
Biasing Restricted Boltzmann Machines using

Gaussian Filters to Learn Invariant Visual Features

Arjun Yogeswaran and Pierre Payeur

School of Electrical Engineering and Computer Science

University of Ottawa

Ottawa, Canada

ayoge099@uottawa.ca, ppayeur@uottawa.ca

Abstract— Advances in unsupervised learning have allowed

the efficient learning of feature representations directly from large

sets of unlabeled data instead of using traditional handcrafted

features. However, improving algorithms to increase the quality of

these representations in the absence of labeled data is still an area

of active research. This paper evaluates visual features learned

through unsupervised learning, specifically comparing

regularization and preprocessing methods using Gaussian filters

on a single-layer network. Using the restricted Boltzmann

machine as the unsupervised learning mechanism, features

emerging through training on natural videos, with different

biasing and preprocessing based on Gaussian filters, are

compared by metrics to measure invariance as well as

classification performance on standard datasets. When Gaussian

filters are convolved with adjacent hidden layer activations from

a single example during training, topographies begin to emerge

where adjacent features become tuned to slightly varying stimuli.

1D, 2D, and 3D topographies are compared. When a Gaussian low-

pass filter is applied to activations from a single hidden node

across frames drawn from video, features that are more invariant

to transformations are produced. Finally, when Gaussian filters

are applied to the visible nodes, images become blurrier; learning

from these images also leads to invariant features. The networks

are trained using the Hollywood2 video dataset, and tested on

image classification of the static CIFAR-10 and STL-10 datasets.

To prove that the improvements are independent of the dataset,

the networks are shown to produce similar results when trained

on the CIFAR-10 dataset. The induction of topography or simple

image blurring via Gaussian filters during training produce better

discriminative features as evidenced by the consistent and notable

increase in classification results that they produce. Also, in the

visual domain, invariant features are desirable such that objects

can be classified accurately despite transformations. It is found

that most of the compared methods produce more invariant

features, however, classification accuracy does not correlate to

invariance.

Keywords— unsupervised learning; Gaussian filter; restricted

Boltzmann machine; topography; image classification;

representation learning; feature representation; object recognition;

invariant feature.

I. INTRODUCTION

Recent advances in unsupervised learning mechanisms have
allowed increased performance in a variety of domains,
including visual object classification. The importance in this
performance increase is that these learning mechanisms learn

powerful feature representations directly from unlabeled data.
An effective way to assess these methods and their properties is
to test them on single-layer networks, as opposed the multi-
layered networks which are commonly used for image
classification, such that the influence of network architecture is
minimized and the actual performance of the learning
mechanism can more easily be isolated and compared. Coates et
al. [1] structured their comparison similarly by comparing
single-layer networks and their classification performance on
standard image classification datasets under a variety of
parameters. That study outlined the efficacy of several single-
layer techniques at learning discriminative features from raw
pixel data. Modeled after that study, our current research aims
to compare different regularization and preprocessing
techniques also on a single layer in order to boost image
classification performance through generating better features. In
addition, the properties of these features, which are more
difficult to interpret at higher levels in a multi-layer network,
may lead to further understanding of their role in object
recognition.

An important aspect of learning is the ability of a system to
be robust enough to generalize between slightly different
versions of the same stimulus, but specific enough to
discriminate between the desired stimulus and other stimuli. At
the heart of this particular balance lies the concept of invariance.
Typically, unsupervised learning techniques will learn visual
features which are not particularly invariant to transformations.
Increasing a feature’s tolerance to such transformations is
considered making it more invariant and a more robust datapoint
for classification. Architectures such as the convolutional neural
network [2] use hard-wired translational invariance to achieve
robustness. Though effective, this limits the network to
tolerating only one type of transform. Since unsupervised
learning methods can learn features from natural data, it is a
natural progression to also learn invariances from the same data.

