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Abstract—In this paper we propose cross-modal convolutional
neural networks (X-CNNs), a novel biologically inspired type of
CNN architectures, treating gradient descent-specialised CNNs as
individual units of processing in a larger-scale network topology,
while allowing for unconstrained information flow and/or weight
sharing between analogous hidden layers of the network—
thus generalising the already well-established concept of neural
network ensembles (where information typically may flow only
between the output layers of the individual networks). The
constituent networks are individually designed to learn the output
function on their own subset of the input data, after which
cross-connections between them are introduced after each pooling
operation to periodically allow for information exchange between
them. This injection of knowledge into a model (by prior partition
of the input data through domain knowledge or unsupervised
methods) is expected to yield greatest returns in sparse data
environments, which are typically less suitable for training CNNs.
For evaluation purposes, we have compared a standard four-layer
CNN as well as a sophisticated FitNet4 architecture against their
cross-modal variants on the CIFAR-10 and CIFAR-100 datasets
with differing percentages of the training data being removed,
and find that at lower levels of data availability, the X-CNNs
significantly outperform their baselines (typically providing a 2–
6% benefit, depending on the dataset size and whether data
augmentation is used), while still maintaining an edge on all of
the full dataset tests.

I. INTRODUCTION

In recent years, the number of success stories of machine
learning has seen an all-time rise across a wide range of fields
and tasks, examples including: computer vision [1], speech
recognition [2], reinforcement learning [3] and guiding Monte
Carlo tree search [4]. The unifying idea behind all of the above
is deep learning, the utilisation of neural networks with many
hidden layers, for the purposes of learning complex feature
representations from raw data, rather than relying on hand-
crafted feature extraction.

As the networks become deeper, however, they become more
and more reliant on the amount of training examples provided
for maximising their performance. While we are now able
to extract large quantities of labelled information for many
problems of interest, there remains a significant proportion of
tasks for which “big data” simply isn’t available at this time,
which makes it extremely difficult to fully exploit a deep CNN
architecture and properly learn generalisable features of the

data. Here we will present an architectural methodology that
attempts to extract additional predictive power from a convolu-
tional neural network (CNN) in such circumstances by instead
focussing on the width of the data, i.e. the heterogeneity of
information present within each training example. The key
idea constitutes appropriate partitioning of this information
and training smaller CNNs on these partitions (allowing them
to train faster and more effectively under sparse data envi-
ronments), while allowing for information exchange between
them at various stages (Fig. 1).

A classic example where such an approach is bound to be
useful are clinical studies, where there typically may not be
that many patients, but for each patient there is potentially
a heterogeneous wealth of information, such as various test
results, patient history, ethnic background, body scans (CT,
MRI. . . ) and so on, depending on the type of study.

II. CROSS-MODAL CNNS

Our methodology is inspired by multilayer networks [5],
mathematical structures encompassing several layers of graphs
over the same set of nodes, allowing for unrestricted intra-
layer as well as inter-layer connections. They have been a
demonstrably valuable tool for modelling a variety of natural
and social systems ([6], [7], [8]), and their applicability
to machine learning (within the context of hidden Markov
models) was already demonstrated by some of the authors
[9], managing to achieve high performance on a sparse breast
cancer classification dataset involving gene expression and
methylation data.

The network design process is initiated by appropriately par-
titioning the input data—this may be done either manually
(by exploiting existing domain knowledge) or through an
unsupervised pre-training step, which will determine which
(not necessarily disjoint) fragments of the input data are more
likely to constructively influence one another. Afterwards, a
cross-modal CNN is constructed such that a separate CNN
superlayer is dedicated to each partition of the input data,
attempting to learn the target function from its partition only.
The purpose of the partitioning is to help the constituent
CNNs become powerful predictors while requiring a smaller
dimensionality of the input data, by allowing them access to
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Fig. 1. Diagram of a simple cross-modal CNN for image classification, generated from a baseline CNN of the form [Conv → Pool]×2→ FC → Softmax.
Each of the three channels (RGB/YUV) of the input image receives its own CNN superlayer, with cross-connections inserted after the pooling operation, and
full weight sharing in the fully connected layers. A more in-depth view of a potential cross-connection layout is provided by Figure 2.

those parts of the input which are most significantly related
to each other in the context of the predictions that need to be
made.

