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Abstract—Vision is one of our most important senses, a vast
amount of information is perceived through our eyes. Neuro-
scientists have performed many studies using vision as input to
their experiments. Computational neuroscientists have typically
used a brightness-to-rate encoding to use images as spike-based
visual sources for its natural mapping. Recently, neuromorphic
Dynamic Vision Sensors (DVSs) were developed and, while they
have excellent capabilities, they remain scarce and relatively
expensive.

We propose a visual input system inspired by the behaviour of
a DVS but using a conventional digital camera as a sensor and a
PC to encode the images. By using readily-available components,
we believe most scientists would have access to a realistic spiking
visual input source. While our primary goal is to provide systems
with a live real-time input, we have also been successful in
transcoding well established image and video databases into spike
train representations. Our main contribution is a DVS emulator
framework which can be extended, as we demonstrate by adding
local inhibitory behaviour, adaptive thresholds and spike-timing
encoding.

I. INTRODUCTION

In recent years the rate of increase of individual computer
processors’ performance has been slow; this is mainly because
manufacturing technologies are reaching their physical limits.
One way to improve performance is to use many processors
in parallel, which has been successfully applied to parallel-
friendly applications such as computer graphics. Meanwhile
tasks such as pattern recognition remain difficult for comput-
ers, even with these technological advances.

Our brains are particularly good at learning and recognizing
visual patterns (e.g. letters, dogs, houses, etc.). To achieve bet-
ter performance for similar tasks on computers, scientists have
looked to biology for inspiration. This has led to the rise of
brain-like (neuromorphic) hardware, which mimics functional
aspects of the nervous system. We can divide neuromorphic
hardware into sensors (providing input), computing devices
(which make use of information from sensors) and actuators
(which control devices). Traditionally, visual input has been
obtained from images that are rate-encoded, that is every pixel
is interpreted as a neuron that will fire at a rate proportional
to its brightness, usually via a Poisson process [1]. While this

might be a biologically-plausible encoding in the first phase of
a “visual pipeline”, it is unlikely that retinas transmit as many
spikes into later stages. Furthermore, if we think in terms of
digital networks, having each pixel represented by a Poisson
process could incur high bandwidth requirements.

In 1989, Mead proposed a silicon retina consisting of
individual photoreceptors and a resistor mesh which allowed
nearby receptors to influence the output of a pixel [2]. Later,
researchers developed frame-free Dynamic Vision Sensors
(DVSs) [3, 4]. These sensors feature independent pixels, which
emit a signal when their log-intensity values change by a cer-
tain threshold. These sensors have microsecond response time,
excellent dynamic range properties and frame-free output,
although they are (still) not as widely available as conventional
cameras and are relatively expensive.

An alternative that could reduce the cost and scarcity
of DVSs while keeping spike rates low is to emulate the
behaviour of a DVS. Katz et al. developed a DVS emulator to
test behaviours for new sensor models [5]. In their work, they
transform video [at 125 frames per second (FPS)] provided
by a commercial camera into a spike stream. In simple terms,
the emulation is done by differencing video input with a
reference frame; if this difference is larger than a threshold
it produces an output and updates the reference. The number
of spikes produced per pixel is proportional to the difference-
to-threshold ratio. This emulator has been merged into their
jAER project [6], a Java-based Address-Event Representation
software framework that specializes in processing DVS output
in real time.

In this work, we present an extensible behavioural emulator
of a DVS using a conventional digital camera as a sensor.
Basing the emulator on widely available hardware allows
computational neuroscientists to include video as a spike-
encoded input without the cost of a DVS. We present our
basic emulator in Section II. In Section III we present our
extensions to the emulator. Results are given in Section IV;
conclusions and suggestions for future work are given in
Sections V and VI, respectively.



II. THE BASIC EMULATOR

A Dynamic Vision Sensor is a device which transforms
intensity changes (in a logarithmic scale) into events. In
conventional video cameras pixels capture light to form an
image and repeat this process in a regular time period (T ),
these images are usually called frames (Figure 1).

Fig. 1: DVS and emulator diagrams.

