in an auxiliary archive A (line 10). After completing solution
generation, an environmental selection operation is conducted
to update the population (line 12). Finally, a reproduction
utility-based update strategy is applied on β to get a new
probability of building different types of MGMs for the next
generation (line 13). With respect to the AMEDA framework,
there are following comments should be noted.
• A general agglomerative AHC approach [12] is employed

to proceed clustering. The group average linkage algo-
rithm is used in the AHC of AMEDA to define the
distance between two clusters. Detailed descriptions of
the agglomerative AHC refer to [12].

• The MGM built based on a local or a global cluster is
called a local or a global MGM. Sampling from the local
MGMs emphasizes on exploitation, and sampling solu-
tions from the global MGM is beneficial to exploration.
The local and global MGMs work together to maintain
the balance between exploitation and exploration.

• The covariance matrix of GC is a n×n matrix, i.e., ΣGC =
[Cov(xs, xt)], s, t = 1, · · · , n. Cov(xs, xt) denotes the
covariance between the elements xs and xt of a solution
x. ΣGC is estimated by the equation below.

Cov(xs, xt) =
1

|GC|−1

∑
x∈GC

(xs − xt)2

for s, t = 1, · · · , n. The covariance matrix ΣLCk (k =
1, · · · ,K) can also be estimated by the approach for
estimating ΣGC.

• If any one of the local clusters includes only one solution,
the global covariance matrix will be used for the solution
to build a MGM.

B. Solution Generation

SolGen operator in line 9 of Algorithm 1 aims to produce
new solutions, which is implemented by MGMs sampling and
polynomial mutation [13] approaches shown in Algorithm 2.
When producing an offspring, a MGM is firstly built to sample
a new trial solution (lines 1-3). Afterwards, a repair operation
is performed to make the solution feasible (line 4). Next, the
trial solution is mutated by a polynomial mutation operator

(line 5). Finally, the mutated solution is repaired again to
ensure its feasibility (line 6).

Algorithm 2 SolGen(Σk,xk)

1: Take the Cholesky method to decompose the covariance matrix
Σk to obtain a lower triangular matrix Λ, and Σk = ΛΛᵀ.

2: Generate a vector v = (v1, · · · , vn)ᵀ, where vi ∼ N(0, 1), i =
1, · · · , n, obey the unit Gaussian distribution.

3: Produce a trial solution y′ = xk + Λv,y′ = (y′1, · · · , y′n)ᵀ.
4: Repair the solution

y′′i =

 xki − rand()(xki − ai) if y′i < ai
xki + rand()(bi − xki ) else if y′i > bi
y′i otherwise

,

for i = 1, 2, · · · , n.
5: Mutate the solution

y′′′i =

{
y′′i + δi × (bi − ai) if rand() < pm
y′′i otherwise

with

δi =

{
[2r + (1− 2r)(

bi−y′′i
bi−ai

)ηm+1]
1

ηm+1 − 1 if r < 0.5

1− [2− 2r + (2r − 1)(
y′′i −ai
bi−ai

)ηm+1]
1

ηm+1 otherwise
,

where ai and bi denote the lower and upper boundaries of the
i-th variable, respectively, i = 1, · · · , n; pm is the mutation
probability, and ηm denotes the distribution index of mutation;
r = rand().

6: Repair the solution

yki =

 ai if y′′′i < ai
bi else if y′′′i > bi
y′′′i otherwise

, i = 1, 2, · · · , n.

7: return the new solution yk = (yk1 , · · · , ykn)ᵀ.

Different from the traditional MEDA [14] that only one
MGM is built for a cluster, in AMEDA, each solution xi is
assumed to be from a different MGM which adopts xi as
the mean vector, i.e., xi ∼ N(xi,Σ). With a probability β,
a local MGM is built for xi to sample a solution, and the
covariance matrix of the local cluster that xi locates in is
used to build the local MGM. Otherwise, with a probability
1 − β, a global MGM is built for xi to sample a solution,
and the covariance matrix of the global cluster is employed to
build the global MGM. We have the following comments on
the solution generation in AMEDA.

• The distribution structure of solutions in a population is
usually strongly nonlinear. In AMEDA through building
a MGM for each solution, the MGMs can work together
to capture the population structure more accurately.

• In AMEDA, a different MGM is build for each solution
to sample only one offspring. By this way, more diverse
solutions can be produced, and the searching ability for
the variable space can be enhanced greatly.

• AMEDA samples offsprings based on each solution con-
siders outliers enough, which is also helpful for strength-
ening the searching ability of the algorithm.

• The solutions in the same cluster are set to share a same
covariance matrix to build MGMs for themselves, the



modeling cost can be saved.