Regularization is the process of biasing a function based on
external information with the goal of producing more desirable
results. Restricted Boltzmann machines (RBM) [3] have
benefitted from regularization to induce sparsity, resulting in the
production of more discriminative features, such as
physiologically-consistent Gabor-like features when trained on
natural image data. Topographic Independent Component
Analysis (TICA) [4] uses regularization to create topography in
the learned features.

Gaussian filters are at the core of many machine vision
techniques, often to reduce noise or high frequency effects,
incorporate information from neighboring regions, or soften
edges depending on how they are applied. In unsupervised
learning, they have been considered for inducing topography,
falling under the idea of incorporating information from
neighboring regions [5]. Temporal low-pass filtering has been
used to learn slow-changing features [6], therefore, Gaussian
filters are a viable candidate for implementing the low-pass
filter. Generally, incorporating additional information and
filtering can improve feature learning, and the Gaussian filter
provides exactly those characteristics. As a result, they are a
compelling topic to link together different biasing techniques in
unsupervised learning.

Le et al. created a deep network that used neighborhoods of
features found using TICA to achieve invariance en route to
state-of-the-art results on a variety of object recognition
benchmarks [7]. Zou et al. [8] learn slow-changing features for
the purpose of invariance, and lower error rates are produced in
image classification tasks. These results show that performance
can increase over hard-wired invariance when features are
learned from the data, thus giving a real reason to explore and
quantify methods to achieve this result.

This work characterizes the effectiveness of regularization
and preprocessing methodologies, specifically based around the
Gaussian filter, at learning discriminative-yet-invariant features
by a set of metrics as well as classification performance on
standard datasets. The training dataset will be the Hollywood2
video dataset [9] but the testing datasets will be the static
CIFAR-10 [10] and STL-10 [1] image classification datasets.
Training on one dataset and testing on another in the visual
domain has been shown to work effectively [8]. To show the
results are not contingent on the dataset, the same networks will
also be trained on the CIFAR-10 dataset and compared. To
reduce variability when comparing techniques, an RBM with
fixed hyperparameters is used as a singular architecture on
which different regularizations are tested.

II. RELATED WORK

Learning invariance often occurs by either supplementing
temporal information from video or dependence information
from images. Using temporal information from video is based
on the idea that the transformations that features undergo in
video can be captured such that the network can be invariant to
them. Földiák was among the first to use a temporal consistency
component for learning invariance in a network from sequences
of data [6]. The network groups similar features together based
on a learning principle coupled with the patterns found in natural
motion. In order to track activation over time, Földiák introduces
a trace variable, �� , which takes a running average of the
activation, y, subject to (1).

 ����� = �1 − 	�����
�� + 	���� (1)

where δ measures the influence of the current activation on the
running average, and y is the current activation of the unit. This
low-pass filtering suppresses fast-changing features while
preserving slow changing features. The method is only applied

on synthetic sequences, yet shows that learning invariance by
capturing slow changing features is possible. Einhäuser et al.
[11] introduce a larger-scale model and apply it to real-world
video with online learning using an adapted trace variable. It was
found that feature orientations change more slowly than their
position, thus, its nodes become tuned to features of similar
orientation but varying position. This shows that translation
invariance can be learned using temporal structure in natural
video. Zou et al. [8] use temporal slowness in conjunction with
a deep belief network to show that unsupervised training can
learn increasing invariances as the network aggregates layers.
Building upon the auto-encoder, the cost function is regularized
with a temporal difference cost, which encourages the result of
pooling nodes in a neighborhood to remain similar between time
steps. With a neighborhood size of two, the network learns pairs
of features which their respective pooling node becomes
invariant to.

When using static images to learn invariance, the idea of
overlapping information or dependence is used as
supplementary information. TICA [4] creates a smoothly-
varying topographic relationship between all of the components,
where components outside of a neighborhood are independent,
but components within a neighborhood are not. Similarly, Goh
et al. [5] apply a regularizer to introduce 2D topography into an
RBM, learning invariant color features that vary smoothly over
the hidden layer. It is also claimed that sparsity and topography
create more invariant features. That claim is tested in this work.

