
Fault Tolerant Task Mapping on Many-Core Arrays
Colin Bonney, Pedro Campos, Nizar Dahir, Gianluca Tempesti

Department of Electronics, University of York
Email: {cab523, pedro.campos, nizar.dahir, gianluca.tempesti}@york.ac.uk

Abstract—This paper presents an approach for generating

fault tolerant task mappings of applications, represented as an

application process graph (APG), to a many-core array. The

approach uses a multi-objective evolutionary algorithm (EA) to

evolve a range of viable task mappings through the optimization

of fault tolerant properties and performance criteria. Fault

tolerant properties are chosen to promote task mappings that

enable quick, low-cost recovery in response to fault conditions.

Performance criteria promote mappings with lower network

traffic. Fault tolerant properties and performance criteria tend

to promote different arrangements of tasks thereby creating a

range of viable mappings, represented as a Pareto front, that can

be used as a pool from which a single mapping can be selected

based of the prevailing demands of the system. Analysis of the

evolved task maps show that they are resilient to possible fault

conditions and exhibit graceful degradation of performance.

Index Terms—Many-core, task mapping, fault tolerance, grace-

ful degradation, graceful amelioration, multi-objective, evolution-

ary algorithm.

I. INTRODUCTION

The many-core system architecture is seen as a solution to
increase the performance of processing systems compared to
single-core and multi-core processor designs [1]. A single-core
processor has a single complex core. Multi-core processors
typically have 2 - 16 cores which are still large, feature rich
and complex. Many-core devices are based on an array of iden-
tical, smaller, less complex cores numbering in the hundreds
or thousands. While the performance of each individual core
will be lower than that of the cores in complex single-core or
multi-core devices, the combined performance of all the cores
has the potential to be significantly greater.

In addition to offering increased overall performance, many-
core systems also provide an infrastructure suitable for imple-
menting fault tolerance mechanisms. When individual cores
fail, a many-core system has the potential for reallocating the
work of failed cores to other functioning cores resulting in a
graceful degradation of performance, a distinct improvement
over the complete processor failure of single-core systems.
Even when all cores are functioning the many-core architecture
offers the possibility of improving performance through more
efficient allocation of resources. This could, for example, mean
using more cores at a lower clock rate and hence lower power
or distributing the allocation of tasks to implement a dark-
silicon strategy to evenly spread heat generation across the
device [2].

Section II reviews previous work in the areas of task map-
ping and fault tolerance schemes in network-on-chip sytems
(NoCs) and many-core arrays. Section III discusses the task

mapping problem, the graph representations of the application,
the physical many-core array, and task maps. Section IV
discusses the evolutionary algorithm (EA) and the fitness
functions used to direct the search for task mappings. Section
V analyses the resilience of the task maps produced by the
EA.

II. RELATED WORK

Early research into task mapping in NoC designs use
techniques other than EAs to optimize various objectives such
as maximising energy efficiency using a branch and bound
algorithm [3], and bandwidth constrained mapping using Di-
jkstras shortest path algorithm [4]. Both of these approaches
create design-time static maps, as does the two-step genetic
algorithm approach of mapping a task graph to IP nodes in
an NoC [5]. In [6] a run-time multi-objective EA was applied
to the two objectives of performance and power consumption
while using a static x-y routing. Another approach created
a database of optimized task mappings at design time, one
for each input application, that are further optimised at run
time based on the current status of the system to optimise
communication energy, system lifetime or both [7].

A hardware based approach to fault tolerance in which the
device attempts to present N cores from a pool of M + N

cores as long as there are no more than M fault cores is
described in [8], however this approach hides the actual core
topology from the application which consequently cannot take
into account the path lengths between communicating tasks to
reduce network traffic.

