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Abstract—This work asks the question as to whether ‘novelty
as an objective’ is still beneficial under tasks with a lot of
ambiguity, such as Poker. Specifically, Poker represents a task
in which there is partial information (public and private cards)
and stochastic changes in state (what card will be dealt next). In
addition, bluffing plays a fundamental role in successful strategies
for playing the game. On the face of it, it appears that multiple
sources of variation already exist, making the additional provision
of novelty as an objective unwarranted. Indeed, most previous
work in which agent strategies are evolved with novelty appearing
as an explicit objective are not rich in sources of ambiguity.
Conversely, the task of learning strategies for playing Poker,
even under the 2-player case of heads-up Limit Texas Hold’em,
is widely considered to be particularly challenging on account
of the multiple sources of uncertainty. We benchmark a form of
genetic programming, both with and without (task independent)
novelty objectives. It is clear that pursuing behavioural diversity,
even under the heads-up Limit Texas Hold’em task is central
to learning successful strategies. Benchmarking against static
and Bayesian opponents illustrates the capability of the resulting
Genetic Programming (GP) agents to bluff and vary their style
of play.

I. INTRODUCTION

Poker represents a long standing game of interest for
constructing non-person characters (NPC) on account of both
the incomplete and stochastic nature of state information [1],
[2]. Considerable progress has been made relative to the devel-
opment of NPC capable of beating strong human opponents,
particular when using a combination of game theoretic and
exploitive counter-strategies (reviewed below).

In this work, our goal is not to create the strongest possible
NPC for Poker, but to use Poker as an environment for asking
to what degree novelty as an objective is still of relevance
when attempting to develop a range of NPC behaviours from
a single run of an evolutionary algorithm. That is to say, there
has been sustained interest in the utility of novelty/behavioural
diversity as an objective1 while developing NPC strategies
under gaming contexts, e.g., 3-D tic-tac-toe [3], soccer playing
agents [4] or Ms. Mac-Man [5]. Conversely, Poker is a task
that imparts a lot of ambiguity in the available state informa-
tion. The basic question we are interested in investigating in
this work is whether the explicit promotion of novelty (as a
desirable evolutionary trait) is still of fundamental relevance

1Either through novelty as an objective, use of multiple performance
objectives or a combination of both.

when attempting to evolve NPC behaviours under Evolution-
ary Computation (EC) for a task with multiple sources of
uncertainty.

II. RELATED WORK

Rubin and Watson identify four general categories of ap-
proach as pursued for identifying NPC for playing Poker [2]
(where these are often used in combination in practice):

• Game theoretic – focus on achieving optimal play through
the construction of a game tree. Given the amount of am-
biguity present in the task, a lot of computational/memory
resource is invested in parameterizing the game tree (e.g.,
Monte Carlo rollouts). The recent solution to the heads-up
(2 player) Limit Texas Hold’em Poker game utilized 200
computational nodes, each with 24 cores, 32GB RAM
and a Tera byte of HD in order to support the division
of the game into 110,565 sub-games [6]. The resulting
computation took the equivalent of 900 core-years.

• Knowledge based systems – utilize information gained
from expert play to describe strategies for NPC play, e.g.
[1]. More recently, case based reasoning has been used
as the source of information to construct the knowledge
of Poker strategies. The approach is potentially more
adaptive/scalable as, depending on current state, the case
knowledge deployed may change [7], [8].

• Exploitive counter-strategies – emphasize the develop-
ment of opponent models that are then used to develop
an explicitly exploitive strategy of play. When used
in combination with the game theoretic approach this
represents the state-of-the-art strategy for heads-up Limit
Texas Hold’em [6].

• Simulate and learn – combine simulated play against
known opponent strategies and/or self play to identify
a new NPC strategy through learning. Examples include
Bayesian networks, reinforcement learning or neuro-
evolution (discussed below). Naturally, such an approach
is also sensitive to the quality of experiences encountered
during simulation.

The approach adopted here utilizes GP, hence assumes an
approach falling into the last category. With this in mind
we make the following more detailed observations regarding
previous research.