C. Environmental Selection

The EnvSel(A ∪ P) operator in line 12 of Algorithm 1 is
to preserve the promising solutions in A ∪ P survive into the
next generation. A hypervolume metric-based environmental
selection approach modified from the environmental selection
in SMS-EMOA [15] is used in AMEDA. Algorithm 3 presents
the details of the environmental selection in AMEDA.

Algorithm 3 EnvSel(A ∪ P)

1: Partition A ∪ P into L fronts by fast nondominated sorting
approach

{B1, · · · ,BL} = FastNondominatedSorting(A ∪ P).

2: Copy better solutions,

P ′ = {xi|xi ∈
l⋃

j=1

Bj ,
l−1⋃
j=1

Bj < N ∧
l⋃

j=1

Bj ≥ N, l < L}.

3: if l > 1 then
4: while |P|′> N do
5: x∗ = arg max

x∈P′
d(x,P ′).

6: Set P ′ = P ′\{x∗}.
7: end while
8: else
9: while |P|′> N do

10: x∗ = arg min
x∈P′

∆ϕ(x,P ′).

11: Set P ′ = P ′\{x∗}.
12: end while
13: end if
14: Set P = P ′.
15: return P .

At first, a large population A ∪ P is constructed by com-
bining the current population P and the auxiliary archive A
consisted of new solutions, and the fast nondominated sorting
approach proposed in NSGA-II [16] is used to partition A ∪ P
into L different nondominated fronts {B1, · · · ,BL}, where B1
and BL represent the best and the worst fronts, respectively.
Afterwards, all the solutions in Bj , j = 1, · · · , l, l < L are
copied into a transitional archive P ′ until |P ′|≥ N . if l > 1,
i.e., the solutions in more than one front are put into P ′, the
solutions with the maximum d(x,P ′) are removed one by one
until |P ′|= N , where d(x,P ′) is the number of solutions in P ′
that dominate x. Otherwise, the solutions with the minimum
hypervolume contribution ∆ϕ(x,P ′) are deleted one by one
until the size of P ′ equals to N , where ∆ϕ is calculated by
the approach in [15]. After |P ′|= N , P ′ is transferred to P
as the population of next generation.

D. Adaptive Probability Update Strategy

In AMEDA, local and global MGMs are used to sample
new solutions for emphasizing on exploitation and exploration,
respectively. To balance the exploitation and exploration, a
probability β is applied to control the contributions of the
different types of MGMs. In practice, different β values need
to be given for different MOPs. Even at different evolutionary

stages, β may also require different values. Thus setting an
adaptive β is necessary for AMEDA. A reproduction utility-
based approach is proposed to adaptively adjust the β value
at each generation (line 13 of Algorithm 1), which is shown
in Algorithm 4.

Algorithm 4 Probability Update
1: Estimate the reproduction utility of the MGMs built based on

local clusters or the global cluster at the t-th generation:

uLC(GC)
t =



t∑
k=1

S
LC(GC)
k

t∑
k=1

Q
LC(GC)
k

if t < HL

t∑
k=t−HL+1

S
LC(GC)
k

t∑
k=t−HL+1

Q
LC(GC)
k

otherwise

,

where uLC(GC)
t is the reproduction utility of local MGMs (the

global MGM) over the previous HL generations. QLC(GC)
k repre-

sents the number of new solutions sampled from the local MGMs
(the global MGM) at the k-th generation. SLC(GC)

k is the number
of successful solutions sampled from the local MGMs (the global
MGM) at the k-th generation, where successful solutions indicate
the solutions that enter the next generation successfully.

2: Calculate the mating restriction probability for the (t + 1)-th
generation:

βt+1 =
uGC
t + ε

uGC
t + uLC

t + ε
,

where ε = 10−10 is employed to ensure the legality of the
calculation.

3: return βt+1.

It should be noted that, at each generation five solutions
are forced to be sampled from local and global MGMs,
respectively, so that there always exist more than five new
solutions generated from each different type of MGMs, which
is with the purpose of keeping the update of β to be available
all the time.

IV. EXPERIMENTAL STUDIES

A. Performance Metric

It is well-known that a MOP has a set of Pareto optimal
solutions called Pareto set (PS). The set of objective points
of Pareto optimal solutions is named as Pareto front (PF).
A MOEA is able to obtain an approximated solution set
of a MOP through a single run. In general, it is hoped
that the corresponding front of approximated solution set
(approximated front for short) approaches to the PF as close
as possible (convergence), the objective points spread along
the PF as widely as possible (diversity) and distribute along
the PF as uniformly as possible (uniformity).