To emulate a frame-free system, we convert pixels’ bright-
ness differences into events. Our emulator works by analysing
the difference between the latest frame captured from the
camera and a reference frame. If a pixel changes by more
than a certain threshold (H), then we generate an event which
contains the pixel’s coordinates and whether the change was
positive or negative.

Figure 2 shows the DVS emulation framework diagram, we
obtain an image (IMG) from a video source and subtract a
reference frame from it (REF). We then apply a threshold
filter to the difference frame (DIFF), the remaining pixels
are considered raw spikes (SPKSR). We can optionally post-
process these pixels, as we’ll demonstrate in Section III-D, but
we must encode them so that they can be emitted as events
(SPKSE). Finally, depending on the selected type of output
encoding, we simulate a receiver and update the reference
frame accordingly.

Fig. 2: DVS emulation diagram. Circles indicate operations
and rectangles stages of visual information (from frames to
spike trains).

Pixels in DVSs have a logarithmic response to light in-
tensity. Similarly, most commercial cameras produce gamma-

encoded images [7] for better bit utilization and, in the past, to
be compliant with cathode ray tube (CRT) monitors. Since this
encoding’s response is similar to the logarithmic one used in
a real DVS (Fig. 3), we use frame’s brightness levels without
modifications.

Fig. 3: Logarithmic and Gamma response functions (normal-
ized, γ = 2.2)

We have constrained the output of our system to emit events
in discrete time, so we divide time period T into Nb bins
of width tb (Fig. 4), and neurons (representing pixels) are
only allowed to spike once per time bin. For example, if
time interval T = 10ms and Nb = 10 then tb = 1ms, so
neurons would fire at most once per millisecond. Since we
are developing a real-time system, all events should be emitted
between frames, so the maximum number of spikes per neuron
per frame is Nb.

Fig. 4: Time discretization.

As in previous emulators [5], our basic emulator’s output
format is rate-based. Each emitted spike signifies the pixel
changed by H brightness levels, where H is also the threshold.
Let NH be the integer division of a pixel’s brightness change
∆B by the threshold H and limiting by Nb, the number of
spikes (Ns) needed to represent ∆B will be

Ns = min (Nb, NH) = min

(
Nb,

⌊
∆B

H

⌋)
(1)

At this stage we model a perfect receiver, so the update rule
for the reference is

Rnow = Rlast +Ns ·H (2)

III. EMULATOR EXTENSIONS

In its worst case rate-based encoding can send a spike per
millisecond per pixel each frame, which is not biologically
plausible and can potentially saturate communication channels.



Two of the extensions we have developed diminish the rate
of spikes, either by changing output encoding (Sec. III-A) or
post-processing generated spikes (Sec. III-D).

Another extension adds robustness to transmission by
adding a history decay mechanism (Sec. III-B). The final
extension replaces the constant threshold for an adaptive
version (Sec. III-C). Figure 5 shows modifications on the basic
DVS emulator.

Fig. 5: DVS emulation with adaptive thresholds, local inhibi-
tion and history decay.

A. Spike-time encoding

One way to prevent high spike rates is to encode the
brightness difference in the time a spike is emitted, similar
to how pulse-position modulation works [8]. That is each
time bin represents a brightness change, in either a linear or
logarithmic scale. Furthermore, there’s evidence that neurons
use spike timing to encode values [9] and some theories of
neural computation require spike-time coding [10].

(a) Linear response
(Nb = 33, tb = 1.1).

(b) Logarithmic response
(Nb = 8, tb = 4.16ms).

Fig. 6: Possible values for a spike timing code, linear (left)
and logarithmic (right) scales (FPS = 30, T = 33.3ms).

Since brightness variations happen when a new frame is
captured, spike times are referenced to the beginning of each
frame. To synchronize the emitter with the receiver, we send
one spike for each pixel at the beginning of the simulation
(t = 0) and all of these encode a predefined value (in this

case the maximum one). Figure 6 shows a single frame, spikes
that were sent closer to the frame’s beginning encode larger
values. This means that if spikes were emitted at t0 and t1, then
a pixel changed X and Y times the threshold, respectively. In
our system, if t0 < t1 then X > Y .