Baker et al., assume the NEAT framework for evolving
neural network strategies for Poker NPCs and concentrate



on the relative improvement when adopting Bayesian models
to characterize opponent behaviour [9]. They also quantify
the contribution of support for recurrent connectivity in the
evolved networks. All simulations were performed using a
simplified one card version of Poker. This builds on an earlier
work by the same authors in which four styles of Poker
play (loose aggressive/passive, tight aggressive/passive [10])
are modelled and evaluated against an a priori nemesis ‘anti-
player’. The authors then develop a Bayesian opponent to
switch between the relevant ‘anti-player’ given knowledge
of past performance [11].2 We will later use this model for
defining opponents for evolving the NPC players identified
through GP. Other researchers have considered evolutionary
methods for adapting thresholds determining the point at
which basic strategies are switched between in the game
of ‘Guess It’ [13] or under simplified forms of Poker for
constructing players with specific strategies [14], [15].

Several researchers have asked what features have most
influence on the styles of Poker play identified under evo-
lutionary frameworks for NPC strategy identification. Initially
the opponents took the form of static policies [16] whereas
later work introduced separate coevolved populations for each
NPC [17]. In the latter case, specific attention is given to
how to sample ‘useful opponents’ during evolution in order
to minimize pathologies that result in evolving weak NPC
strategies.

Nicolai and Hilderman pursued an approach to No-limit
Texas Hold’em in which a neural network architecture was
evolved to suggest the raise/call/fold decisions as well as
the relative amounts bet [18], [19]. The authors assess the
relative merits of incorporating more advanced features such
as a coevolutionary multi-population formulation and a hall of
fame (HoF). Specifically, coevolution was used to mimic an
evolutionary arms race between agents sampled from different
populations. The HoF archives previously useful strategies in
an attempt to reduce the likelihood of forgetting or cycling.

III. EVOLVING GP TEAMS

In this work we make use of a previous GP framework
for evolving teams of programs, or Symbiotic Bid-based
GP (SBB) [20], [21]. Such a framework provides a flexible
architecture for promoting the evolution of complex models
for classification [21], [22] and reinforcement learning tasks
[23], [4]. In the following we highlight some of the properties
of the framework before introducing the diversity measures.3

A. Properties of SBB

Independent representation of team and program: Teams
and programs are represented by two independent populations:
Host and Symbiont respectively. Each member of the host
population represents a potential team, whereas members of
the symbiont population represent candidate programs for

2Saund describes a prior work in which more information is made public
than available in practice [12].

3Several code bases are publicly available http://web.cs.dal.ca/∼mheywood/
Code/

appearing within a (host) team. Fitness is only explicitly
expressed at the level of (host) team. After each generation
the Gap worst performing teams are deleted, and any pro-
grams failing to be indexed by at least one team are deleted.
Variation operators act on the remaining content generating
new individuals by: 1) cloning a team, 2) adding/deleting
pointers, 3) cloning one or more symbiont program and then
adding/deleting/modifying instructions [20], [21].

Separating context and action: A ‘bidding’ metaphor is
used to explicitly separate the issue of learning a context (for
an action) and suggesting the action itself [20], [21]. Given the
current state from the task domain and a (host) team currently
under evaluation, evaluate each symbiont program which are
a member of this (host) team. The program with maximum
output ‘wins’ the right to suggest its corresponding action.
Under reinforcement domains, actions take the form of atomic
task specific actions, in the case of Poker three actions are
assumed: raise, call, or fold. Each program may only assume a
single action. Thus, a team must index programs with at least
two different actions, however, the compliment of symbiont
programs in any given team represents an evolved emergent
property. Different teams may have different numbers of
programs, symbiont programs can appear in more than one
team, and teams may have multiple programs with the same
action. All this freedom in how programs can be deployed
by (host) teams provides a wide range of mechanisms for
discovering task specific decompositions [21], [4]. Finally, we
note that in order to provide the ability to recall previous
state (the equivalent of recurrent connections in a neural
network) under GP we assume a linear representation (e.g.,
[24]) in which the content of the registers is retained between
consecutive program executions. That is to say, at t = 0 (i.e.,
before the first card is dealt) the register state is initialized (to
zero) thereafter, registers retain state between each program
execution. Only after the final state is known (e.g., showdown)
will the registers be reset.

Inter-host diversity: Despite the use of a teaming metaphor
there is no guarantee that a single champion team will emerge
that solves all of a task at the end of evolution. As a
consequence, mechanisms to encourage inter-host diversity
are utilized: implicit diversity maintenance (fitness sharing
[3], [21]), multi-objective formulations [5], diversity as an
objective [25], or some combination of fitness maximization
and novelty [26], [27], [4]. This means that a population of
teams with a range of behaviours may emerge that potentially
covers the total set of policies necessary to solve a task (e.g.,
[28]). It is this latter trait that we are particularly interested
in under the specific example of the Poker task, i.e. a game
of incomplete information with multiple sources of ambiguity
opposed to most of the previous research on novelty which
tends to assume some form of robotic control with little/no
stochastic properties and complete information.