A commonly used quality indicator called hypervolume
(HV) [17] is employed to quantitatively measure the quality of
approximated front obtained by the algorithms. Suppose P is
an approximated front. The HV metric is defined as follows:

HV(P, z) = VOL(
⋃
x∈P

[f1(x), z1]× · · · [fm(x), zm]),



where z = (z1, · · · , zm)ᵀ is a reference point in the objective
space dominated by any objective points in P , and VOL(·)
is the Lebesgue measure. HV metric measures the size of
the objective space dominated by the objective points in P
and bounded by z. When calculating the HV metric values of
the obtained approximated front of path planning model, the
reference point is set as z = (500, 5, 15)ᵀ.

HV metric can measure the convergence, diversity and uni-
formity of the obtained approximated fronts. If approximated
front P does not miss any parts of PF, and the objective points
approach to PF as close as possible and distribute along the PF
as evenly as possible, P will have a larger HV metric value.

B. Algorithm Parameters

To examine the performance of AMEDA for the path
planning model, five state of the art MOEAs, i.e., MOEA/D-
DE [18], TMOEA/D [19], RM-MEDA [20], NSGA-II [16]
and SMS-EMOA [15] are selected to conduct comparison
experiments. The simulated binary crossover operator in orig-
inal NSGA-II and SMS-EMOA are replaced by the differen-
tial evolution (DE) operator to take part in the comparison
experiments. The parameters of all the MOEAs are tuned
through the preliminary experiments and the best parameter
combinations are adopted in the comparison studies. All the
parameter settings are as follows:
• Public parameters:

– population size N : N = 105 for all the algorithms;
– variable dimension: n = 30 (i.e., 10 waypoints);
– maximum evolutionary generations: T = 500.

• AMEDA Parameters:
– initial control probability: β0 = 0.9;
– history length: H = 10;
– maximum number of clusters: K = 4;
– polynomial mutation: pm = 1/n, ηm = 20.

• MOEA/D-DE Parameters:
– neighborhood size: NS = 5;
– probability of neighborhood search: 0.7;
– maximal number of solution replacement: nr = 2;
– differential evolution: F = 0.5, CR = 0.6;
– polynomial mutation: pm = 1/n, ηm = 20.

• TMOEA/D Parameters:
– neighborhood size: NS = 30;
– first searching phase: T1 = T/10;
– second searching phase: T2 = αT , α = {0.01, 0.02,
· · ·, 0.1, 0.1, 0.1, 0.15};

– differential evolution: F = 0.9, CR = 1;
• RM-MEDA Parameters:

– number of clusters in local PCA: 7;
– maximal iteration number for local PCA: 50;
– extension rate of sampling: 0.25.

• NSGA-II and SMS-EMOA Parameters:
Two algorithms have the same parameter settings.

– differential evolution: F = 0.3, CR = 0.8;
– polynomial mutation: pm = 1/n, ηm = 20;

To get statistically sound experimental conclusions, each
algorithm runs 30 times independently for the path planning
model, and the comparisons are performed based on the statis-
tical metric values, i.e., mean values and standard deviations.

C. Model Parameters

In this paper, suppose that an aircraft flies across a combat
area with size 200 × 200 km2, and there are six threats in
the area. According to Eq.(1), Eq.(13) is used to generate the
original digital terrain shown in Fig.1(a).

z1(x, y) = sin (y/90 + 3π/2) + sin (x/15) /10+

9 cos

(√
(y/18)2 + (x/15)2

/
2

)/
10+

sin

(√
(y/18)2 + (x/15)2

/
2

)/
2+

3 cos (y/18) /10.

(13)

Parameters of the five peak terrains of threats are set as:
heights H = {0.7, 2.5, 3.2, 2.34, 1.77}; horizontal coordi-
nates of the centers Xc = {50, 100, 100, 130, 160}, Yc =
{60, 160, 100, 20, 100}; parameters of the terrain profiles Xt =
{140, 280, 150, 160, 170}, Yt = {20, 220, 280, 190, 230}.
Based on the parameters, the yielded equivalent terrains of
threats are presented in Fig.1(b).

Through fusing the original digital terrain and the equivalent
terrains of threats, the generated equivalent digital terrain is
shown in Fig.1(c). The path planning in this paper is conducted
based on the digital terrain in Fig.1(c). The start and target
points of flight are [0,0,0.25] and [200,200,0], respectively.

(a)

(b) (c)

Fig. 1. (a) Original digital terrain; (b) Equivalent terrain of threats; (c)
Equivalent digital terrain.

In addition, in the path planning model, the allowed high-
est altitude, lowest flight altitudes, maximum turning angle,
maximum total length of flight path and maximum climb/dive
angle are set as Hmax = 1.5km, Hmin = 0.05km, φ = 60◦,
Lmax = 500km and ϕ = 45◦, respectively; the required



shortest length of path segment is set as Lmin = 2km. The
penalty method is used to handle the constraints when the
path planning model is optimized.