We will first present the linear scale case, we can calculate
the appropriate time bin Cb with

Cb = Nb −min (Nb, NH) , (3)

and the time at which the spike will be sent is given by

ts = Cbtb (4)

The main advantage of this encoding is that a single
spike could represent multiple (at most Nb) rate-based spikes,
though the encoded values are limited by time resolution and
the frame rate of the camera.

If a receiver wants to decode the spikes, it needs to figure
out the time at which each frame begins, but we do not provide
information about this event. A possible solution involves
keeping track of the time and value from the last collected
spike, by keeping these values we can calculate the end of the
previous spike’s frame. The green line in Figure 7a shows this
spike time-to-value relation.
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(a) Possible values for spikes received after another.

(b) Time differences between current and previous spikes.

Fig. 7: Spike-time coding. Decoding values in linear scale
(FPS = 30, T = 33.3ms).

Let ∆t be the difference in arrival time between the current
spike and the end of the previous spike’s frame (Fig. 7b,
center). To calculate it we use

∆t = tnow −
(
tlast +N last

H tb
)

(5)



where N last
H Wb shifts tlast to the end of its frame. By having

∆t anchored at the beginning of a frame we can compute its
bin with the remainder of the division with time period T .

Cnow
b =

mod (∆t, T )

tb
(6)

here, ‘mod’ calculates its arguments division remainder. Now
that the time bin Cb is known we can compute the brightness
difference with

∆B = H ·Nnow
H = H (Nb − Cnow

b ) (7)

We’ve mentioned before that the maximum brightness dif-
ference in linear scale is Nb ·H , by using a logarithmic scale
we can encode larger brightness differences and even do so
with wider time bins. This also reduces the chances of wrongly
decoding spikes. If the maximum brightness difference possi-
ble is 255 and the threshold is 12, we only need 5 time bins
to express the largest change. The time bin can be calculated
with Equation 8. Figure 8 shows the relation of spike time and
brightness change with logarithmic scale.

Cb = Nb −min (Nb, blog2NHc) (8)

The time at which the spike would be sent, with respect
to the beginning of the frame would be ts = Cbtb. Since a
single spike per pixel per frame is emitted, we are sending
an underestimate of the desired value (i.e. previous power of
two). In the following frames we send spikes to refine the
received value towards the desired one [11].
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Fig. 8: Spike-time coding. Decoding values in logarithmic
scale. Frame rate was 30 FPS and we used 7 bits (time bins).

Decoding (Fig. 8) can be done in a similar way to the linear
case, but the receiver can only record an approximate version
of NH , that is Ñh = 2blog2 NHc. The time difference with
respect to the end of frame for the previous spike is

∆t = tnow −
(
tlast + log2 ÑHtb

)
(9)

The current spike’s time bin is calculated using Eq. 6 and
the decoded value with

∆B = H ·Nnow
H = H · 2(Nb−bCnow

b c) (10)

If we allow many spikes to be sent per pixel per frame, the
receiver gets a closer approximation of NH . The downside

to this is that this is unlikely to be biologically plausible.
Decoding multiple spikes per frame has to be split in two
cases: first, if the new spike arrives before the current frame
period is finished, then we accumulate its value to the current
decoded value; otherwise we keep the newly decoded value.

B. History decay

Initially we described a system where we assume every
spike sent will be captured and properly decoded by the
receiver, but this is not always the case. To cope with failures
in transmission, we now introduce a history decay mechanism
which will allow the receiver to, in the long term, recover
from missing spikes. Let D ∈ R = (0, 1] be the weight for
the reference frame in the calculation of its new value, the
update rule becomes

Rnow = D ·Rlast +NH ·H (11)

If no spikes are sent, the values in the reference frame tend
to 0 which corresponds to black in our tonal scale. This can
be seen as “forgetting” the information stored in the reference
frame.

