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Abstract—The design of rules governing the behaviour of a 
follower in a leader-follower system is a non-trivial task. In this 
paper, we investigate three Boids-like behavioural rules: 
alignment, attraction and separation. We systematically design 
and investigate the impact of different reward functions on the 
three behaviours using evolutionary computation methods. A 
Learning Classifier System initially starting from a set of random 
rules is used to evolve the Follower behaviour of agents within a 
simulated leader-follower environment. We present a series of 
systemic experiments to reveal and understand the 
interdependency between the incrementally-designed reward 
functions and the performance of the Follower in conforming to 
the three parameters. We demonstrate that an incremental and 
systemic design of the reward function is sufficient to reproduce 
Reynolds’ rules from zero domain knowledge and that the 
solution is robust against shifts caused by evolutionary dynamics. 

Keywords—Learning Classifier System; Simulation; BOIDS; 
Evolutionary Computation 

I. INTRODUCTION  
Evolving behaviours, rules and procedures provides an 

interesting alternative to hard coded solutions; especially in 
novel environments where autonomous agents could be 
exposed to environmental conditions that were not available at 
design time. The ability to design a system that starts with no 
domain knowledge (an empty or randomly generated rule set), 
and then allowing the system to evolve the correct knowledge 
through a series of interactions with the environment, over 
successive generations, can reveal novel solutions to problems 
where the relationship between system inputs (agent’s 
perceptions) and output (agent’s actions) can be difficult to 
understand or adequately define. Moreover, it may even shed 
some light on how nature as a designer has evolved the 
complex autonomous behaviours we see today.  

Our motivation is to understand if and how Boids-like rules 
can be discovered through simple reward functions and if such 
behaviours are evolutionary stable strategies. We seek to 
develop structured Boids-like behaviour in an evolutionary 
simulation by defining objective functions that serve as a 
reward mechanism for the simulation. These functions describe 
the desired behaviour of the system without needing to make 
any assumptions as to how the system will achieve this 
behaviour. Rewards under this scheme are apportion by 
comparing the past system state to the current system state. A 
Learning Classifier System (LCS) has been chosen as the 

means of knowledge discovery. LCS systems generally excel 
at finding a set of rules/Classifiers that describe a required 
input-output mapping.  

The original work from which this paper draws from is Craig 
Reynolds' paper from 1987 [1]. In his paper, Reynolds 
described a model that did not seek to represent all the 
characteristic of a flock of living birds, but instead emulates 
the elements of flocking which he believed resulted in the 
visual characteristics of flocking behaviour. These specifically 
being; the propensity of a member to want to align itself with 
the direction of movement of the flock (alignment), the desire 
to centre itself in the flock (attraction/cohesion) and the desire 
to avoid collision with other members of the flock 
(separation). It is from these factors that the experimental 
parameters for this paper have been derived.  Though, for this 
simulation, Followers attempt to arrange themselves around 
the leader, whom is the centre of the flock for this case. The 
motivation for this is to show that the system is externally 
controllable. Recent papers such as those by Benes and 
Hartman [2] have sought to extend these visualizations by 
modelling the more complex behaviours of flocks of birds, 
with the goal again being to make visually appealing 
simulations of flocking birds. Evolutionary simulation has 
further been applied to swarming such as the work of Ferrante 
et.al. [13] which attempts to parallel the natural evolution of 
task specialized behaviour in swarms. 

Work has also been conducted in the area of flock statistics. 
For instance, Harvey et.al. [11] look at the minimum required 
parameters for flocking in a Boids model using chaos 
measures. This in particular pertains to this paper as they 
indicate that flocking behaviours can be achieved with a 
limited number of the 3 forces used in Reynolds’ model. 

Kovacs and Kerber [5], and Takadama et.al. [7] discuss some 
of the issues facing implementations of LCS’, particularly in 
multi-agent environments. In particular, Takadama et.al. [7] 
propose a solution using the Organisational Learning 
Classifier System which implements rule sharing between 
agents in order to allow the system to reach a solution far 
faster. It is hoped that the use of a single Classifier set in the 
simulation that is shared amongst multiple agents will mitigate 
some of the issues surrounding LCS in multi-agent 
environments.  