III. BACKGROUND

A. Restricted Boltzmann Machine

The restricted Boltzmann machine(RBM) [12], shown in
Fig. 1, is an undirected bipartite network which uses its hidden
layer to represent input data from the visible layer. It is an
energy-based model, and calculates the energy of the joint
configuration of visible nodes and hidden nodes by (2).

 ���, ℎ� = −��� − ��ℎ − ℎ′�� (2)

where v and h are the visible and hidden node states,
respectively, a and b are the visible and hidden biases,
respectively, and W are the symmetric weights connecting the
hidden and visible nodes.

Fig. 1. Restricted Boltzmann machine.

Equation (3) determines the probability that a binary hidden
node is on, given the visible vector. To deal with image data,
the visible vector is modeled using linear nodes. Equation (4)
determines the visible node given the hidden vector.

 ��ℎ� = 1 ��� = ������ ��� + ∑ "#��## � (3)

 ���# = � |ℎ� = %��|�# + ∑ "#�ℎ�� , 1� (4)

where hj is the jth hidden node, v is the visible node vector, bj is
the bias of the jth hidden node, ai is the bias of the ith visible node,
wij is the weight connecting the ith visible node, vi, and hj,
%�μ, '(� is a probability density of Gaussian distribution with
mean μ and standard deviation ' . Since the image data is
normalized, unit variance is used.

Training is accomplished using contrastive divergence (CD),
and involves lowering the energy for preferred configurations of
hidden and visible nodes, and raising the energy for undesirable
configurations [12]. The training alternates between the positive
phase and negative phase, where the positive phase samples the
hidden state, h+

, and the visible state, v+
, from the data while the

negative phase produces the reconstructions of the hidden state,
h-, and the visible state, v-. The weight update is defined as:

 ∆"#� = *[< �#
-ℎ�

- > − < �#

ℎ�

 >] (5)

where * is the learning rate, and <.> is the average over a number
of samples.

Sparsity has been shown to increase discriminative power
and optimize RBM representation of data by forcing only a
subset of nodes to represent presented data. Lee et al. [3]
specifies a sparsity target and adds a regularization term to
encourage activation with the target frequency by increasing or
decreasing the bias.

B. Gaussian Filters

The purposes of the Gaussian filter in this work are
conceptually varied, despite obvious similarities. In the case of
the topographic RBM, the Gaussian filter incorporates
information from local hidden nodes to induce a dependence
thus influencing nodes to develop properties similar to its
neighbors. In the case of temporal low-pass filtering, the
Gaussian filter serves to remove fast-changing signals such that
only constant features, despite mild transformations, cause
activation. For the purpose of image blurring, the Gaussian filter
serves to soften edges such that the network learns blurrier
features. The effect of the sigma value, which represents the
standard deviation of the Gaussian function, determines the
magnitude of the induced effect. Note that these filters are
normalized such that their gain stays at 1.

IV. COMPARED BIASING METHODS

The idea of this work is to compare the application of
Gaussian filters to induce different effects during unsupervised
learning of visual features in an RBM. The compared biasing
methods will be: regular RBM, topography, temporal low-pass
filtering, and input blurring.

When training in a batch, the weighted sums in (3) and (4)
are performed by matrix multiplication. The visible input matrix
contains all of the training data to be used in the current batch,
where each row represents a training pattern, or image patch in
this work, and each column represents a visible node. The
weight matrix contains the weights connecting each visible node
to each hidden node. The hidden activation matrix is calculated

by multiplying the visible matrix and the weight matrix,
resulting in a matrix of activations with each row representing a
pattern and each column representing a hidden node. Fig. 2
shows how a Gaussian filter is applied in the visible matrix and
hidden activation matrix for each method which will be
compared.