Software only approaches to fault tolerance include task
remapping in the event of core failures to reallocate tasks
amongst healthy cores. In [9] multiple tasks are allocated to
each core, such that the cost of task migration is balanced with
the overall performance of the resultant mapping, while in [10]
the placement of spare cores at either the edges of the array
or randomly across the array is coupled with a fault aware
algorithm with the goal of minimizing the communication
energy consumption, while maximizing the overall system
performance. In [11] modified particle swarm optimization
(PSO) algorithms are used to balance combinations of two
of the objectives of reliability of switching elements, power
consumption and communication time. Two modified PSO
algorithms are used, one including elements of EAs and the
other incorporating elements of simulated annealing.



III. TASK MAPPING

This paper investigates a methodology to identify task
mappings of an application process graph (APG) to cores of a
many-core array while balancing the fault tolerance properties
of the mappings against the performance of the system. The
process allocation problem is NP-hard with the complexity
increasing as a factorial of the size of the array [12], [13].

We propose the use of a multi-objective evolutionary ap-
proach using the NSGA-II [14] non-dominated sorting algo-
rithm with two objectives: performance and fault tolerance as
defined in section III-B. NSGA-II has been chosen as it is a
well researched algorithm that has successfully been applied
to a wide range of problems. The solution is required to be
scalable to many-core arrays containing 1000’s of cores. In
order to keep the problem size manageable our many-core
model makes a logical division of the available cores into
autonomous regions which will manage the distribution of
tasks locally while cooperating with neighbouring regions to
achieve global task distribution. The multi-region approach
allows the problem of task allocation to be subdivided into
a number of smaller tasks of manageable size. Our early
research suggests that array sizes in the range of 6 ⇥ 6 to
8⇥8 are manageable in terms of the processing required to find
good quality task mappings using an evolutionary approach.
This paper illustrates the results of our investigations of the
mapping problem using a single region with an array size of
6⇥ 6.

A. Many-Core Model
The key components of this model for the work presented

in this paper are the following:
Many-Core Array: The many-core architecture is a 2-D

array of homogenous computing nodes with no predetermined
functionality. Each node consists of a router that communi-
cates with its nearest orthogonal neighbours and a processing
core attached to the router. As mentioned the many-core
array will be logically divided into autonomous regions which
manage the local distribution of tasks while cooperating with
neighbouring regions to achieve global task distribution.

Application Process Graph (APG): A directed acyclic graph
(DAG) representing an application broken down into processes
represented as nodes and data transfers between processes
represented as edges. Each process is identified by a label
Pn : n 2 N where N is the number of nodes in the graph.
The APG in fig 1(a), used in this research, is a randomly
selected, representative example of graphs created by a graph
generator [15].

Network Topology Map (NTM): The physical many-core
array used in this research is an r ⇥ c lattice arrangement
of r rows and c columns of processing nodes interconnected
by communication channels, fig 1(b). The processing nodes
consist of a routing node connected to adjacent routing nodes
on the four compass points and a processing core. An NTM is
used to model the core and channels of the many-core array
and maintain an inventory of the current status of elements
of the many-core array. The map consists of r ⇥ c cores

and (r ⇥ c � 1) + (r � 1 ⇥ c) bidirectional channels. Cores
are modelled by an ordered tuple representing their row and
column coordinates and their status (r, c, s), where the tuple
(0, 0, s) refers to the top left hand core of the array. The
status of the core is either g for good for f for failed. The
channels are modelled by a tuple (rs, cs, rt, ct, s) where rs

and cs are the coordinates of the source node of the channel
and rt and ct are the coordinates of the target node of the
channel. The status s can take the same values of g and f as
used for the cores.

Task Map: The task map gives details of the use of
each core in the many-core array and the location of each
process of the APG within the physical cores, (fig. 1(c)).
Each core is defined by an ordered tuple representing its
row and column coordinates and the name of the processes
allocated to it (r, c, p) where r is the row coordinate, c is
the column coordinate and p the name of the process. The
process p can be the id of one of the application process
nodes, i if the core is idle, or f if the core is faulty. Fig 1(c)
shows the results of mapping the APG in fig 1(a), to a 6x6
square lattice many-core array, where there are no faulty cores.