The Boids model of flocking has received much attention over 
the years as it has shown a robust starting point from which to 
develop many more complex and intricate systems. The topic 
of evolution within such behavioural models is also not new as 
discussed above. However, the application of LCS’ to Boids-
like simulations appears to have received far less coverage in 
the literature. 

The basic LCS structure was introduced by JH Holland in a 
1975 paper [3], [8], [10], in which he referred to an adaptive 
cognitive system. This system comprised many of the basic 
elements of a Classifier system and coined much of the 
common terminology.  

Learning Classifier Systems in general describe the use of 
evolution and learning to discover a set of competitive rules, 
called Classifiers, for classification and/or control problems. 
Classifiers are competitively selected, rewarded and bred with 
the goal being to produce a set of Classifiers that adequately 
describes a desired/target behaviour. These Classifiers, in their 
classic form, are represented as propositional rules taking the 
form of: If-Condition—Then-Action [8], [10], [14]. Each 
Classifier also contains some form, or forms, of metric that 
describe its relative strength when competing with other 
Classifiers for selection, breeding and other rights. Each time 
a Classifier is selected by the simulation and its action is 
performed/executed, the outcome is assessed by some reward 
mechanism. The Classifier is then rewarded or punished by 
increasing or decreasing its strength metrics; a mechanism 
known as the credit-assignment problem.  

A LCS employs both evolution and reinforcement learning to 
discover and then reinforce those rules that provide a desired 
outcome as determined by the objective function. In addition 
to these basic processes, most LCSs will also have additional 
mechanisms for rule discovery. The process of rule discovery 
allows the system to self-discover unique combinations of rule 
parameters that may provide all or part of the solution to a 
given problem. The most basic forms of rule discovery include 
the covering operator, which produces a Classifier to match an 
input if one does not yet exist in the Classifier set and the use 
of Genetic Algorithms to produce new rules through cross 
breeding of the existing rules.  

In this paper, we employ a LCS to evolve the set of rules 
required to achieve the three Boids’ behavioural rules. We 
systematically investigate the role of the objective function as 
a measure of a Followers’ success at completing a task 
according to some implicit behaviour encoded in the ‘reward’ 
concept. The objective function controls the nature of the 
reward apportioned to a Classifier through the reward 
mechanism.  

The rest of this paper is organized as follows. In Section II, the 
methodology is explained in details. The experimental 
protocol is then discussed in Section III followed by Results, 
Analysis and Discussions in Sections IV to VI, respectively. 
Future Work is then discussed, and Conclusions are drawn, in 
Sections VII and VIII, respectively.  

II. METHODOLOGY 

A. Leader Follower Relationship 
The agents were modelled as one of two possible types; either 
a Leader or a Follower. The behaviour of a leader is pre-
scripted to generate behavioural patterns consistent with the 
experimental protocol. The Leader acts as a goal point for the 
Follower agent type. Follower behaviour is defined by the 
selection of a Classifier from the Classifier set at each 
simulation step. The Follower then applies the action 
corresponding to the selected Classifier through its effectors. 
Once the action is completed, information on the action is 
passed to the objective function which then determines the 
level of reward, positive or negative, to be applied to the 
Classifier. Figure 1, shows a basic flow chart of the execution 
process within the simulation. 

B. Reward Functions  
A primary goal of this paper was to test the effects of the 
reward function on the evolution of the system. Testing was 
conducted for a binary reward, i.e. +2 or -2 corresponding to 
positive or negative behaviours as determined by the objective 
function/s. By using such a simple reward strategy, the work 
in this paper demonstrates if, and how far, one can simplify 
the complexity of the reward system to generate some desired 
behaviours.  

In nature, evolution does not stop. It is a continuous process 
representing forces acting on species. Despite this, some 
behaviour continue to exist. In the field of evolutionary 
dynamics and evolutionary game theory, such behaviours are 
known to be evolutionary stable strategies/behaviours. This 
begs an inquiry into Boids-type behaviours to investigate if 
such behaviours are indeed evolutionary stable. We 
investigate this phenomenon experimentally by continuing the 
evolution after a desired behaviour is found. 