Fig. 2. Application of convolution, where h are hidden node activations, v are

visible inputs, M is the # of visible nodes, N is the # of hidden nodes, and R is

of patterns. Gaussian filters for topography induction and for temporal low-

pass filtering are applied to the hidden activation matrix in the shown directions

(top), while the input blurring filter is applied to the visible inputs matrix

(bottom).

A. Regular RBM

An RBM with regularization only to induce sparsity [3] is
used as a control and will be compared as a baseline. This will
be referred to as the regular RBM.

B. Topography

Topography is induced in the RBM by regularization. By
ordering the nodes for a 1D topography, or arranging the hidden
nodes in a grid for a 2D or 3D topography, neighboring nodes
can be determined. Applying a Gaussian filter to hidden node
activations at each example, each node incorporates information
about its neighboring nodes. Applied during learning, adjacent
nodes develop slightly different features that gradually vary
across the grid.

Assuming batch training, a Gaussian filter is applied among
adjacent hidden nodes exposed to the same pattern in the
activation matrix. The positive phase activations of the hidden
nodes are modified by (6) as found in [5].

 ℎ0�
�1� = ∑ ℎ2

�1�-3�4, 5�6
2 (6)

where ℎ0�
�1�

 is the topography-induced positive activation of

hidden node j at pattern k, ℎ2
�1�-

 is the positive phase hidden
activation of hidden node n at pattern k, and the neighborhood
function, 3 , is a set of fixed neighborhood weights which

controls the impact of the surroundings on each activation. 3 is
set to a Gaussian function. A 1x3, 3x3, and 3x3x3 kernel is used
for the 1D, 2D, and 3D topographies, respectively.

Fig. 3 depicts this by showing the results of training a RBM
when inducing 2D topography, where each element in the 20x20
grid is a visualization of the feature that each hidden node learns.
For example, a vertical feature node responds best to vertical
edges, a colored feature node responds best to the displayed
color, and a patterned feature node responds best to the
displayed pattern.

Fig. 3. 20x20 grid of features produced by 2D topography in an RBM.

C. Temporal low-pass filtering

Invariant representations may also be learned from video.
Prior work has indicated that temporal low-pass filtering on
activations during learning of transformation sequences gives
rise to invariant features [6, 13].

Since consecutive patterns, or rows in the visible inputs
matrix, are the same image patch in consecutive time frames
extracted from Hollywood2, a temporal continuity effect is
induced during batch training by applying a Gaussian filter to
the hidden activation matrix perpendicular to the way it was in
the topography organization, meaning blurring among the same
hidden node exposed to adjacent patterns as shown in (7). This
transposes the ideas presented in the discussed papers to the
RBM framework used in this work.

 ℎ0�
�1� = ∑ ℎ�

�7�-3�8, 9�:
7;� (7)

where this 3 represents the Gaussian weighting of the
activation that different patterns produce on the same hidden
node, which is a type of temporal low-pass filter.

D. Input blurring

Though blurring could fall under preprocessing, it is

addressed as a method used for comparison. Image patches are

blurred using a Gaussian filter with kernel width 3 and varying

sigmas, using (8), before being passed to the RBM.

 �#
�1� = ∑ �<

�1�3��, ��=
<;� (8)

where �#
�1�

 is the visible node i at pattern k being blurred, �<
�1�

is a neighboring visible node m at pattern k, and the

neighborhood function, 3, is the Gaussian filter

V. EXPERIMENT DESIGN

A. Preprocessing

In both training and testing, the color patches are contrast

normalized and whitened, as these are common techniques to

reduce redundant information [1].

B. Training

Primarily, the Hollywood2 action dataset [9] was used for

training. It is a natural video dataset containing color video clips

taken from Hollywood films; two examples are shown in Fig.

4.

Fig. 4. Examples from Hollywood2 dataset.