B. Diversity as an objective

Fitness is calculated using a dual objective Pareto opti-
mization (score and diversity); the first will be expressed as



the score of each team relative to a sample of hands against
various opponents (Section IV-E). Diversity will be maintained
through the use of the following two diversity mechanisms:

Team complement: expresses diversity in terms of a pair-
wise comparison in program membership [29]. Thus, the
distance between two teams tmi and tmj is summarized as
the ratio of active programs4 common to both teams, or

dist(tmi, tmj) = 1− Tmactive(tmi) ∩ Tmactive(tmj)

Tmactive(tmi) ∪ Tmactive(tmj)
(1)

where Tmactive(tmx) represents the set of active programs in
team x. Naturally, such a diversity metric is task independent
and explicitly ignores hitchhiking programs.

Behavioural diversity: assumes the concept of a ‘normal-
ized compression distance’ [26], [29]. That is to say, quantized
state-action pairs are recorded for each agent over a set of
games. Only the k most unique traces are retained per team.
For any pair of teams, the behavioural distance for the two
teams quantized state-action pairs is denoted by:

dist(hi, hk) = NCD(~Pi, ~Pk) =
Z(~Pi

~Pk)−min(Z ~Pi, Z ~Pk)

max(Z ~Pi, Z ~Pk)
(2)

where Z(~Pi
~Pk) is the compressed length of the two pro-

file vectors ~Pi and ~Pk for team i and k respectively. The
equation leverages the ability of compression algorithms to
filter redundancies in data. For example, if ~Pi and ~Pk are
very similar, then Z(~Pi

~Pk) → Z ~Pi → Z ~Pk, in which case
NCD(~Pi, ~Pk) → 0; otherwise NCD approaches 1 with
increasing difference between vectors. NCD is informative
even when comparing vectors that differ in length, which
is important because hands will not always complete in a
common number of interactions.

IV. EXPERIMENTS

This work examines the role of opponents as well as novelty
mechanisms on the ability to evolve diverse and non-trivial
SBB agents capable of playing the full game of heads-up
Limit Hold’em Poker. In these experiments, training opponents
are drawn from: 1) a static pool, 2) trained Bayesian models,
or 3) are the result of self-play. Moreover, both fitness alone
and diversity mechanisms are assumed during training. The
SBB parameters used in this work are provided by Table I
and are common across all three training scenarios. Table II
characterizes how cards are drawn to describe games and the
types of opponents encountered. In the following we detail
how these parameters are arrived at.

A. Poker Task: heads-up Limit Texas Hold’em

In this section we briefly describe the heads-up Limit
Hold’em game and basic rules of the game. The game of
heads-up Texas Hold’em is a two-player card game where each
player wagers (or not, as players are free to exit the game, or

4An active program is one that wins at least one bidding round during
evaluation across multiple training games.

TABLE I
GENERAL SBB PARAMETERS FOR TRAINING POKER AGENTS.

INSTRUCTIONS HAVE THE GENERAL FORM R[x] = R[x]〈op〉R[y] OR
R[x] = 〈op〉R[y] DEPENDING ON THE OPERATOR ARITY. x AND y

REPRESENT REGISTER REFERENCES AND A MODE BIT MAY TOGGLE R[y]
TO INDEX A STATE ATTRIBUTE. RELATIONAL INSTRUCTIONS HAVE THE

FORM: IF R[x]〈op〉R[y] THEN 〈instruction〉]

General Parameter Value
Runs 25
Generations 300
Teams 100
Team Replacement Rate 0.5
hand Replacement Rate 0.2
Selection Type Uniform
Team Size Min: 2, Max: 16
Program Size Min: 5, Max: 40
Total Registers 5
Operators 〈op〉 ∈ {+,−, /, ∗, ln, exp, cos}
Relational <,≥
Reproduction Mutation
Team Mutation Program: Add / Del: 0.7, Mutate: 0.2
Instructions Add / Del: 0.5, Change: 1.0, Action: 0.1