C. Simulation Environment 
In order to adequately explore the design of the objective 
function and the emergence of structured behaviour, the 
development and testing of the simulation was broken down 

 
Fig. 1. Representation of Simulation Flow 



into multiple phases, with each consecutive phase adding 
additional functionality to the simulation. The phases were 
ordered firstly along the lines of the three main attributes 
previously discussed; these being attraction, alignment and 
separation. The reward function of the simulation was 
progressively modified to select for different combinations of 
these attributes. With the performance of the Followers at 
meeting these requirements being characterized with each 
modification of the objective function. 

The second stage of development, involved varying the 
behaviour of the leader once the behaviour of the Followers 
had been established and characterized. The purpose of this 
testing was twofold. In the first instance this testing served to 
characterize how robust the system was to the changing 
position of the leader, and more specifically how well the 
reward function handled these variations. In addition to this, a 
moving leader better approximates the dynamic nature of all 
agents in the original Boids model. 

The simulation was implemented using the Java simulation 
package called MASON [16], provided under the Academic 
Free License version 3.0. 

D. Simulation Space Abstraction and Simplifications 
In order to reduce the number of possible Classifiers in the 
system to a feasible number for modeling, the simulation 
space required abstraction to allow for a simplification of the 
pre-conditions and a reduction in their number. This 
abstraction reduced the size of the solution space within the 
simulation as a precondition must logically exist for each of 
the possible configuration of the simulation space. The total 
number of possible Classifiers was then total number of pre-
conditions, multiplied by the total number of possible actions. 
This factor was the driving force behind the chosen method of 
abstraction. For this simulation the space surrounding each of 
the Followers was broken up into a series of regions centred 

on the agent, extending to perception boundaries. These 
regions were generated by dividing the space around each 
agent first radially into 36 segments providing 10° of arc for 
each segment. These segments where then further sub-divided 
by bracketing the distance between the Follower and the limit 
of its visual range into 20 increments of distance. The 36 
segments directly around a given Follower were considered 
jointly to be the origin sector. This yielded 684 total sectors 
around each Follower. Figure 2 shows a representation of this 
space. Decision by the Follower was then made based on how 
the Leader and other Followers were distributed amongst these 
sectors. 

E. Metrics for Testing 
Several metrics have been defined in order to assess the 
performance of the objective functions. Each metric 
correspond to one of the previously identified parameters: 
attraction, alignment and separation. Each of these metrics 
was measured with reference to the leader in this paper. 

1) Attraction: Attraction was determined by finding the 
separation between a Follower and the Leader. This value 
could then be compared to the previous values. If this value 
had decreased then the system was rewarded. The distance at 
each step was also recorded with a smaller average distance in 
this case indicating greater attraction between the Leader and 
Follower. Distance is measured in pixels, throughout the 
results section.  

2) Alignment: Within the simulation a Follower was said 
to be in alignment with the leader when the Follower's 
velocity vector was aligned to a vector drawn between the 
Follower and the leader within a margin of error equal to half 
the angle bracketing span i.e. 5.0° (see simulation space 
abstraction for details of bracketing). Alignment is measured 
as a percentage of the total simulation time for which this 
criterion was met. E.g. 3.45% would indicate that for 3.45% of 
the indicated time interval the Follower was aligned with the 
leader as specified above.  

3) Separation: In order to measure separation, the 
simulation recorded all instances where-in the Follower 
violated a predetermined boundary around the Leader. This 
boundary was set to be one interval of distance as defined in 
the simulation space abstraction. This interval size was the 
minimum permissible distance that could reasonably be 
perceived by a Follower given this abstraction scheme. The 
number of violations of this space was then averaged over the 
duration of the simulation to yield a measure of the success of 
a Follower in maintaining separation away from the Leader. 
Separation was specified as the total time for which the 
Follower did not violate the boundary specified above a 
percentage of the interval indicated. E.g. 99.98% would 
indicate that the Follower did not approach the leader closer 
than one interval of distance for 99.98% of simulation time. 