C. Adaptive threshold

Slow-changing pixels in cameras would capture small
brightness values each frame thus the difference would never
be enough to generate a spike. Meanwhile DVSs’ pixels
receiving insufficient light to immediately trigger a spike, still
gain some charge and, after some time, will generate a spike
event. We propose to mimic this behaviour by adapting the
threshold on a per-pixel basis, so we reduce the threshold
if a pixel did not emit a spike. Since threshold values may
be lowered, they also have to be increased if a spike was
generated. These changes in the threshold effectively add a
temporal low-pass filter to the system.

Fig. 9: Adaptive threshold behaviour.

D. Local inhibition

In mammalian retinas inhibitory circuits play an impor-
tant role. Some researchers have suggested that they reduce
the number of spikes needed to represent what the eye is
sensing [12]. Our emulator’s inhibition mechanism follows a
similar idea; since neighbouring pixels have similar values, we
assume that they are transmitting redundant information. The
inhibitory behaviour is simply a local MAX operation (similar
to complex cells in the HMAX model [13]) of pixel areas. An
example is shown in Figure 10, we chose a 2-by-2 area since
it’s the smallest 2D one. Initially pixels whose difference was
77, 31, -16 (left side in green and red) where to emit events,



but after inhibition only the maximum value (right side in
green; 77) will generate a spike, while other values (right side
in brown; 0, 31, and 16) are blocked.

Fig. 10: Local inhibition mechanism. Quantities represent the
absolute value of the difference between an image and the
reference. Green and red mean a spike event, brown pixels
did not spike

IV. RESULTS

The emulator was developed and tested in a desktop com-
puter (Intel i5, 8GB RAM) using the Python and Cython
programming languages. We targeted a maximum 128× 128-
pixel resolution, which can perform at a 60 FPS [lower
resolutions (64, 32 and 16 pixel) are also available and can
run at higher frame rates]. This project is open source and is
available at https://github.com/chanokin/pyDVS.

The initial goal was to provide an alternative for compu-
tational neuroscientists who required spiking visual input but
could not afford a DVS. To test the emulator compatibility with
neuromorphic hardware, we created a PyNN-compatible [14]
code template that communicates to the SpiNNaker plat-
form [15] over Ethernet. We tested the behaviour of a DVS [4]
and our emulator with a PS3Eye camera [16]. Both sensors
were pointed to a 60 Hz LED monitor and were shown an
MNIST digit traversing from left to right. Figure 11 shows a
visual comparison of the behaviour of the emulator (left) and
the DVS (right); the emulator’s output has some noise due
to automatic mechanisms (e.g. exposure, gain control, white
balance).

(a) Recording from
DVS emulator.

(b) Recording from
silicon retina [4].

Fig. 11: Visual comparison of an MNIST digit traversing a
computer screen horizontally.

With the same setup we performed tests using different
thresholds for the emulator running at 60 FPS. We counted
the number of events for every frame in the case of the

emulator and accumulated events every 16ms for the DVS
using the jAER suite. Figure 12 shows the comparison when
the emulator’s threshold was set to 12, 24, 36 and 48. Events
generated by the DVS are plotted with a dashed blue line and
the emulator’s are shown with a green line.
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(a) Emulator threshold = 12.
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(b) Emulator threshold = 24.
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(c) Emulator threshold = 36.
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(d) Emulator threshold = 48.

Fig. 12: Comparison of generated events (blue dashed - DVS,
green - Emulator).

It is noticeable that the emulator generates peaks of activity
when the image appears or has left the field of view of
the camera (Fig. 12a and 12b). We believe this is caused
by automatic exposure and gain mechanisms which we were
unable to turn off. As we increase the threshold less noise
is captured but we generate fewer spikes as well, thus we
may lose relevant data. Although having these activity peaks
is clearly different to what we expect from a DVS, we could
think of them as a way to refresh the value of these pixels or
adding noise to the spike representation.

Using conventional cameras, and thus our emulator, en-
forces certain limitations which we summarize in Table I.

TABLE I: Emulator limitations.