B. Metrics
The work presented in this paper uses the two metrics of

fault tolerance and performance to calculate the fitness values
of the two objectives of the multi-objective EA. The fault
tolerance and performance cost metrics, discussed below, are
orthogonal in that the fault tolerant metric results in graphs
where idle cores are distributed evenly across the array, so
pushing apart processing tasks, while the performance metric
pushes communicating tasks closer together.

Fault tolerance metric: Fault tolerance is achieved through
the placement of spare or idle cores amongst the cores that
are processing tasks.

In the event of a core failure the task executing on the core
needs to be migrated to an idle core. The ultimate objective
of fault tolerance is to find a mapping that provides minimal
disruption in the case of a fault occurring within the array,
thereby achieving graceful degradation. Our assumption is that
the cost of migration and disruption to processing increases in
proportion to the distance between the failed core and the core
that the task will be migrated to. This cost takes into account
the energy and network traffic required by the migration and
the disruption to the task that such a migration would imply.
Placing idle cores amongst processing cores to minimise the
distance between each processing core and its nearest idle core
will correspondingly reduce the average cost of migration of
a task to an idle core in the event of core failure.

The fault tolerance metric is thus defined as the sum of the
distances between each core running a task and its closest idle
core. When an idle core is adjacent to a processing core, i.e.
one step away, a fault tolerance cost of zero is assigned to the
core. When t steps are required to reach the nearest idle core
the fault tolerance cost will be t� 1. A fault tolerance cost of



P0

P1

P2

P4

P6

P9

P3

P5

P8

P7

P10

P11

P13

P15

P12 P14

P16

P19

P17

P21

P22

P23P18

P20

P24

(a)

xxxxxxxxxxxxxxxx

P P P P P P

P P P P P P

P P P P P P

P P P P P P

P P P P P P

P P P P P P

(b)

P2 P3

P0

P6

P4

P5

P8

P7

P11

i

P10 P15

P1 P9 P12 P13 P16 P18

i i P14 P22 P21 P23

i i P17 P19 P20 P24

i i i i i i

(c)

Fig. 1. Mapping an APG to a many-core array. (a) the 25-node APG used for this work; (b) the 6x6 many-core array, each node consisting of a processing
core (P) and a routing node (R); (c) a possible mapping of the APG onto the many-core array.

zero for the task map as a whole indicates that each processing
core is adjacent to at least one idle core. A processing core
that has more than one adjacent idle core is not regarded as
having any additional benefit from the additional adjacent idle
cores. The fault tolerance metric is expressed as:

Ftol =
r�1X

i=0

c�1X

j=0

distance((r, c), nearestIdle(r, c))� 1 (1)

Where Ftol is the fault tolerance cost of the whole array,
r and c are the number of rows and columns in the array,

distance is a function that returns the rectilinear distance be-
tween the node (r, c) and its closest idle core, and nearestIdle

is a function that returns the coordinates of the nearest idle
core to the processing core.

Performance Metric: The performance metric used in this
paper is a measure of the distance between communicat-
ing tasks, which is only one of many possible performance
metrics. Communication traffic is one of the most important
factors in the performance of a many-core array. Reducing
the distance between communicating task pairs also reduces
the overall communication traffic across the network resulting



in fewer bottlenecks and lower power consumption. The
performance cost metric is therefore measured as the sum of
the distances between communicating task pairs. The measure
is analogous to the fault tolerance measure in that communi-
cating tasks that are adjacent are given a value of zero and
when there are t steps between a pair of communicating tasks
a performance value of t � 1 is given to the communicating
pair.

For communicating task pairs that have a least one minimal
length path, the performance cost will be the rectilinear
distance between the tasks minus 1. Where no minimal length
paths are available due to channel faults the cost will be
calculated as the (minimum) distance for a non-minimal length
path.