Finally, the superlayers may be interconnected by any sort of
(feedforward) cross-connection as is best seen fit, and they
may be combined in arbitrary ways at the output stage to pro-
duce the final output. Similarly, at any stage the weights of the
superlayers may be shared—the simplest case, which we will
explore in our analysis, constitutes complete weight sharing
of the fully connected layers at the tail of the networks. This
construction is biologically inspired by cross-modal systems
[10] within the visual and auditory systems of the human brain
(which in turn inspired the development of CNNs)—wherein
several cross-connections between various sensory networks
have been discovered [11], [12].

To quantify the gains of this approach, our evaluation focusses
on an already well-understood problem of coloured image
classification, on established CIFAR-10/100 [13] benchmarks
for which an abundance of data is available, so it is easier to
investigate the effects of restricting the size of the training set
on various CNN models. The partitioning of the input that we
consider is per-channel—each of the three image channels will
be an input to an individual superlayer, and these superlayers
will have identical high-level architecture (differing only in
the number of feature maps per hidden layer)—as illustrated
by Fig. 1. This also allows for a simple approach to cross-
connections; namely, after every downsampling (pooling) op-
eration we allow for the feature maps to be exchanged between
superlayers, after being passed through another convolutional
layer (Fig. 2).

While this model in itself constitutes a committee of CNNs,
it differs from most traditional ensemble applications in two

key ways:

• An ensemble’s constituent models typically exchange in-
formation only in the output stage, while the cross-modal
framework allows for arbitrary (feedforward) information
flow at any stage of the processing pipeline;

• Constituent models of an ensemble usually receive a
full copy of the input each, while superlayers within a
cross-modal neural network receive only a fraction of the
input, allowing for a decrease in degrees-of-freedom of
the model compared to an unrestricted network.

In fact, this can be taken a step further: one may consider
ensembles of cross-modal CNNs, which may compound on
benefits already given by X-CNNs themselves, on examples
where the networks are potentially struggling to choose a
proper class with sufficient confidence. As the X-CNN model
can be observed as an ordinary CNN from a high level, any
ensemble strategies that are found useful for CNNs should be
useful for X-CNNs as well.

Lastly, it should be noted that our approach is not restricted
to CNNs, but it is then easiest to scrutinise, as the trained
parameters are bound to obey a certain spatial structure. In line
with this, an entire section of this manuscript will be dedicated
to analysing the learned convolutional kernels within an X-
CNN, as well as visualising the inputs that would maximise
the model’s cross-connection activations.

III. MODEL ARCHITECTURES

For the purposes of evaluating our proposed architecture’s per-
formance, we have implemented two baseline CNN models—
along with their cross-modal variants—in Keras [14] (with
Theano [15] back-end). For purposes of reproducibility, in this
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Fig. 2. Illustration of a single cross-connection segment within an X-CNN with two superlayers. After each pooling operation, we exchange the feature maps
between the superlayers, after first passing them through an additional convolutional layer. We may also perform an additional intra-superlayer convolution
before merging the feature maps in each superlayer via concatenation.

section we will expose their architectures and hyperparameters
as used for the evaluation. The cross-modal variants’ feature
map counts have been altered in such a way as to make
the overall number of parameters as close as possible to the
baseline, making for fair evaluation with respect to degrees-
of-freedom.

For both of the models used, we represent images in the YUV
colour space. As a linear transformation from RGB, it should
not have an impact on performance of the baselines, while it
has the benefit of decoupling luminance from chrominance,
allowing for a simpler analysis of cross-connections (and
relating its learned kernels to human vision processes). We
inject further domain knowledge into the model by favouring
the CNN superlayer corresponding to the Y channel in terms
of feature map counts (typically doubled compared to the U/V
superlayers within the same hidden layer). This corresponds
to the assumption that the majority of relevant information
about an object is contained within its brightness channel,
while colour usually represents auxiliary information.

A. KerasNet

Our initial model of choice represents a simple CNN with
four convolutional ReLU [16] layers, followed by two fully
connected layers, one of which is also ReLU. We will be
referring to it as KerasNet throughout this manuscript as it is
based on the Keras CIFAR-10 CNN example [17]. It represents
a likely style of a “starting” model that one is going to attempt
to apply on an image classification problem (without particular
prior knowledge about it), perhaps especially bearing in mind
that the training data may be sparse.

The architecture of the model, as well as its cross-modal
variant (X-KerasNet) is outlined in Table I. Both models are
trained for 200 epochs using the Adam SGD optimiser, with

TABLE I
ARCHITECTURES FOR KERASNET AND X-KERASNET

Output size KerasNet X-KerasNet
∼ 4.46M param. ∼ 4.37M param.