D. Comparison Experiments

The error bars of HV metric values obtained by MOEA/D-
DE, TMOEA/D, RM-MEDA, NSGA-II, SMS-EMOA and
AMEA, respectively, over 30 independent runs on the path
planning model are given in Fig.2. It can be seen from the fig-
ure that AMEDA obtains the maximum mean HV metric value
and the minimum standard deviation value, which denotes that
AMEDA is able to stably and effectively find the approximated
front with good diversity and excellent convergence for the
path planning model.
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Fig. 2. The error bars of HV metric values obtained by MOEA/D-DE,
TMOEA/D, RM-MEDA, NSGA-II, SMS-EMOA and AMEA, respectively,
over 30 independent runs on the path planning model.

The evolution of mean values and standard deviations of
HV metric values versus generations is plotted in Fig.3. Fig.3
shows that during evolution for 300 generations, AMEDA
reaches the maximum mean HV metric values using the least
evolutionary generations, and AMEDA always has small stan-
dard deviations of HV metric values when evolving. The figure
indicates that during evolutions, AMEDA always maintains a
population with better convergence, diversity and uniformity.
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Fig. 3. Evolution of mean values and standard deviations of HV metric values
versus generations.

Fig.4 plots the approximated fronts obtained by SMS-
EMOA and AMEDA. All the 30 approximated fronts yielded
by SMS-EMOA and AMEDA, respectively, are plotted in
Fig.4(a). The approximated front with median HV metric
value (called representative front) obtained by SMS-EMOA
and AMEDA, respectively, over 30 independent runs are
plotted in Fig. 4(b). Fig.4(a) shows that compared with SMS-
EMOA, all the approximated fronts obtained by AMEDA all
stably converge to the region of objective space with smaller
objective values, and the distribution of the approximated
fronts is much more widely. Part of the approximated fronts
achieved by SMS-EMOA have not reached the region with
smaller objective values, and the objective points in these
fronts are much more concentrated. According to Fig.4(b), it
is easy to observe that the representative approximated front
obtained by AMEDA spreads much more widely than those
yielded by SMS-EMOA.
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Fig. 4. Approximated fronts obtained by SMS-EMOA and AMEDA.

In the final population with median HV metric value,
the corresponding flight paths with the shortest total length,
the lowest flight altitude and the smallest turning angle are
presented in Fig.5. Fig.5(a) shows that the flight path with
the shortest total length almost straightly traverses the combat
area. However, the flight altitude is relatively high, which
implies a higher risk of being discovered and attacked. Fig.5(b)
presents that the flight path with the lowest altitude is quite
close to the ground, which is helpful for concealment and
penetration. However, the path length is much longer, which
will increase fight time. Fig.5(c) shows that the path with
the smallest turning angle is very smooth, the turning angles
during flight are all very small. Fig.5 illustrates that AMEDA is
able to yield multiple flight paths with different characteristics
for the decision makers to help their decision making through
a single run. This type of path planning approach is quite
meaningful and efficient.

The comparisons in Fig.2, Fig.3 and Fig.4 indicate that
AMEDA has excellent performance to deal with the path



(a)

(b) (c)

Fig. 5. (a) Path with the shortest total length; (b) Path with the lowest flight
altitude; (c) Path with the smallest turning angle.

planning model of this paper. The visualization in Fig.5
illustrates AMEDA is very helpful for the decision makers
on planning the paths of the aircraft.

V. CONCLUSION

This paper has proposed a novel adaptive multiobjective
estimation of distribution algorithm named as AMEDA to
deal with the path planning of aircraft. The characteristic of
AMEDA is that a clustering-based multivariate Gaussian sam-
pling strategy is designed. At each generation, AMEDA firstly
employs an agglomerative hierarchical clustering approach to
partition the population into a number of local clusters, and
constructs a global cluster by randomly selecting a solution
from each local cluster. Afterwards, for each solution, with
a probability a local multivariate Gaussian model (MGM) is
built based on the local cluster that the solution locates in
to sample an offspring, which is beneficial to exploitation;
otherwise, a global MGM is built for the solution based on
the global cluster to generate an offspring, which is helpful for
exploration. To reduce the modeling complexity, a covariance
sharing strategy is also designed for the solutions within the
same cluster to build MGMs. To balance the exploration and
exploitation better, the probability that controls the contri-
butions of the local and global MGMs is updated at each
generation, according to the reproduction utility of the two
types of MGMs over the last certain generations.

AMEDA has been compared with five representative
MOEAs (i.e., MOEA/D-DE, TMOEA/D, RM-MEDA, NSGA-
II, and SMS-EMOA) on the path planning model. The ex-
perimental results have shown that AMEDA dramatically
outperforms the comparison algorithms on planning the flight
path of the aircraft. AMEDA is very meaningful and efficient
for the decision makers on planning the paths of the aircraft.
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