TABLE II
HAND AND OPPONENT PARAMETERS FOR TRAINING POKER AGENTS

Hand / Opponent Parameters Value
Total Hands 600
Static Opponents (LA, LP, TA, TP) 4 (one of ea.)
Bayesian Opponents 4
HoF Opponents (training only) 0-2

‘fold’, during any betting round) on the prospect that they hold
the highest ranking five-card Poker hand. Each player must
use the best possible combination of five visible (community)
cards and two private (so-called ‘hole’) cards to make up their
five-card Poker hand. Community cards are upturned (face
up) and considered public information as opposed to the hole
cards of each player, which are hidden information from the
perspective of the opponents. ‘Limit’ is a version of Texas
Hold’em where betting rounds are fixed with respect to bet
size (some number of ‘chips’) and total number of bets that
can be made and ‘heads-up’ is the designation given to the
two-player incarnation of the game.

The game (or ‘hand’) begins with users paying forced or
‘blind’ bets that are fixed relative to which player is considered
to be playing in the ‘dealer’ position. A token (a.k.a., ‘button’)
is circulated in order to designate this player for each game
so that every player will eventually pay the blind bets before
the cards are dealt. The blind bets are used to incentivize the
betting action so that some amount is always at stake, even
before any cards are dealt. With the blind bets in the pot,
the dealer proceeds to deal two hole cards to each player and
a betting round (known as ‘pre-flop’) takes place. A set of
three community cards are dealt (referred to as the ‘flop’)
and are public information for which players can begin to
formulate an estimate of their hand strength and potential.
Moreover, another betting round ensues where players might
infer something about the strength of their opponents hand. An
additional public card is dealt (‘turn’) and yet another betting



round ensues. The fifth and final card is dealt (‘river’) and the
last round of betting takes place. Assuming no players fold on
the river round, the players then enter the showdown phase,
revealing their hole cards. The player with the highest ranking
five-card Poker hand wins the chips in the pot and pots are
split in the event of a tie. More details on the game of Limit
Texas Hold’em are available from multiple sources, e.g. [30].

B. Training of SBB Poker Agents

We consider three training scenarios and provide a basis for
the learning context with the reinforcement style SBB learning
environment configured for the various training scenarios [23],
[4]. At each training epoch, a set of 600 hole cards are
sampled such that they have similar strength across nine pre-
defined hand groupings according to hand strength [1]. Such
an approach is taken on account that hands drawn randomly
will represent weak hands in the vast majority of cases. Under
such a condition it is most likely that a learning agent will just
‘fold’, thus not learning anything.

Specifically, hands are broadly categorized across three
groups as weak, intermediate and strong. Hands are deployed
evenly across both agent and opponent starting hands (for a
total of nine groups). Whereas an unbalanced dealing refers
to the traditional dealing of starting hands in which a real-
world game of Texas Hold’em Poker result in approximately
60% of all hands being considered weak, 30% intermediate
and 10% strong. For the balanced distribution, the hands are
equally distributed between the opponents, so that if there are
4 opponents and 72 hands, each opponent will participate in
2 hands for each of the 9 types of hand balance. The three
training configurations for SBB are described as follows:

1) no diversity, trained on static opponent pool and HoF;
2) with diversity, trained on static opponent pool and HoF;
3) with diversity, trained on static opponent pool, HoF and

Bayesian opponents.
There are a total of 14 inputs, compatible with that of

the standard Limit Texas Hold’em Poker environment estab-
lished by the Annual Computer Poker Competition (ACPC)5,
normalized between 0.0 and 10.0. The inputs are divided
in two groups, for inputs about the hand (Table III) and
inputs modeling the opponent (Table IV). Effective Potential is
composed of hand equity (for the pre-flop), hand potential (for
the flop and turn), and hand strength (for the river) [1]. Equity
in the pre-flop is used as a way to deal with the infeasibility
of simulating all the next possible hands, and hand strength is
used in the river since it estimates the potential for that round.