32× 32 [3× 3, 64]× 2 Y: [3× 3, 32]× 2
U/V: [3× 3, 16]× 2

16× 16 2× 2 Max-Pool, stride 2
Y → Y: identity
U → U: identity
V → V: identity

Y  U/V: [1× 1, 32]
U/V  Y: [1× 1, 16]

[3× 3, 128]× 2 Y: [3× 3, 64]× 2
U/V: [3× 3, 32]× 2

8× 8 2× 2 Max-Pool, stride 2
1× 1 Fully connected, 512-D

10/100-way softmax

hyperparameters as described in [18], and a batch size of
32. Dropout [19] has been applied after both of the pooling
operations (with p = 0.25) as well as after the first fully
connected layer (with p = 0.5).

B. FitNet4

We decided to implement FitNet4 by Romero et al. [20] as our
second baseline, representing a sophisticated CNN close to the
state-of-the-art on CIFAR-10/100. We opted for this model as
it is prominently featured in a variety of recent neural networks
research ([21], [22]), and due to its design goal of being a
“thin&deep” network, managing to keep its parameter count
relatively low compared to many other successful models, and



TABLE II
ARCHITECTURES FOR FITNET4 AND X-FITNET4

Output size FitNet4 X-FitNet4
∼ 2.75M param. ∼ 2.72M param.

32× 32 [3× 3, 32]× 3 Y: [3× 3, 24]× 3
U/V: [3× 3, 12]× 3

[3× 3, 48]× 2 Y: [3× 3, 36]× 2
U/V: [3× 3, 18]× 2

16× 16 2× 2 Max-Pool, stride 2
Y → Y: [1× 1, 36]
U → U: [1× 1, 18]
V → V: [1× 1, 18]

Y  U/V: [1× 1, 12]
U/V  Y: [1× 1, 12]

[3× 3, 80]× 6 Y: [3× 3, 60]× 6
U/V: [3× 3, 30]× 6

8× 8 2× 2 Max-Pool, stride 2
Y → Y: [1× 1, 60]
U → U: [1× 1, 30]
V → V: [1× 1, 30]

Y  U/V: [1× 1, 18]
U/V  Y: [1× 1, 18]

[3× 3, 128]× 6 Y: [3× 3, 96]× 6
U/V: [3× 3, 48]× 6

1× 1 8× 8 (global) Max-Pool
Fully connected, 500-D

10/100-way softmax

therefore could still be a feasible first choice for handling a
sparse dataset.

The FitNet4 consists of 17 convolutional 2-way maxout [23]
layers, followed by two fully connected layers, the first of
which is a 5-way maxout layer. The full architecture of this
model—as well as its cross-modal variant (X-FitNet4)—is
presented in Table II.

Both models are initialised using Xavier initialisation [24], and
are then trained for 230 epochs using the Adam SGD optimiser
with a batch size of 128. We have applied batch normalisation
[25] to the output of each hidden layer to significantly acceler-
ate the training procedure. L2 regularisation with λ = 0.0005
has been applied to all weights in the model. Finally, dropout
(with p = 0.2) was applied on the input, after every pooling
operation, and after the fully connected maxout layer.

IV. EVALUATION

To verify our insights, we have utilised two well-known image
classification benchmark datasets, CIFAR-10 and CIFAR-100
[13], for which an abundance of data is available (50000
training and 10000 testing examples). This makes it easier
to study the behaviour of the considered CNNs as different
fractions of the training data are discarded. We hypothesise
that, at lower levels of data availability (up to a threshold),

our methodology will yield significant gains over an equivalent
unrestricted CNN—and also that it will remain competitive at
all higher training set sizes.

The validity of our claim is investigated by performing
comparative evaluation, with the KerasNet and FitNet4 as
baselines against X-KerasNet and X-FitNet4, respectively. In
each individual test we evaluate the accuracy of these four
models on the entire test set of 10000 samples, when the
training routine is presented with only p% of the entire training
dataset (chosen deterministically). The schedule for the tests
is as follows:

• Initially test in increments of 5%, until reaching 20% (at
which time the training and testing sets have equal sizes);

• Afterwards, test in increments of 10% until either reach-
ing 50% or the accuracies of the two models get within
0.5% of each other (corresponding to a gain of ≤ 50
images properly classified), whichever is later;

• Specially, we always test on 1% (corresponding to a
highly sparse environment with only 500 training images)
and 100% of the training dataset.