 
 

 
Fig. 2. Representation of Simulation Space Abstraction 



 

TABLE I.  REPRESENTATION OF THE CLASSIFIER STRUCTURE USED IN 
THE SIMULATION 

Description Representation of Classifier Structure 
Sector 1 2 3 ... origin leader 
Min 0.1 -1 0 ... 0 27 
Max 0.7 0.5 0.2 ... 0 unused 

 

F. Classifier Design and Representation 
The Classifiers used in the simulation where directly modelled 
to reflect the representation shown in Figure 2. Each Classifier 
consisted of a 2-Dimentional array of numbers with a span 
equal to (684+2) and a depth of 2. Table I shows a general 
representation of the Classifier structure used in this 
simulation. Each column represents a one to one mapping of 
the sectors around the Follower; numbered as shown in Figure 
2. The origin was then appended at the end of this array. The 
final element of the array was the location of the Leader 
relative to the Follower was recorded in the last cell. Each 
sector, aside from the element containing the leader location,  
was given a minimum and maximum value corresponding to a 
total number of other Followers in that sector, normalized over 
the total Followers population. In addition to a positive 
number between zero and one, a value of -1 (or #) was 
included as the ‘don't care’ case for this Classifier structure. 
Table I shows a representation of the classifier structure. 

Each Classifier also contained an action which comprised a 
direction in which to move and a magnitude/speed at which it 
should move in the given direction. Thus the effectors of each 
Follower were its X and Y velocity which could be increased 
or decreased corresponding to the action of a selected 
Classifier within a predefined velocity limit.  

III. EXPERIMENTAL PROTOCOL 
The experiments as a part of this paper were conducted in the 
following stages. 

A. Establishing a Baseline 
In order to establish a baseline for the performance metrics to 
be used in later experiments, testing was first conducted to 
characterize the baseline performance of the system. This was 
done by measuring the distance, alignment and separation 
parameters for the Follower when conducting a random walk 
in the environment for both a static and dynamic Leader. 

B. Progressive Testing of Objective Function 
Once the baseline was established testing was then conducted 
using a number of objective functions, both individually and 
in combination to characterize their performance.  

C. Simulation Parameters 
Aside from the parameters of the simulation space abstraction, 
the key parameters of the simulation are as follows: the 
simulation was conducted on a 600x600 cell grid. In the case 
of static testing, the leader was placed at the centre of this 
grid. One follower and one leader were simulated using a 
classifier set of size 5000. This set size was based on the 
number of sectors in the simulation space abstraction (684), 
plus a generous margin to allow for multiple potential 
solutions to be maintained and compete simultaneously. Each 
generation in the simulation spanned 1000 simulation steps 
with the GA implementing one point crossover with a 
mutation rate of 0.05. In each simulation step, all classifiers 
having strength of one, the minimum possible strength were 
"culled" from the classifier set and replaced with a new 
random classifier. This random-replacement strategy generally 
resulted in a more rapid evolution of the system as non-ideal 
classifiers without the random-replacement strategy took far 
longer to be removed by replacement from the GA and 
Covering operator alone. 

IV. RESULTS 
Listed below are the results from the testing of each of the 
reward functions, as well as the combined function. Also 
shown is an example for the output of the combined objective 
function for a static and moving leader. All graphs represent a 
fitted function in the measured values. We do not show the 
original values for two reasons. First, the reward functions 
come with different magnitude, making it almost impossible 
to see the trend which visualizing multiple functions on the 
same graph. Second, the fitted function smooth out the noise 
from stochastic evaluation of the rewards. Section A shows 
the curve-fitted measured alignment for each of the tested 
objective functions. Section B shows the curve-fitted 
measured attraction for each of the tested objective functions. 
Section C shows the curve-fitted measured separation for each 
of the tested objective functions. Lastly section D shows the 
curve-fitted outputs of the reward function for the combined 
reward function. The results shown here are for the single 
follower characterisation of the system. 
 

A. Alignment 



B. Attraction
 

 
Fig. 4. Changes in attraction with different reward functions. 

C. Separation
 

 
Fig. 5. Changes in separation with different reward functions 

 
Fig. 3. Changes in Alignment with different reward functions. 