C. Opponents

Three types of opponents are deployed to play as SBB ad-
versaries in the heads-up Limit Hold’em task: Static, Bayesian,
and HoF. The Static pool consists of one of each of the four
classical opponent types (LP, LA, TP, TA) [10], [11]. For
each classical opponent type we characterize the play type as
{loose, tight} and either {passive, aggressive} [10] where each

5https://github.com/jmasha/acpc poker client

TABLE III
GAME STATE INPUTS ABOUT HAND

Input Description
Hand Strength Current best hand rank [1]
Effective Potential Hand equity, potential [1], and strength
Pot Odds Hand value relative to pot size [1]
Betting Position First or second to bet, for current round
Betting Round Pre-flop, Flop, Turn, River

TABLE IV
GAME STATE INPUTS ABOUT OPPONENT

Input Description
Last Action The last action in current hand
Long-term Aggressiveness Opponent aggression over time [19]
Short-term Aggressiveness Recent opponent aggression [19]
Hand Aggressiveness Opponent aggression, current hand
Tight / Loose How many hands the opponent played
Passive / Aggressive Ratio of calls to raises
Bluffing Freq. of raises with weak hands at river
Chips Current chips won / lost vs. opponent
Self Short-term Aggres. Player’s aggression against opponent [19]

pair is controlled by α in the case of the former and β in the
case of the latter. These parameter-controlled opponents were
defined using the model from the work of Baker et al., [11],
[9] using the hand strength as the winning probability and the
α and β parameters. The α parameter defines the threshold
of hand strength so that the player enters the hand (or folds)
whereas β defines how passively or aggressively the player
will take action (call or raise). Opponent types are described
in more details below.

LP Loose passive opponents are characterized by low
requirements for hole card strength (α = 0.2) and
less likely to raise during the ensuing betting rounds
(β = 0.8).

LA Loose aggressive opponents are know as the ‘wild
man’ strategy, characterized by low requirements for
hole card strength (α = 0.2) and more likely to be-
come the aggressor by raising during betting rounds
(β = 0.4) despite playing a potentially volatile range
of hand strengths.

TP Tight passive combines the high requirements for
starting hand strength (α = 0.8) with passivity in
the betting rounds (β = 0.95).

TA Tight aggressive opponents are typically seen as
a relatively dangerous combination between hand
selection requirements (α = 0.8) with aggressiveness
in the betting rounds (β = 0.85).

Bayes The Bayesian opponent was implemented following
the model of Baker et al., [11], [9] with a few
adaptations to tune the parameters for Texas Hold’em
Poker. In the original model, four players are trained
so that α and β values are optimized against the four
classical opponents. Finally a Bayesian model is used
to define which of the four styles the opponent is
playing, based on their actions and on predefined
action probabilities per style. The final step is to



execute an action from the player that is stronger
against the estimated style of the opponent.

HoF Champion agents are retained for training via a
Pareto archiving mechanism that considers both fit-
ness and NCD diversity as dual objectives. Archiving
proceeds such that a maximum of two HoF op-
ponents are eventually applied during the training
process.

D. Testing of SBB Poker Agents

Testing is conducted with respect to two configurations,
namely: 1) Balanced distribution of hands, and 2) Unbalanced
distribution of hands. The balanced distribution represented the
distribution of card hand strengths (weak, intermediate, strong)
employed during training, whereas the unbalanced distribution
represents the distribution that would be encountered under a
practical setting (60%, 30%, 10%). In each case, we consid-
ered Static opponents and Bayesian opponents.

E. Fitness

The fitness function for individual SBB teams is calculated
as the number of chips won per hand, considering the max-
imum number of chips that can be theoretically won or lost.
A fitness of 0 indicates that all possible chips were lost (i.e.,
raised in all their opportunities but lost at the showdown),
0.5 means they neither lost or won chips (i.e., break even),
and 1.0 means they raised every time and won the showdown.
Since the Poker game implemented is the full game with 4
betting rounds, small bet of 10 and big bet of 20, the maximum
amount of chips a player can either win or lose per hand is
240. So the fitness [0.0, 1.0] is a mapping from [-240, +240].
As an example, a player that obtained a mean fitness of 0.6
across its matches won an average of 48 chips per hand. The
same function is employed in all testing.

Fitness and the diversity measures of Section III-B are
combined through the following two step process [27]:

1) Stochastically select one diversity measure at the be-
ginning of each generation. This minimizes the compu-
tational overhead of supporting multiple diversity mea-
sures.

2) Rank the combined fitness and diversity as two ob-
jectives using Pareto dominance. This implies that the
Pareto rank of individuals in the (2-dimensional) objec-
tive space establishes their relative quality, hence fitness
and diversity represent equally important ‘objectives’.