The dataset contains enough real-world scenery, image

variation, and motion to suit the training algorithms that use

static images (regular, topographic, input blurred methods) as

well as the ones that make use of video (temporal low-pass

method). To efficiently use the video dataset, motion is found

via background subtraction between adjacent frames, selecting

the position with the highest difference, and using the image

patch at that location as a training example. The sequence lasts

for 5 frames until a new position is found through the same

process. Sequential time frames are consecutive training

examples such that the temporal low-pass filter can operate as

described. The network was trained for 300 epochs, on 10,000

5-frame sequences, divided into batches of 100. As an

additional experiment, the methods were also trained on

CIFAR-10 [10] to see if the same effects persisted across

training datasets. 50,000 random patches were used as training

data, and the other training parameters remained the same.

C. Testing

As a measure of how effective the techniques are, the

trained networks are applied on two datasets, CIFAR-10 [10]

and STL-10 [1], which are composed of real-world images

containing objects belonging to various classes. Classification

accuracy is reported according to the standard testing procedure

for each dataset. Samples of CIFAR-10 are shown in Fig. 5.

Fig. 5. Some examples of images found in CIFAR-10, with labels of dog,

automobile, and airplane (left to right).

The classification procedure follows the one outlined in [1].
The training example is transformed into a set of subpatches,
each of which are passed through the RBM to generate a set of
feature vectors representing the entire image. Experiments in
this work use a stride of 1, which means no patches are skipped
over. Therefore, an image of n-by-n pixels, and an input-patch
size of w-by-w, produces an (n-w+1)-by-(n-w+1)
representation with K features. yij denotes the K-dimensional
representation extracted at position (i,j). A simple pooling
mechanism is implemented by dividing the image into 4
quadrants, and the feature vector is reduced from a (n-w+1)-by-
(n-w+1)-by-K representation to a 2-by-2-by-K representation
by summing the yij’s in each quadrant. A standard linear
classifier is used for classification with the summed feature
vectors and the associated label.

D. Invariance Metric

The metric proposed by Goodfellow et al. [14] simplifies

each network's invariance properties into a comparable value.

The idea is to compare a feature's activation when presented

with transformed optimal stimuli versus random stimuli. The

local trajectory T(x) is a set of stimuli that are semantically

similar to a reference stimulus x:

 >�?� = @A�?, *�| * ∈ Γ} (9)

where τ(x,γ) transforms a stimulus x into a new stimulus, and γ
is a transformation which comes from a set of possible
transformations, Γ. For example, these transformations could be
all translations within 5 pixel radius, or rotations within 45
degrees. The robustness of a hidden node is calculated by the
firing of a hidden node when applied to local trajectories around
inputs which maximally activate that node:

 E�4� = �
|F|

∑ �
|G�H�|H I F ∑ J��?�K I G�H� (10)

where fj(x) is the activation, calculated by (3), of hidden node j
when presented with stimulus x. Z is the set of inputs that
produce a high activation from that same hidden node, and T(z)
is the set of local trajectories around input z. The global firing
rate, G(j), is the firing rate of a hidden node when applied to
stimuli drawn randomly from a distribution of possible inputs
defined for the test. Finally, the invariance score, S(j) is
calculated:

 L�4� = M���

N���
 (11)

This calculation represents the robustness of the hidden node
divided by the global firing rate, where L(j) indicates the node’s
robustness, while G(j) ensures that the hidden node is selective
and not always active. A higher invariance score indicates that
the hidden node is more invariant. Since the network may not
dedicate all of its resources to encoding invariance information,
only the p top-scoring nodes are used in calculating the average
score for the network.

VI. RESULTS AND ANALYSIS

Experiments were carried out with RBMs using the
methodologies detailed earlier: regular, 1D, 2D, and 3D
topographies, temporal low-pass and input blurred. All networks
are regularized with a sparsity of 0.01 and weight decay of
0.002, with no momentum term and no decaying of any
hyperparameters. The Hollywood2 dataset is used for training
unless otherwise stated. An 8x8 color receptive field size was
used in all tests. An 8x8 field is sufficiently small to yield good
classification results, while being large enough that optimal
stimuli can be appropriately translated and rotated to generate
enough data for the invariance score metric. Any other
parameters specific to each method are outlined in the results.