The images are preprocessed by applying a single batch
normalisation operation on them; we have found this to
yield slightly better results compared to doing global con-
trast normalisation and ZCA whitening (the more common
approach). Finally, given that it is, depending on the task,
sometimes possible to significantly enhance results in a sparse
environment by way of data augmentation, we have run all of
the above tests twice—with and without random translations
and horizontal reflections applied to the training images—
providing insight as to whether data augmentation compounds
the effects of a cross-modal architecture, and to what extent.

V. RESULTS AND DISCUSSION

The full evaluation results on the aforementioned tests are
presented in Tables III–VI.

The results on tests without data augmentation are completely
in line with the claim of Section IV; at sufficiently low training
data sizes, both X-KerasNet and X-FitNet4 significantly out-
perform their respective baselines on the testing set, for both
of the CIFAR-10/100 datasets.

For CIFAR-10, the threshold at which the baselines “catch
up” (in terms of being able to manually learn the domain
knowledge directly injected into their cross-modal variants) is
at around p = 40%, corresponding to 20000 training examples
being available. Furthermore, on CIFAR-100, such a threshold
is never reached, most likely due to the extreme sparsity of per-
class examples making this problem particularly suitable for
the X-CNN models; the only exception is the 1% scenario for
FitNet4, where the data sparsity is probably too extreme (five
examples/class) for such a deep model to reach its potential.

Regardless of when the threshold is surpassed, we report that
the cross-modal CNNs will generally continue to have a slight



TABLE III
COMPARATIVE EVALUATION RESULTS ON CIFAR-10 WITHOUT DATA AUGMENTATION

Model
∖ p 1% 5% 10% 15% 20% 30% 40% 50% 60% 70% 80% 90% 100%

KerasNet 37.94% 53.82% 62.95% 67.39% 70.26% 74.39% 76.62% 78.55% ——— ——— ——— ——— 82.50%
X-KerasNet 41.19% 57.84% 65.01% 68.25% 71.36% 74.79% 76.96% 78.57% ——— ——— ——— ——— 82.62%
FitNet4 38.97% 56.78% 70.37% 75.07% 78.50% 81.95% 83.95% 85.22% ——— ——— ——— ——— 89.56%
X-FitNet4 39.21% 60.57% 70.82% 76.09% 79.40% 83.36% 84.25% 86.14% ——— ——— ——— ——— 90.13%

TABLE IV
COMPARATIVE EVALUATION RESULTS ON CIFAR-10 WITH DATA AUGMENTATION

Model
∖ p 1% 5% 10% 15% 20% 30% 40% 50% 60% 70% 80% 90% 100%

KerasNet 45.45% 67.01% 70.89% 78.83% 80.97% 83.23% 83.64% 85.02% ——— ——— ——— ——— 86.66%
X-KerasNet 49.60% 69.28% 72.51% 78.96% 80.58% 83.10% 83.89% 85.37% ——— ——— ——— ——— 87.41%
FitNet4 40.91% 65.73% 75.55% 80.85% 83.63% 86.23% 88.30% 89.11% ——— ——— ——— ——— 92.27%
X-FitNet4 42.02% 65.54% 77.06% 81.33% 83.94% 86.41% 88.13% 89.37% ——— ——— ——— ——— 92.50%

TABLE V
COMPARATIVE EVALUATION RESULTS ON CIFAR-100 WITHOUT DATA AUGMENTATION

Model
∖ p 1% 5% 10% 15% 20% 30% 40% 50% 60% 70% 80% 90% 100%

KerasNet 7.55% 15.10% 20.24% 24.76% 28.18% 32.43% 36.29% 38.61% 41.63% 44.10% 45.56% 46.26% 48.26%
X-KerasNet 8.05% 16.45% 23.04% 26.91% 30.08% 35.39% 39.13% 41.88% 42.50% 45.96% 46.73% 48.25% 49.98%
FitNet4 6.48% 16.84% 22.12% 28.30% 35.52% 39.28% 43.59% 49.69% 50.42% 55.83% 56.62% 58.00% 59.78%
X-FitNet4 6.64% 18.73% 27.57% 33.59% 38.38% 45.53% 49.68% 52.21% 55.55% 57.22% 59.52% 60.87% 62.20%