If every pair of communicating tasks are adjacent then
the performance cost for the mapping will be zero. The
performance metric is expressed as:

Perf =
e�1X

i=0

distance(sourcei, targeti)� 1 (2)

Where Perf is the performance cost of the whole array and
e is the number edges in the APG, sourcei and targeti are the
locations of the source and target tasks of the communicating
task pair i, in the many core array and distance is the same
function used in equation 1.

IV. MULTI-OBJECTIVE EVOLUTION OF TASK MAPS

A. Assumptions and Constraints
Experiments were conducted using the 25 node application

graph show in 1(a) mapped to a 6 ⇥ 6 many-core array.
Preliminary work determined that the maximum graph size
that can be mapped to a 6⇥6 array such that each processing
core is adjacent to an idle core is a graph of 26 nodes and that
the problem of finding mappings for graphs close to a size of
26 nodes is an interesting area for research. This has guided
our decision to conduct experiments with the combination of
a 25, 26 and 27 node graphs on a 6 ⇥ 6 array. Results for
different graph sizes and connectivity levels will be analysed
in the following section.

All experiments used a population size of 100 individuals,
evolved over 1000 generations, evaluating a total of 100,000
individuals, to produce the Pareto front points for analysis.

Seed mappings for the EA were obtained using a selec-
tion of simple deterministic algorithms to generate a variety
of mappings that outperform randomly generated mappings
together with a collection of randomly generated mappings.

We assume that non-minimal path routing algorithms are
available, but that routing via minimal length paths is pre-
ferred. Task maps that require a non-minimal route will have
a higher performance cost due to the additional length of the
non-minimal path, providing an evolutionary pressure against
such solutions [16], [17].

B. The Pareto Front
The metrics of fault tolerance given in equation 1 and

performance given in equation 2 give conflicting pressures

to the evolutionary process. A low cost for fault tolerance
is achieved when idle cores are evenly distributed across
the many-core array and therefore between processing cores,
resulting in a pressure pushing processing cores away from
each other. The performance metric gives a low cost when
communicating cores are adjacent resulting in a pressure
that brings cores closer together. The consequence of these
conflicting pressures is that the task mapping solutions found
by the EA produce a Pareto front of equally valid solutions.

Evolutionary runs were carried out using the seed popula-
tion as described in section IV-A. An individual is encoded as
a task map, and a single mutation is applied to each parent, im-
plemented as a single pair permutation, whereby the processes
of two nodes are exchanged. This permutation can involve both
processing and idle cores. The multi-objective EA explores
the solution space in search of solutions which present a good
trade-off between performance and fault tolerance. The goal
of the multi-objective approach is to minimise the fitness value
of both the performance and fault tolerance metrics.

Fig. 2. Pareto fronts for the evolution of task maps for a 25-node graph on
a 6x6 array.

For any given graph size on a given many-core array there
are many possible solutions which can be represented as a
series of two-dimensional Pareto fronts. Fig 2 shows the non-
dominated Pareto fronts obtained for generations 10, 100 and
1000 using the NSGA-II algorithm. The points of a non-
dominated Pareto front represent a set of equally valid so-
lutions. The points differ only in their suitability when viewed
from a specific perspective. Different points may be selected
as a suitable solution to fulfil a specific, perceived need. For
example, if performance is of paramount importance, then a
point can be chosen with a good performance value and poorer
fault tolerance value. If fault tolerance is paramount then a
point with the good fault tolerance and poorer performance
can be chosen. The specific point chosen may be determined



automatically based on the prevailing requirements placed
upon the system or on the environmental conditions within
which the system is operating.

For illustration purposes, three individuals have been chosen
from the Pareto front to highlight the differences between
them. Figure 3 shows the task maps corresponding to three
different points chosen from the Pareto front, each representing
a unique trade-off. The task map of figure 3(a) has good fault
tolerance and poor performance, resulting in a distribution of
idle cores such that each processing core is adjacent to an idle
core. The task map of figure 3(b) has weak fault tolerance and
very good performance, which has resulted in the processing
cores being close together with the majority of idle cores being
pushed to the outside of the array. The task map in figure
3(c) has a more balanced trade-off between the two metrics,
resulting in a distribution of idle cores between those in 3(a)
and 3(b) leaving only four of the processing cores without an
idle core as a neighbour.