In the 3D topography, to keep the same number of nodes in
each dimension, a different number of total nodes than the 1D
and 2D topography was chosen for comparison. The largest cube
number that is smaller than the comparison number is chosen as
the number of hidden nodes for the 3D topography. This
amounts to 216, 343, 512, 729, 1000, and 1331 nodes for the 3D
topography corresponding to 225, 400, 625, 900, 1225, and 1600
nodes for the 1D and 2D topographies, respectively. Examples
of features learned by the regular, temporal low-pass, and input
blurred RBMs, with 400 hidden nodes, are shown in Fig. 6, 7,
and 8, respectively. The 2D topography is shown in Fig. 3.

Fig. 6. 20x20 grid of features produced by the regular RBM.

Fig. 7. 20x20 grid of features produced by the temporal low-pass RBM.

Fig. 8. 20x20 grid of features produced by the input blurred RBM.

The 2D topography contains smooth variations among
neighboring nodes in both axes. The temporal low-pass filtered
RBM produces very similar features to the regular RBM. The
features learned by the RBM with input blurring shows more
high frequency features with less localization. The
topographical RBM also has more high frequency features with
less localization, but they look less clean and isolated; while
less pleasant to look at, it may indicate that it has learned a more
diverse and complex set of correlations.

A. Classification

The methods and their classification accuracies on CIFAR-
10 relative to the number of hidden nodes in the network are
shown in Fig. 9. Within each method, the sigma with the best
CIFAR-10 classification accuracy at 1600 nodes is the
representative, determined by evaluations of sigma between 0.0
and 2.0. Here, the input blurring and the topographical methods
show a constant improvement over the regular RBM and
temporal low-pass filtered RBM at each node count.

Fig. 9. Best parameters for each method comparing the classification accuracy

on the CIFAR-10 test set vs the number of hidden nodes.

To show that these improvements are not due to the
Hollywood2 dataset nor the method to select regions of interest,
the networks are trained on the CIFAR-10 dataset. The best
classification results for each method on CIFAR-10 and STL-
10, after being trained on Hollywood2 and CIFAR-10, are
shown in Table 1. The temporal low-pass method is not trained
on CIFAR-10 since training samples are not temporally related.

TABLE I. BEST CLASSIFICATION RESULTS, WITH 1600 NODES, ON

CIFAR-10 AND STL-10, WHEN TRAINED ON HOLLYWOOD2. NOTE THAT THE

TOPOGRAPHIC 3D RBM USES 1331 NODES.

It is visible that the methods achieve similar performance
increases relative to the regular RBM regardless of the training
dataset. All of the methods perform measurably better than the
regular RBM, with the exception of the temporal low-pass
filtered RBM. STL-10 contains much less labeled data than
CIFAR-10, causing it to suffer from a lower classification rate.
However, the values reported are consistent with the
performance of single-layer networks using this classification
protocol on these datasets [1].

Method (RBM)

Classification Accuracy (%)

Trained on

Hollywood2

Trained on

 CIFAR-10

CIFAR STL CIFAR STL

Regular RBM 70.26 48.63 73.82 51.49

Topographic 1D (σ=1.25) 72.29 53.05 75.41 52.21

Topographic 2D (σ=1.00) 73.49 53.63 76.24 54.06

Topographic 3D (σ=0.75) 73.09 51.68 75.65 54.76

Temporal low-pass (σ=0.30) 69.85 49.32 N/A N/A

Input blurred (σ=1.50) 74.00 51.50 74.76 52.10

Using basic Gaussian blurring as input preprocessing
produces a surprising increase in classification accuracy. So
much that it exceeds the regular RBM’s performance, when
trained on Hollywood2, by 6 percent when compared at 225
nodes and 3 percent at 1600 nodes.

The topographic methods perform best, and classification
accuracy is boosted even without pooling, as the features
themselves benefit from the shared information within the
neighborhood during training. With topography, the grid
arrangement is not important after training. Though
neighborhood pooling would improve results, it would bleed
over into becoming a two-layer network; as a result, it is not
discussed here.