TABLE VI
COMPARATIVE EVALUATION RESULTS ON CIFAR-100 WITH DATA AUGMENTATION

Model
∖ p 1% 5% 10% 15% 20% 30% 40% 50% 60% 70% 80% 90% 100%

KerasNet 9.09% 24.68% 32.63% 38.64% 42.62% 47.64% 49.91% 52.46% 53.77% 54.26% 55.12% 55.42% 55.45%
X-KerasNet 10.16% 27.15% 35.58% 42.05% 43.77% 48.80% 50.48% 54.25% 54.90% 55.33% 55.68% 56.82% 57.18%
FitNet4 7.25% 17.94% 23.55% 29.24% 38.76% 48.07% 50.06% 56.01% 58.55% 59.80% 62.38% 63.60% 65.59%
X-FitNet4 7.35% 20.39% 28.69% 37.86% 43.75% 50.48% 55.40% 57.92% 60.70% 62.76% 66.18% 66.27% 67.19%

edge over the baselines—outperforming them on all of the
full training dataset experiments, sometimes significantly. This
naturally invites the conclusion that converting a CNN into a
X-CNN (if allowed by the task) is always a reasonable step;
it can yield significant benefits (the significance depending on
the relation between the sparsity of the training dataset and
the complexity of the baseline model), while rarely making
performance significantly worse.

To further verify this claim, we have performed experiments
on the full datasets (with and without augmentation) where we
monitored how the testing accuracy evolves as a function of
training epoch. The resulting plots are summarised in Figure
3; it is clear that the X-CNNs are at least as powerful as
their baselines, even when the full training sets are available.
Furthermore, it is possible to detect a narrow edge for the
cross-modal models in the CIFAR-10 experiments, and a sig-

nificant edge in the CIFAR-100 experiments. The concluding
remark is that even when the dataset under investigation is not
very sparse, attempting to utilise a cross-modal variant of the
considered models (if applicable) is a reasonable action, as it
might yield noticeable returns in predictive power.

The analysis of the interplay between data augmenta-
tion and cross-modal networks on CIFAR-100 remains
straightforward—the X-CNN models remaining consistently
and significantly ahead of their baselines throughout the entire
spectrum of training set sizes. On CIFAR-10, however, this is
slightly more complicated; while the catch-up threshold gets
expectedly decreased (to around p = 20%), the behaviour
of X-CNNs for smaller training set sizes does not always
significantly compound the benefits of data augmentation.
Specifically, at 5% of the training set the FitNet4 model
manages to outperform X-FitNet4 (the roles do get reversed
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Fig. 3. Plots of the test accuracy of the four CNN models under consideration as a function of the number of training epochs, under 100% of the training
set available. The experiments have been carried out on both CIFAR-10 and CIFAR-100, with and without data augmentation. The cross-modal CNNs are
consistently competitive with their respective baselines across all four datasets, with a significant edge present for CIFAR-100.

starting from 10%, however). As a possible cause of this
phenomenon, we note that, at this data availability level, both
of the FitNet4 models are significantly inferior in performance
to the KerasNet models, for which there is a significant benefit
to the usage of X-CNNs. The takeaway lesson here is that,
while the cross-modal architecture need not always compound
nicely with data augmentation, an occurrence of such an event
could signify that the baseline was not particularly suitable for
properly accommodating data augmentation at this training set
size in the first place. If this happens, one should attempt to use
a more suitable/shallower CNN—the X-CNN variant should
then produce the desired benefits.

Finally, we have taken advantage of some of the smaller
training set sizes to perform statistical significance tests,
typically scarce in deep learning literature. For training set
sizes up to 15%, we trained the models five times (from dif-
ferent initial conditions) and then performed t-tests, choosing
p < 0.05 as our significance threshold. Our findings show
that, under these assumptions, the best-performing X-CNN

model’s performance advantages are statistically significant in
all scenarios, aside from the data-augmented CIFAR-10.

VI. CROSS-CONNECTION ANALYSIS

A key element of the X-CNN architecture are the cross-
connection layers, as they enable information flow between
individual channels. It will therefore be of interest to under-
stand and visualise what is the mode of operation for these
layers. All of the visualisations in this section correspond to
the learned weights after fully training on 100% of CIFAR-10
with data augmentation.

We will first demonstrate that cross-connections inserted in
the considered models, though being 1×1 convolutions, learn
more complex functions than simple feature map passing.
First, we note that the weights of a 1× 1 convolutional layer
may be represented as a 2D table that maps input channels to
output channels (akin to an adjacency matrix, where columns
are the input channels and rows are the output channels).