V. FAULT RESILIENCE

As described in section III-B, the purpose of the fault toler-
ance metric is to promote task mappings that suffer minimal
impact on performance when faults occur. This section focuses
on an evaluation of the impact of faults on the performance
of the discovered solutions beginning by describing the type
of faults injected as well as the run-time mechanisms involved
in fault recovery, followed by an evaluation of the impact on
performance that these faults can have on different mappings.

A. Classification of Faults
Core Faults are defined as the failure of a processing core.

The function of the routing node and channels to adjacent
nodes are unaffected. If a core is processing a task when failure
occurs, then the task needs to be migrated to an idle core.

Routing node faults are defined as a failure of the routing
node with the associated loss of the attached core and
channels, equivalent to the simultaneous failure of the
processing core and the channels to all adjacent nodes. If the
core is processing a task when the routing node fails, then
the task needs to be migrated to an idle core.

B. Graceful Degradation
The concept of graceful degradation assumes a set of

mechanisms that allow an application to continue running on
faulty hardware, with degraded performance. Therefore, this
concept necessitates an immediate response of the system to
a fault. When a core fault occurs, the task being executed on
the failed core is migrated to the nearest idle core allowing
the system as a whole to continue to function even though
performance may be degraded. The failed core and consequent
task migration results in a revised NTM and task map. The
performance and fault tolerance metrics are likely to be
degraded compared to the original mapping since the distance
between communicating task pairs and processes and their idle
cores are likely to increase. A routing node fault will carry the

same consequences, with the additional impact of potentially
severing minimal paths as a consequence of communication
channels becoming unusable.

C. Engineered Reference Solution
In order to provide a reference mapping against which the

evolved multi-objective mappings can be compared, an engi-
neered mapping that only considers the performance metric
was generated. The engineered mapping, shown in fig 1(c),
was generated by the evolutionary algorithm running in a
single objective mode where only the performance metric was
calculated, which provided a mapping with a performance met-
ric superior to any of the multi-objective evolved mappings.
The engineered solution is the right-most box plot in figures
5, 6 and 7.

D. Reliability Evaluation
In order to assess the reliability of the evolved task maps

and to determine how suitable the fault tolerance metric is
for generating fault tolerant mappings, a set of experiments
were carried out where single faults were injected into the
task maps on the non-dominated Pareto front, and the impact
on both performance and fault-tolerance observed.

1) Single Fault Post-Recovery Evaluation: Once a fault
occurs, the graceful degradation mechanism is employed, and
affected processing tasks are migrated from faulty to idle
cores. The task map represented in Figure 4(a) – the same
highly fault tolerant evolved individual illustrated in Figure
3(a) – has a core fault injected into the fifth node of the second
row. Figure 4(b) shows how the affected task is migrated
to the nearest idle core as part of the graceful degradation
mechanism. In Figure 4(c) the original point of the Pareto front
is highlighted with a blue circle along with the recalculated
performance and fault tolerance metrics for the fault-recovered
task map. The same fault is injected into each of the task maps
on the non-dominated Pareto front, and their performance and
fault tolerance metrics recalculated as shown in Figure 4(c).
Following injection of the fault, the two most fault tolerant task
maps exhibit an improvement in performance while becoming
less fault tolerant to any further faults. In contrast, the least
fault tolerant solutions suffer a negative impact on performance
as well as suffering a fall in fault tolerance.

2) Single Fault Resilience: Since each task map on the non-
dominated Pareto front represents a different mapping, it is
expected that faults will affect each task map differently. In
order to get a sense of the general fault resilience of a given
task map, each possible fault was applied to the task map and
the response, in terms of the effect on the fault tolerance and
performance objectives, was calculated.