V. RESULTS

Test result distributions are collected for 1260 hands against
each opponent to demonstrate the overall hand performance
(scores – ranging from 0 to 1260, i.e., sum of fitness values
across hands) to illustrate the average number of chips won
during the test scenario, with 0 indicating maximum loss to
1260 indicating maximum won across all hands played.

Post-training, the entire performance of the population is
ranked according to median score performance of each individ-
ual (descending) and the combined ‘cumulative’ (ascending)

scores. That is to say, given individual i then the cumulative
score reflects the score assuming an ‘oracle’ may choose the
best individual to play the hand from the set {1, ...i}. The
cumulative curve will never be worse than the individual-wise
curve, however, if the cumulative curve is significantly better,
this indicates that individuals have identified non-overlapping
strategies that complement each other.

Both ‘random’ and break-even (‘draw’) lines are provided in
each performance chart to illustrate where a random act (no
environment information) performs against opponent curves
and where each team would have to perform to simply break
even (return of zero chips), respectively. Also, for the hands
against static opponents there is a line corresponding to the
performance of the Bayesian opponent.

Additionally, we compared the final results between the
teams trained and not trained against the Bayesian opponent.
A (non-parametric) Mann-Whitney U test with significance
level less than 0.05 was applied to test the distributions of
the individual and cumulative performances for the 25 runs
in all the test scenarios. The only scenarios that were statisti-
cally different represent those against the Bayesian opponent,
with balanced hand distributions. With this in mind, we first
introduce the base case of no diversity, and then comment on
performance against the static LA and then Bayesian opponent
(space precluding reporting of all possible combinations).

A. No Diversity

A control experiment is conducted in which SBB is trained
without any diversity mechanisms (as described in section
IV-E). Individual and cumulative performance results against
the static LA opponent across 1260 unbalanced test hands are
summarized in Figure 1, and against the Bayesian opponent
in Figure 2. The performance distributions are nearly flat
across both individual-wise and cumulative curves, indicating
not only poor performance in teams, but also a distinct lack
of diversity between teams since cumulative recombining
of teams was not able to return an improvement in score.
Moreover, the cumulative-wise score are just barely better
than the Bayesian score against the LA opponent. We note,
however, that the best performing no diversity SBB team
returns a score that is significantly better than random. The
case for balanced test hands returned results that were largely
similar, however with best scoring no diversity SBB teams
performing worse (just breaking-even) than the unbalanced
cases.

B. Diversity SBB vs. Static opponents

Figure 3 summarizes scores under test games for SBB
evolved with diversity maintenance versus the static LA op-
ponent. The single best individual already outperforms the
opponent (i.e., score above the ‘draw’ line), and a strong
cumulative curve is also apparent with different individuals
clearly being effective under different hands. In fact, in all
test cases, for both balanced and unbalanced against all the
4 static opponents, the best individual team outperforms the
static opponents, along with strong cumulative curves. Another
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Fig. 1. No diversity SBB vs. LA opponent, for 1260 unbalanced hands.
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Fig. 2. No diversity SBB vs. Bayesian opponent, for 1260 unbalanced hands.

clear observation in the chart is that the Bayesian opponent
tends to win more chips than the single best SBB individual
when playing against the same static opponents. However,
these results do not characterize performance when against
each other (see the next section).
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Fig. 3. Diversity SBB vs. LA opponent, for 1260 unbalanced hands.

C. Diversity SBB vs. Bayesian

Figure 4 shows the outcome of SBB with diversity playing
1260 hands against the Bayesian opponent. Indeed the top 32
(out of 50) individuals performed better than the Bayesian
model and the cumulative performance climbs appreciably
within the first 75% of the population. Moreover, this property
is common both for the teams that were/weren’t trained against
the Bayesian opponent, so diversity SBB is consistently shown
to outperform the Bayesian opponent. Clearly, the maintenance
of diversity is the key to this property. Additionally, the
diversity measures used are not task specific (Eqs. (1) and
(2)), thus do not rely on intuition regarding what might be an
appropriate task specific measure of diversity.

Fig. 4. Diversity SBB vs. Bayesian opponent, for 1260 unbalanced hands.

D. Behavioral Properties of SBB agents

The behavioral properties of trained SBB agents are pro-
vided in the following plots and include: win rate, hands
played, bluff frequency, and aggression. In general it is
clear that the real-world Poker hand distributions (unbalanced
hands) lead diversity SBB to behave more aggressively (and
with more success) than in the balanced scenarios. All the
properties were computed against the Bayesian opponent,
using 1260 balanced and 1260 unbalanced hands.