Overall, the 1D topography produces similar results to the
2D and 3D topographies. However, it is computationally
simpler, since its 1x3 kernel only requires 2 neighbors. Thus,
sharing a small amount of information between nodes produces
a large improvement in features, and this improvement does not
correlate with the number of neighbors, given that the results of
the 2D topography typically exceed those of the 3D topography.
For these reasons, the 1D topography is a better solution than the
other topographic methods when training time is important.
Otherwise, the 2D topography is the solution which produces the
best results. The 3D topography is the least efficient, since it
does not produce much better results than the 2D topography yet
requires more computation.

The results show that the convolution of a Gaussian filter
with the RBM’s activation matrix to incorporate local
information from the same example, whether it is applied to
input nodes or hidden nodes, provides a notable increase in
classification performance. Incorporating temporal information
in this manner does not seem to provide any discernible benefit.

B. Invariance

The invariance score, calculated by (11), is used to evaluate

how invariant the learned features are. For this score, the

methods were trained on grayscale versions of the Hollywood2

dataset. Then, the optimal stimulus for each hidden node was

found by searching through all possible line segments, with all

possible thicknesses, that fit in the image patch and selecting

the one with the highest response. Since most features nodes

respond to shapes similar to lines, they were used as the shape

by which the optimal stimulus is defined; an example optimal

stimulus corresponding to a hidden node feature is shown in

Fig. 10.

Fig. 10. Hidden node feature (left). Optimal stimulus (right).

Translations of -4 to +4 pixels in both axes, and rotations of
-45 to +45 degrees were used as local trajectories according to
(9), and the final scores, calculated by (11), were summed
together. As in [14], a firing threshold for each node is selected
such that its firing rate when applied to random stimuli, G(j), is
0.01. The top 10% of the scores were used to calculate the
means, which are reported in Table 2.

TABLE II. INVARIANCE SCORES OF ALL METHODS, WITH 225 NODES

(216 FOR TOPOGRAPHIC 3D RBM) TRAINED ON GRAYSCALE VERSIONS OF

HOLLYWOOD2.

Method (RBM) Invariance Score

 Regular 22.7

 Topographic 1D (σ=1.25) 13.1

 Topographic 2D (σ=1.00) 34.4

 Topographic 3D (σ=0.75) 48.6

 Temporal low-pass (σ=0.30) 25.7

 Input Blurring (σ=1.50) 56.4

As shown in the classification results, the topographic and
input blurred RBMs outperform the regular RBM and temporal
low-pass RBM. However, the invariance scores do not
necessarily reflect that invariance is the main reason for this
improvement. The topographic 2D and 3D RBMs, as well as the
input blurred RBM, have higher invariance scores and higher
classification results, however the topographic 1D RBM has a
lower invariance score than even the regular RBM, yet still
produces higher classification results. The discrepancy in
invariance scores between the 1D and 2D RBM is significant,
but that does not translate into a significant discrepancy in
classification accuracy. Therefore, the ability to form a good
representation goes far beyond the ability to generate invariant
features.

There are many reasons as to why these techniques produce
better representations. With input blurring, edges are softened,
resulting in the network learning features that cover a larger
area. Thus, it has invariance to small transformations of a sharp
feature within that area. With the induction of topography by
locally sharing information, neighboring nodes learn similar
features. This forces features into interpolating between
neighbors, resulting in a higher response to a larger range of
transformations. Overall, input blurring and topography are
simple methods to improve the learning of visual feature
representations.

VII. CONCLUSION

This paper performed a comparison between the biasing
effects of Gaussian filters in unsupervised training of an RBM
to evaluate their relative performance when it comes to learning
invariant detectors for image features. In addition to
improvements in classification results, an invariance metric was
shown to see how invariant the features are to transformations
of their optimal stimulus.