It is expected that the most fault tolerant task maps from
the evolved Pareto front will exhibit a smaller average shift in
performance in response to each possible fault. Additionally,
the distribution of performance shifts from injected faults
should be narrower for more fault tolerant task maps.

Figure 5 illustrates the distribution of performance shifts
resulting from a core fault injection to each of the 36 nodes



i P4

P2

P8

P3

i

P6

P10

i

P15

P5 i

P0 i P11 P13 P16 P7

P1 P9 P12 i i P18

i P17 P14 P21 P20 P23

i P19 i P22 P24 i

(a)

i P4

P2

P8

P3

P11

P6

i

P5

i

P10 i

P0 i P7 P19 P15 i

P1 P9 P12 P13 P16 P18

i P14 P17 P22 P21 P23

i i i P24 P20 i

(b)

i P4

P2

P8

P3

i

P6

i

P5

i

P10 P15

P0 i P11 i P7 i

P1 P9 P12 P13 P16 P18

i P17 P14 P21 P20 P23

i P19 i P22 P24 i

(c)

Fig. 3. Three task maps chosen from the non-dominated Pareto front, exhibiting (a) good fault tolerance with poor performance, (b) good performance and
poor fault tolerance (c) a balance between the two metrics.

i P4

P2

P8

P3

i

P6

P10

i

P15

P5 i

P0 i P11 P13 P16 P7

P1 P9 P12 i i P18

i P17 P14 P21 P20 P23

i P19 i P22 P24 i

(a)

i P4

P2

P8

P3

i

P6

P10

P5

P15

X i

P0 i P11 P13 P16 P7

P1 P9 P12 i i P18

i P17 P14 P21 P20 P23

i P19 i P22 P24 i

(b)

0 2 4 6 8 10
Fault-tolerance fitness

34

36

38

40

42

44

46

48

50

Pe
rfo

rm
an

ce
fit

ne
ss

Evolved pareto-front
Recovered from faults

(c)
Fig. 4. Graceful degradation mechanism being triggered on a task map after a core fault occurs, and corresponding impact on metrics. (a) task map with
fault on node processing P5, (b) shows the task migration to an idle core, and (c) shows the shift in metrics for each of the individuals in the Pareto front
once the same core fault is injected.

in the array. Each notched box plot represents the distribution
of 36 performance points, each connected to a different core
fault. The non-faulty performance is represented by a yellow
star for each of the evolved Task Maps on the Pareto front.
A similar plot is drawn in Figure 6 for routing node faults,
injected into each of 36 routing nodes on the array.

The same multi-objective evolution was carried out for
another 25 node graph, more sparsely connected than the one
illustrated in Figure 1(a). Both the resulting Pareto front and
the single-objective engineered task map were injected with
core faults, and the resulting distribution of performance shifts
can be examined in Figure 7. Although the multi-objective
evolution resulted in a more sparsely populated Pareto front,
the results are similar to the original 25-node graph, in that
both median performance shift and fault-induced performance
variance tend to increase as we evaluate task maps that are less
fault tolerant. Additionally, the single-objective engineered
task map still exhibits the worst variance in performance shift

of the set.
In order to carry out a preliminary investigation on the

impact of this approach in larger APGs, an evolutionary runs
were carried out for a 26-node APG and a 27-node APG, along
with the same fault injection procedure, and the results of these
experiments are plotted in Figures 8 and 9, respectively.

Once again, the same trend is observed: the better perfor-
mance a task map achieves, the more likely and of greater
magnitude will be the impact on performance, in the presence
of a fault. This observation validates the initial assumption that
performance and fault-tolerance, as defined in this work, are
opposing evolutionary pressures.