D. Reward Function Output 
 

 
Fig. 6. Changes in separation with different reward functions 

 

V. ANALYSIS OF RESULTS 
From analysis of the results above the following information 
can be drawn. The baseline measurements shown in the 
figures above indicate that some level of alignment, attraction 
and separation is intrinsic to the simulation even when run 
with both Leader and Follower in random walk. This is a 
byproduct of the random nature of the simulation. Therefore in 
subsequent result sets, with the application of the LCS, if the 
performance is no better or perhaps worse than the baseline, 
then objective function can be said to have failed to meet the 
design criteria or that some other more complex interaction is 
effecting the simulation. It is important when observing the 
figures above that some apply to a stationary leader and others 
apply to a moving leader, transposing the two may result in 
confusion. 

Figures 3-6 show the results from testing of the objective 
functions, in the case of separation this testing was combined 
with the attraction function, as it was believe that it would be 
meaningless to test the separation function on its own as the 
baseline measurements indicate that the Follower will rarely 
violate the boundary of the leader if left to random chance 
alone.  

Figure 3 shows the results of testing for a purely attractive 
objective function for a moving and static leader. The 
attractive objective function shows a twofold reduction in the 
time average distance of the follower from the leader in the 
moving case when compared to the baseline. In addition to 
this the combined and separation functions also show a 
marked performance improvement when compared to the 
baseline. A similar performance improvement is seen in the 
static leader case for the attractive and separation function but 
not so for the combined function. This is likely due to the 
inclusion of the alignment element within the combined 
function as the alignment function also shows poor 

performance in the static case. Ultimately this probably stems 
from issues with velocity approximation as discussed below 

Figure 4 shows the alignment measurements for both a static 
and moving leader. As can be seen in the moving case, the 
alignment only function shows a fourfold improvement in the 
time average alignment when referenced to the baseline. Other 
reward functions such as the combined reward function show 
some improvement but only on the order of approximately to 
2 times at most. This clearly shows the performance of the 
alignment function in improving the time average alignment. 
This performance is carried through to the static test case as 
shown in the figure. Also of note is that the performance of 
the combined function is markedly better for the static case 
than for the moving case. This shows that the other elements 
of the combined function do not interfere to much in the 
performance of the combine function in this case. 

Figure 5 shows the results for the time average separation of 
the follower from the leader in the moving and static leader 
case. The results for separation are somewhat less conclusive 
in the moving case, though a reduction in separation can be 
observed for the cases of the attractive reward functions 
(Combined Function, attraction Function and separation 
function). In the static case a clear change in the level of 
leader/follower separation can be seen based on the reward 
function chosen. 

Figure 6 shows a representation of the output of the reward 
functions for the system for the combined functions in the 
static and moving leader case. As can be seen in both figures 
the total reward shown in purple remains relatively unchanged 
whilst the rewards for Attraction, Alignment and Separation 
might vary. Due to the scale required to show each function 
though this can be somewhat difficult to pick out.  



VI. DISCUSSION 
From the results it can be concluded that the Classifier system 
has improved the ability of the follower to flock around the 
leader. When the individual reward functions were combined 
to fully replicate Reynolds the performance as measured by 
the metrics was observed to be favorable. Additional empirical 
observations of the simulation show that the visual 
characteristics of the simulation resemble those seen in 
Reynolds Boids model.  

As can be seen throughout the results there tends to be 
variation between the result shown for the static leader and 
those shown for a moving leader. This can be attributed to 
multiple factors but in particular this is seen as a result of the 
classifier structure not containing any means by which the 
follower might represent the velocity of the leader or other 
followers. This means that the there will in general be an error 
between the velocity of the follower and the leader. This error 
is exacerbated in the static case due to the inability of the 
follower to have zero velocity. The result of this is an 
essentially infinite error between the velocity of the follower 
and the leader when the leader is static. In the moving case 
this is less of an issue as the leader will always have some 
velocity but this error is none the less present in most cases. 
The velocity errors are most clearly observable when a 
comparison is made between the separation results for the 
moving and static leader. As can be seen in general for a given 
function type the separation in the static case is worse than 
that for the moving case. In the visual representation this 
manifested itself as a propensity for the follower to overshoot 
the static leader and then dart back again overshooting. This 
had a noticeable impact on the separation measurements as 
discussed.  