DVS Camera (PS3 Eye)

Power consumption 24 mW 1̃20 mW
Response time 3.6 → 15 us 8 → 33 ms
Dynamic range 120 dB 60 dB

The emulator can encode video (live or pre-recorded) and
we provide a “virtual camera” that simulates movement on
images so they can also be perceived. Using the virtual
camera and the MNIST hand-written digits database [17] we
demonstrate the emulator’s extensions. To test encodings we
converted an MNIST digit image which we scaled down to
8× 8 pixels for clarity and the reference frame’s values were



(a) Rate coded spikes. (b) Time coded spikes (linear). (c) Time coded spikes
(logarithmic).

Fig. 13: Difference between spike encodings for the first wave of spikes after the presentation of an MNIST digit.

initialized at half the scale range, Figure 13 shows the spike
representation using the developed output encodings.

The inhibitory behaviour will reduce the number of spikes
that the emulator produces per frame, while keeping some
of the information needed to represent the visual input. Fig-
ure 14a shows the detected spikes as the digit traverses to
the right. After the inhibition step fewer spikes remain while
keeping the overall shape (Fig. 14b).

(a) Raw spikes. (b) Inhibited spikes. (c) Spikes from
previous frames.

Fig. 14: Difference between raw and local inhibited spikes
from a traversing image.

Since not all the information is sent on the first frame
and objects in video generally do not move fast enough to
disappear between frames, there is a persistence of vision-
like effect of spikes for succeeding frames. To asses this we
removed the spikes that would be generated in the current
frame without inhibition (Fig. 14a) from the inhibited spike
generation (Fig. 14b), the result (Fig. 14c) shows spikes that
are the result of inhibition in previous frames. This shows a
figure that’s quite similar to the what we should have detected
in preceding frames.

Finally, we tested the weight decay mechanism, an example
of how the receiver can recover from a loss of spikes is shown
in Figure 15; of particular interest are the sender and receiver
rows, which show their respective reference frames (i.e. what
both “see”). The leftmost column illustrates how the system
starts and what spikes are going to be sent (“spikes” row).

If some of the spikes are lost (second column), the receiver
cannot reconstruct the picture correctly. After 40 waves of

Fig. 15: History decay helps to remove transmission errors
(1 spike-per-pixel with linear spike-time encoding).

spikes (rightmost column), pixels in the absolute difference
between the reference images (|send − recv| row) have an
8.6 average value which is bellow the threshold. This means
that the missing information has been retransmitted due to
history decay. Another effect of this mechanism is that the
need to constantly move the image is removed since the
reference values are continuously lowered; this effect furthers
the difference between the image and the reference up to a
point at which spikes are produced.

V. CONCLUSION

An important contribution to the field of computer vi-
sion research has been the development of image and video
databases. To utilize them in spiking neural networks without
pointing a DVS at a monitor, we developed the emulator
presented here. To encode images we developed a “virtual
camera” that simulates movement so the pictures can be



captured by the DVS. Two of these motions are inspired by
eye movements known as saccades.

Emulating a DVS provides the flexibility to modify the
system’s behaviour in software. One such change is to encode
values represented by spikes using time instead of rate. This
allows more information to be sent per spike and lowers
bandwidth requirements.

Our inhibitory component splits spike emission into, at
most, four frames and it also presents a side-effect similar
to persistence of stimuli. If the adaptive threshold block is
used, the emulator should filter out fast changing pixels thus
reducing the number of spikes emitted. After considering that
not all spikes will arrive to their destination, we developed a
history decay mechanism for the reference update. This has the
effect of fixing transmission errors and continuously sending
spikes if pixels’ difference of brightness values are larger than
the threshold, even without moving images.

VI. FUTURE WORK

While the image resolution of the current version of our
emulator is low, an OpenCL version has been developed. By
using the parallel processing nature of Graphics Processing
Units it was possible to encode images at higher resolutions
(we have tested up to 1920 × 1080 video at 30 FPS); the
main problem with this large imagery is that serializing and
transmitting such numbers of spikes has proven a hard task.

Research on encoding spikes using convolution kernels is
ongoing. We have explored, using a kernel based on Carver
Mead’s original silicon retina connectivity [2] and biologically
inspired difference of Gaussian kernels [12]. These types of
encoding could prove to be more efficient since a single spike
would represent a region of the image instead of a single pixel.
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