VI. CONCLUSIONS & FUTURE WORK

This work set out to use multi-objective evolution to gen-
erate task maps with a good trade-off between performance
and fault tolerance. To evaluate the discovered solutions, a



Fig. 5. Analysis of all possible core faults injected into each task map on
the evolved non-dominated Pareto front (box plots 1-11 from the left) and
to the task map resulting from a single objective evolutionary run focusing
exclusively on performance (box plot on the far right), for the APG illustrated
in Figure 1(a). The pre-fault performance metric is plotted as a star for each
box plot.

full set of faults were injected to determine the distribution of
the impact on performance caused by these faults.

Work is in progress to refine the performance metric to
take into account the network traffic generated between pairs
of communicating tasks. Additional performance criteria such
as voltage, operating frequency and power consumption of
individual cores will also be considered.

This work is also part of a larger investigation which deals
with online optimization and re-mapping. The mechanisms
described in this work are part of the graceful degradation
approach, but there is also scope for graceful amelioration.
The next stage of this research will, after a fault occurs, re-
run the multi-objective optimization to find a new set of non-
dominated Pareto front task maps. The new mappings, which
are expected to be an improvement over the repaired mappings
resulting from graceful degradation, can be used to improve
the performance to give graceful amelioration. The process
of fault, graceful degradation, re-evolution and amelioration
can continue providing an adaptive on-line optimization while
there are sufficient healthy cores to satisfy the requirements
for a given APG.

This work is a part of research whose endpoint is a multi-
region model, where each region contains a monitor that
makes decisions about its own region while co-operating with
adjacent regions to distribute work across the whole many-core
array. It is assumed that optimal mappings within individual
regions can combine to produce optimal behaviour across the
multi-region many-core fabric. By this approach this work will

Fig. 6. Analysis of all possible routing node faults injected to each task
map on the non-dominated Pareto front (box plots 1-11 from the left) and
to the task map resulting from a single objective evolutionary run focusing
exclusively on performance (box plot on the far right), for the APG illustrated
in Figure 1(a). The pre-fault performance metric is plotted as a star for each
task map.

Fig. 7. Full sweep of core faults injected into each individual in the Pareto
front and into the task map resulting from a single objective evolutionary run
focusing exclusively on performance (last box plot on the right), for a sparsely
connected 25-node APG. The pre-fault performance metric is plotted as a star
for each task map.

be applied to a full many-core system consisting of 1000’s of
cores.



Fig. 8. Full sweep of core faults injected into each individual in the evolved
Pareto front for the task map of a 26-node APG. The pre-fault performance
metric is plotted as a star for each box plot.

Fig. 9. Full sweep of core faults injected to both each individual in the Pareto
front for the Task Map of a 27-node APG. The pre-fault performance metric
is plotted as a star for each box plot.

ACKNOWLEDGEMENTS

The authors would like to thank EPSRC for their support
through the Graceful project grant (EP/L000563/1) of which
this work is part of.

REFERENCES

[1] S. Borkar, “Thousand Core ChipsA Technology Perspective,” Design
Automation Conference. DAC ’07. 44th ACM/IEEE, pp. 746–749, 2007.

[2] M. B. Taylor, “A Landscape of the New Dark Silicon Design Regime,”
Micro, IEEE, vol. 33, no. 5, pp. 8–19, 2013.

[3] J. Hu and R. Marculescu, “Energy-Aware Mapping for Tile-based NoC
Architectures Under Performance Constraints,” Design Automation
Conference, ASP-DAC 2003. Asia and South Pacific, pp. 233–239,
2003. [Online]. Available: http://dl.acm.org/citation.cfm?id=1119818

[4] S. Murali and G. De Micheli, “Bandwidth-Constrained Mapping of
Cores onto NoC Architectures,” Design, Automation and Test in Europe
Conference and Exhibition, 2004., pp. 0–5, 2004. [Online]. Available:
http://dl.acm.org/citation.cfm?id=969207

[5] T. Lei and S. Kumar, “A Two-step Genetic Algorithm for Mapping
Task Graphs to a Network on Chip Architecture,” in Euromicro
Symposium on Digital System Design (DSD’03)., 2003. [Online].
Available: http://ieeexplore.ieee.org/xpls/abs all.jsp?arnumber=1231923