The simple blurring of training images produces a surprising
increase in classification accuracy and invariance metrics,
sometimes outperforming the other techniques. The biasing to
induce topography also quite obviously produces better
classification results than without biasing. Temporal low-pass
filtering with video does not produce features that are any better

at classification than the RBM without biasing, yet their
invariance measure is higher.

The comparison between invariant properties and
classification results of different learning methodologies for
unsupervised networks produces tangible evidence that, despite
differences in the approach, improved features can be achieved
by biasing the network appropriately. Invariance is an important
property to allow compact representation, and strike a balance
between generalization and specificity. However, improved
classification results, and the idea of learning good features,
should not necessarily be credited to invariant features since
there are more factors involved, evidenced by the increased
classification performance of the 1D topography despite a lower
invariance score.

Overall, this work shows that simple preprocessing and
regularization methods are capable of balancing the properties
of invariance and achieving good features.

ACKNOWLEDGMENT

Authors acknowledge the support from Natural Sciences and
Engineering Research Council of Canada and Ontario Ministry
of Training, Colleges and Universities toward this research.

REFERENCES

[1] A. Coates, H. Lee, and A. Ng, “An analysis of single-layer networks in
unsupervised feature learning”, Proc. International Conference on
Artificial Intelligence and Statistics (AISTATS), 2011, pp. 215-223.

[2] A. Krizhevsky, I. Sutskever, and G. Hinton, “Imagenet classification with
deep convolutional neural networks”, Proc. Advances in Neural
Information Processing Systems (NIPS), 2012, pp. 1097-1105.

[3] H. Lee, C. Ekanadham, and A. Ng, “Sparse deep belief net model for
visual area V2”, Proc. Advances in Neural Information Processing
Systems (NIPS), 2008, pp. 873-880.

[4] A. Hyvärinen, P. Hoyer, and M. Inki, “Topographic independent
component analysis”, Neural Computation, vol. 13, 2001, pp. 1527-1558.

[5] H. Goh, L. Kusmierz, J.-H. Lim, N. Thome, and M. Cord, “Learning
invariant color features with sparse topographic restricted Boltzmann
machines”, Proc. 18th IEEE Conference on Image Processing (ICIP),
2011, pp. 1241-1244.

[6] P. Földiák, “Learning invariance from transformation sequences”, Neural
Computation, vol. 3, 1991, pp. 194-200.

[7] Q. Le, M. Ranzato, R. Monga, M. Devin, K. Chen, G. Corrado, J. Dean,
and A. Ng, “Building high-level features with large scale unsupervised
learning”, Proc. International Conference on Machine Learning (ICML),
2012, pp. 81-88.

[8] W. Zou, S. Zhu, A. Ng, and K. Yu, “Deep learning of invariant features
via simulated fixations in video”, Proc. Advances in Neural Information
Processing Systems (NIPS), 2012, pp. 3203-3211.

[9] M. Marszalek, I. Laptev, and C. Schmid, “Actions in context”, Proc. IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2009,
pp. 2929-2936.

[10] A. Krizhevsky, “Learning multiple layers of features from tiny images”,
Technical Report, University of Toronto, 2009.

[11] W. Einhäuser, C. Kayser, P. König, and K. P. Körding, “Learning the
invariance properties of complex cells from their responses to natural
stimuli”, European Journal of Neuroscience, vol. 15, 2002, pp. 475-486.

[12] G. Hinton and R. Salakhutdinov, “Reducing the dimensionality of data
with neural networks”, Science, vol. 313, 2006, pp. 504-507.

[13] L. Isik, J. Z. Leibo, and T. Poggio, “Learning and disrupting invariance
in visual recognition with a temporal association rule”, Frontiers in
Computational Neuroscience, vol. 6, 2012.

[14] I. Goodfellow, Q. Le, A. Saxe, H. Lee, and A. Ng, “Measuring invariances
in deep networks”, Proc. Advances in Neural Information Processing
Systems (NIPS), 2009, pp. 646-654.