Further analysis of the results from the testing of the 
separation function shows a mixed outcome. In the moving 
leader case the separation is defiantly effected by the 
application of the reward functions but sees comparable 
performance between the separation function and the other 
functions. The results for the static case are a bit more 
confusing. It can be seen that the separation function actually 
performs worse in the separation criteria then other function 
not selecting for separation. It is hypothesized that this is an 
effect of the reward function design in this case. In particular 
for the attraction function there is a tendency for overshoot 
due to the inability of the follower to approximate the leader 
speed. It is believed that this overshoot means that the 
follower actually spend very little time at a proximity that 
would result in punishment. The separation function however 
slows the follower and forces the follower to reverse direction 
when it enters the separation region around the leader. This 
process actually the takes longer than simply "shooting" 
through the separation region. This means that the follower 
ends up receiving more negative reward with the application 
of the separation function, but also worse separation 
performance as seen. 

With regards to the output of the combined reward functions 
shown in Figure 6, it can be seen that the total reward remains 

relatively constant as the other values vary. Interestingly the 
attraction output value is very strongly affected by the chosen 
design of the attraction element of the objective function. This 
is also what gives the total reward its apparently low value 
even though the simulation can be observed to be performing 
quite well. Essentially this is due to the fact that the attraction 
objective function reward only rewards based on whether the 
follower has moved closer to the leader, so once the follower 
is at a stable distance the reward will tend to zero for 
attraction. Some windowing of the reward function for 
attraction can reduce this effect and raise the average reward 
to just over two on the scale shown. Figure 9 shows the results 
of the reward function for a static leader. Interestingly the 
output of each of the reward function elements is very similar 
to that of the moving case, but there appears to be much less 
improvement over time. This is mirrored to some extent in the 
other graphs for the static leader case. It is believed that this is 
a result of the static leader case being a simpler task for the 
classifier system to learn resulting in the system achieving a 
maximum value rapidly. Any improvement would then likely 
be masked within the average of the first few generations and 
thus not be explicitly visible.  

Throughout the testing it was seen that the resulting 
behaviours was also evolutionarily stable as the behaviour 
once evolved was maintained until the end of the simulations. 

In addition to the work conducted to characterize the 
simulation with a single follower, multi follower simulations 
were also conducted to test the scalability of the system. This 
testing showed that the behaviors observed in the single agent 
testing carried over to the multi agent simulations. 

VII. FUTURE WORK  
Possible future work on this topic could include integrating a 
representation of the current speed and heading of the agents 
within the environment into the Classifier structure. This 
would then allow for better velocity matching between the 
Follower and the Leader as well as other Followers. Although, 
it has been noted that the current Classifier structure is not 
suitable for this modification as it cannot distinguish between 
individual followers in the simulation. Achieving this would 
require either a new Classifier structure or a different 
representation of the velocity of the followers in the 
simulation. It is therefore suggested that the total velocity and 
heading of the agents in each sector could be calculated as a 
group velocity and added to the classifier structure as a third 
row in future simulation. This would likely reduce 
overshooting and instability as seen in this simplified model. 
Additional objective functions could also be designed to test 
the effect of various weightings of both heading matching and 
velocity matching. In terms of gauging the quality of flocking 
resulting from such simulation, future work could include a 
metric specifically oriented towards gauging cohesion of a 
group of agents in this environment, such as those mentioned 
in [11]. 



VIII. CONCLUSION 
This report has explored the application of a LCS to the 
development of Boids like rules in simulation. The simulation 
had both successes in replicating the individual parameters of 
the simulation, such as alignment as well as demonstrating 
that a combination of the three objective functions also 
performs analogously to the Boids model. The results were 
limited by the inability of the Followers to adequately match 
velocity with that of the leader using alignment, attraction and 
separation metrics alone. Additionally while limited testing 
was done with multiple agents in the environment, further 
work is needed to adequately explore the effects of multiple 
agents  on the evolution of rule set, particularly given the 
issues often experienced with LCS' in multi agent 
environment.  As such further work is needed on this topic to 
refine the model.  
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