1) Hands Played and Won: In terms of play (Figure 5),
we note that more hands are played in the unbalanced test
scenario. This is intuitively necessary given the broader range
of hands. Specifically, the best scoring teams are able to play
around 60-80% of hands for their maximum score in the
unbalanced tests. Balanced hand performance peaks near 50%
of hands played, which is another intuitive result given that
the hole cards are very close in strength. Winning outright,
however, is another matter (Figure 6). Here we found that the
best agents were typically only winning between 35 and 40%
of the hands overall. Moreover, a plot of cumulative potential
as a result of winning alone against all opponents (sample
against LA opponent in Figure 7) does not increase with the
addition of teams. This suggests that the best individual teams
are already winning the hands that can be typically won (on
average) and that the additional behaviors are the means by
which combinations of teams are able to exploit opponents
and achieve better cumulative results.
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Fig. 5. Play rates vs Score of SBB agents.
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Fig. 6. Win rates vs Score of SBB agents.

Fig. 7. Diversity SBB vs. Bayesian opponent, ranked by hands won for 1260
unbalanced hands.

2) Bluffing and Aggression: In both the cases of bluffing
(choosing to raise on the river, despite a weak hand) and
aggression (stronger tendency to raise, then to call, and then
to fold), the SBB agents are seen to increase the levels of
these behaviors in the unbalanced test scenarios (Figures 8
and 9). While this is relatively intuitive, given the greater
likelihood of hand differential in real-world hand distributions,
it is interesting to note the success of bluffing and aggression
in the unbalanced test case. In terms of bluffing, the utility

falls off at around 10% in balanced cases whereas bluffing
behavior continues to be useful up to approximately 50% of
the time in the unbalanced testing scenario. It is clear that
bluffing behavior in the most successful teams is deployed
about 30% of the time against the Bayesian opponent (Figure
8). Given that the cards dealt under the unbalanced scenarios
contain more weak hands (and vice versa under the balanced)
this appears to indicate that bluffing/aggressive play is being
used under the weaker hands to hide the true strength of the
private cards. It is intuitive that the converse appears under the
balanced scenarios where there are stronger hands.
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Fig. 8. Bluffing rates vs Score of SBB agents.
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Fig. 9. Aggressiveness vs Score of SBB agents.

E. Most Used Inputs

The Table V shows the most used inputs, by the percentage
of teams that had at least one program that used it. This data
was obtained at the end of the training where the teams trained
against the Bayesian opponent. Perhaps surprisingly, three of
the five most used attributes are opponents’ inputs, while the
top two are environment inputs. A few of the inputs were
nearly redundant, but they were available so the teams could
‘choose’ which ones worked the best. So it is interesting to see
that more teams used ‘effective potential’ than ‘hand strength’,
and that inputs that modeled the opponent’s aggressiveness on
short-term were more employed than the ones for long-term
behavior.



TABLE V
SBB TEAM MOST USED INPUTS

# Input % Usage
1 pot odds 82.7
2 effective potential 80.1
3 opp passive/aggressive 73.5
4 opp hand agressiveness 72.0
5 opp short-term agressiveness 71.9
6 hand strength 70.9
7 opp bluffing 69.9
8 round 68.8
9 self short-term agressiveness 68.8
10 chips 67.4
11 opp tight/loose 65.0
12 betting position 64.5
13 opp agressiveness 64.2
14 opp last action 63.8

VI. CONCLUSION

The contribution of novelty as an objective is investigated
under the highly ambiguous task of evolving strategies for
playing heads-up Limit Texas Hold’em Poker. It is demon-
strated that supporting novelty in addition to the underlying
performance objective of maximizing chips won, represents
a significant factor. Additional ‘must have’ properties include
ensuring that training is performed against a balanced sam-
pling of hole card strengths and including a cross section
of opponent capabilities. The resulting Poker strategies are
capable of better play than the opponents and appear to
index attributes to support temporal properties of the game.
Moreover, we note that the novelty objectives employed are
not task specific, indeed they were first demonstrated under
the Keepaway soccer task [29].

In terms of future work, the cumulative curves hint that there
is the potential for deploying some subset of the Poker playing
agents collectively. However, additional research would be
necessary to identify an efficient mechanism for doing so.
Current state-of-the-art relies on extensive self-play between
different policies to construct game trees capable of resolving
this issue [6].
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