[6] G. Ascia, V. Catania, and M. Palesi, “Multi-objective Mapping for
Mesh-based NoC Architectures,” Hardware/Software Codesign and
System Synthesis, 2004. CODES + ISSS 2004., pp. 182–187, 2004.
[Online]. Available: http://dl.acm.org/citation.cfm?id=1016765

[7] C. Bolchini, M. Carminati, A. Miele, A. Das, A. Kumar,
and B. Veeravalli, “Run-Time Mapping for Reliable Many-
Cores Based on Energy/Performance Trade-offs,” Defect and Fault
Tolerance in VLSI and Nanotechnology Systems (DFT), 2013 IEEE
International Symposium, pp. 58–64, 2013. [Online]. Available:
http://ieeexplore.ieee.org/xpls/abs all.jsp?arnumber=6653583

[8] Z. Lei, H. Yinhe, L. Huawei, and L. Xiaowei, “Fault Tolerance Mecha-
nism in Chip Many-Core Processors,” Tsinghua Science & Technology,
vol. 12, no. July, pp. 169–174, 2007.

[9] C. Lee, H. Kim, H.-w. Park, S. Kim, H. Oh, and
S. Ha, “A task remapping technique for reliable multi-core
embedded systems,” Proceedings of the eighth IEEE/ACM/IFIP
international conference on Hardware/software codesign and system
synthesis - CODES/ISSS ’10, p. 307, 2010. [Online]. Available:
http://portal.acm.org/citation.cfm?doid=1878961.1879014

[10] C.-L. Chou and R. Marculescu, “FARM: Fault-aware resource
management in NoC-based multiprocessor platforms,” 2011 Design,
Automation & Test in Europe, pp. 1–6, mar 2011. [Online]. Available:
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5763113

[11] Q. Le, G. Yang, W. N. N. Hung, X. Song, and X. Zhang,
“Pareto optimal mapping for tile-based network-on-chip under
reliability constraints,” International Journal of Computer Mathematics,
vol. 92, no. 1, pp. 41–58, may 2014. [Online]. Available:
http://www.tandfonline.com/doi/abs/10.1080/00207160.2014.892073

[12] D. S. Hochbaum, Approximation Algorithms for NP-Hard Problems.
PWS Publishing Company, 1997.

[13] R. Michael and S. David, Computers and intractability : a guide to the
theory of NP-completeness. W.H. Freeman and Company, 1979.

[14] K. Deb, S. Pratab, S. Agarwal, and T. Meyarivan, “A Fast and Elitist
Multiobjective Genetic Algorithm: NGSA-II,” IEEE Transactions on
Evolutionary Computation, vol. 6, no. 2, pp. 182–197, 2002.

[15] P. Campos, N. Dahir, C. A. Bonney, M. A. Trefzer, A. M. Tyrrell, and
G. Tempesti, “XL-STaGe: A Cross-Layer Scalable Tool for Graph Gen-
eration, Evaluation and Implementation,” in IEEE Embedded Computer
Systems: Architectures, Modeling, and Simulation (SAMOS), 2016, 2016.

[16] M. Ebrahimi, M. Daneshtalab, J. Plosila, and F. Mehdipour,
“MD: Minimal path-based fault-tolerant routing in on-Chip
Networks,” in 2013 18th Asia and South Pacific Design Automation
Conference (ASP-DAC). Ieee, jan 2013, pp. 35–40. [Online]. Available:
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6509555

[17] J. Wang, X. Wang, L. Huang, T. S. Mak, and G. Li, “A Fault-tolerant
Routing Algorithm for NoC Using Farthest Reachable Routers,” in
Proceedings - 2013 IEEE 11th International Conference on Dependable,
Autonomic and Secure Computing, DASC 2013, 2013, pp. 153–158.