Fig. 4. Weight visualisation of the first-level cross-connection layer for the
X-FitNet4 CNN. The columns correspond to input channels, while rows
correspond to output channels. Green colour indicates a positive-weight
connection between an input channel and an output channel, while blue colour
indicates a negative-weight connection. The colour intensities are proportional
to the absolute weight values. Top: Y  U/V (36 input channels, 12 output
channels). Bottom, left-to-right: U  Y and V  Y (18 input channels, 12
output channels).

Rather than displaying the raw table values, we decided to
visualise weights in a heatmap style; Figure 4 showcases this
visualisation for the first cross-connection layer of X-FitNet4.
Green colours indicate that an input channel has a positive
connection weight to the respective output channel while blue
colours indicate negative weights. The colour intensities are
proportional to the absolute weight values.

It can be seen that each output channel of the cross-connection
layer is obtained through a nontrivial weighted combination
of input channels. We hypothesise that the cross-connection
layers selectively filter and combine input features that are
more utilisable in another processing stream.

To delve deeper into what kinds of features the cross-
connection layers are filtering, combining and passing, we
applied layer-wise feature-map activation techniques proposed
by Simonyan et al. [26]. This technique performs gradient
ascent on a white-noise input image to maximise activations
of a specific channel of feature maps at any of the layers within
a pre-trained model. The objective function for gradient ascent
is defined as

I′ = argmax
I

Σ(I)− λ‖I‖2 (1)

where I is input image, Σ(I) is the activation of the considered
neuron when provided with I as input, and λ is a regularisation
factor. After iterating for a number of gradient ascent steps,
the original white-noise image will be modified into patterns
that approximate the detection function of a specific neuron.

Lower-level convolutional layers are well-known to learn
filters approximating Gabor wavelet filters that act as edge
detectors, corner detectors, etc; we can confirm that in our
experiments this has indeed been the case. For the first cross-
connection layer of X-FitNet4, we have visualised a selection
of channel activations in Figure 5. This visualisation indicates
that the cross-connection layer is indeed passing combined

Fig. 5. Artificially generated images (from white noise) that cause strong
activations of specific channels in the first cross-connection layer of the X-
FitNet4 model. Top: Three channels from the Y  U/V cross-connections.
Middle: Three channels from the U  Y cross-connections. Bottom: Three
channels from the V  Y cross-connections.

lower-level features, such as the addition of horizontal and
vertical stripes in the upper right image in the figure. We
observe further that the pattern frequency for the Y channel’s
crossconnection layer is higher than the one for the U and
V layers. This observation reflects the fact that the human
vision system is able to detect higher frequency variations in
intensity than chrominance. This is a solid indicator that the
X-CNN architecture, when faced with an image classification
task in the YUV colour scheme, is actually attempting to
mimic human vision.

Our final analysis focusses on the X-KerasNet model, where
we transformed feature maps of arbitrary depths into RGB
images by a colour-mapping scheme. Figure 6 shows the
feature maps of the inputs and outputs of the Y  U/V
cross connections for representative images of the truck and
airplane classes. These were easier to comparatively analyse
on the X-KerasNet, as its cross-connection layers do not alter
the number of feature maps, and therefore the same colour-
mapping scheme remained meaningful for both. We observe
that cross-connection output maps have background and some
features emphasised, while other features de-emphasised—
which further indicates that the cross-connection layers are
performing more complex inter-superlayer feature integration
than simply passing feature maps between superlayers.

VII. CONCLUSION

We have introduced cross-modal convolutional neural net-
works (X-CNNs), a novel architecture that decouples con-
volutional processing of (typically image-based) input par-
titions, while allowing for periodical information flow be-



Fig. 6. Visualisation of input and output feature maps of the Y U/V cross-
connection layer of X-KerasNet. Left: input images (truck/airplane). Middle:
input feature maps to the cross-connection layer. Right: output feature maps
of the cross-connection layer.

tween the processing pipelines, in order to achieve perfor-
mance improvements in sparse data environments. We have
applied this methodology on the popular CIFAR-10/100 image
classification datasets for two baseline models, managing
to significantly outperform them in low-data environments,
while remaining competitive in high-data environments—
outperforming them on all of the full-dataset experiments.

Aside from reinforcing the claim that the X-CNN architecture
can only be beneficial to a baseline model (depending on the
levels of training data sparsity, potentially highly significantly),
we have further verified that the introduced cross-connection
layers perform rather complex functions (thus they are not
limited to simple feature map passing) and are capable of
mimicking human vision processes—confirming that the bi-
ological inspiration behind such a model is justified.
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