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Abstract— Advances in unsupervised learning have allowed 

the efficient learning of feature representations directly from large 

sets of unlabeled data instead of using traditional handcrafted 

features. However, improving algorithms to increase the quality of 

these representations in the absence of labeled data is still an area 

of active research. This paper evaluates visual features learned 

through unsupervised learning, specifically comparing 

regularization and preprocessing methods using Gaussian filters 

on a single-layer network. Using the restricted Boltzmann 

machine as the unsupervised learning mechanism, features 

emerging through training on natural videos, with different 

biasing and preprocessing based on Gaussian filters, are 

compared by metrics to measure invariance as well as 

classification performance on standard datasets. When Gaussian 

filters are convolved with adjacent hidden layer activations from 

a single example during training, topographies begin to emerge 

where adjacent features become tuned to slightly varying stimuli. 

1D, 2D, and 3D topographies are compared. When a Gaussian low-

pass filter is applied to activations from a single hidden node 

across frames drawn from video, features that are more invariant 

to transformations are produced. Finally, when Gaussian filters 

are applied to the visible nodes, images become blurrier; learning 

from these images also leads to invariant features. The networks 

are trained using the Hollywood2 video dataset, and tested on 

image classification of the static CIFAR-10 and STL-10 datasets. 

To prove that the improvements are independent of the dataset, 

the networks are shown to produce similar results when trained 

on the CIFAR-10 dataset. The induction of topography or simple 

image blurring via Gaussian filters during training produce better 

discriminative features as evidenced by the consistent and notable 

increase in classification results that they produce. Also, in the 

visual domain, invariant features are desirable such that objects 

can be classified accurately despite transformations. It is found 

that most of the compared methods produce more invariant 

features, however, classification accuracy does not correlate to 

invariance.  

Keywords— unsupervised learning; Gaussian filter; restricted 

Boltzmann machine; topography; image classification; 

representation learning; feature representation; object recognition; 

invariant feature. 

I. INTRODUCTION  

Recent advances in unsupervised learning mechanisms have 
allowed increased performance in a variety of domains, 
including visual object classification. The importance in this 
performance increase is that these learning mechanisms learn 

powerful feature representations directly from unlabeled data. 
An effective way to assess these methods and their properties is 
to test them on single-layer networks, as opposed the multi-
layered networks which are commonly used for image 
classification, such that the influence of network architecture is 
minimized and the actual performance of the learning 
mechanism can more easily be isolated and compared. Coates et 
al. [1] structured their comparison similarly by comparing 
single-layer networks and their classification performance on 
standard image classification datasets under a variety of 
parameters. That study outlined the efficacy of several single-
layer techniques at learning discriminative features from raw 
pixel data. Modeled after that study, our current research aims 
to compare different regularization and preprocessing 
techniques also on a single layer in order to boost image 
classification performance through generating better features. In 
addition, the properties of these features, which are more 
difficult to interpret at higher levels in a multi-layer network, 
may lead to further understanding of their role in object 
recognition. 

An important aspect of learning is the ability of a system to 
be robust enough to generalize between slightly different 
versions of the same stimulus, but specific enough to 
discriminate between the desired stimulus and other stimuli. At 
the heart of this particular balance lies the concept of invariance. 
Typically, unsupervised learning techniques will learn visual 
features which are not particularly invariant to transformations. 
Increasing a feature’s tolerance to such transformations is 
considered making it more invariant and a more robust datapoint 
for classification. Architectures such as the convolutional neural 
network [2] use hard-wired translational invariance to achieve 
robustness. Though effective, this limits the network to 
tolerating only one type of transform. Since unsupervised 
learning methods can learn features from natural data, it is a 
natural progression to also learn invariances from the same data. 

Regularization is the process of biasing a function based on 
external information with the goal of producing more desirable 
results. Restricted Boltzmann machines (RBM) [3] have 
benefitted from regularization to induce sparsity, resulting in the 
production of more discriminative features, such as 
physiologically-consistent Gabor-like features when trained on 
natural image data. Topographic Independent Component 
Analysis (TICA) [4] uses regularization to create topography in 
the learned features.  



Gaussian filters are at the core of many machine vision 
techniques, often to reduce noise or high frequency effects, 
incorporate information from neighboring regions, or soften 
edges depending on how they are applied. In unsupervised 
learning, they have been considered for inducing topography, 
falling under the idea of incorporating information from 
neighboring regions [5]. Temporal low-pass filtering has been 
used to learn slow-changing features [6], therefore, Gaussian 
filters are a viable candidate for implementing the low-pass 
filter. Generally, incorporating additional information and 
filtering can improve feature learning, and the Gaussian filter 
provides exactly those characteristics. As a result, they are a 
compelling topic to link together different biasing techniques in 
unsupervised learning.  

Le et al. created a deep network that used neighborhoods of 
features found using TICA to achieve invariance en route to 
state-of-the-art results on a variety of object recognition 
benchmarks [7]. Zou et al. [8] learn slow-changing features for 
the purpose of invariance, and lower error rates are produced in 
image classification tasks. These results show that performance 
can increase over hard-wired invariance when features are 
learned from the data, thus giving a real reason to explore and 
quantify methods to achieve this result. 

This work characterizes the effectiveness of regularization 
and preprocessing methodologies, specifically based around the 
Gaussian filter, at learning discriminative-yet-invariant features 
by a set of metrics as well as classification performance on 
standard datasets. The training dataset will be the Hollywood2 
video dataset [9] but the testing datasets will be the static 
CIFAR-10 [10] and STL-10 [1] image classification datasets. 
Training on one dataset and testing on another in the visual 
domain has been shown to work effectively [8]. To show the 
results are not contingent on the dataset, the same networks will 
also be trained on the CIFAR-10 dataset and compared. To 
reduce variability when comparing techniques, an RBM with 
fixed hyperparameters is used as a singular architecture on 
which different regularizations are tested. 

II. RELATED WORK 

Learning invariance often occurs by either supplementing 
temporal information from video or dependence information 
from images. Using temporal information from video is based 
on the idea that the transformations that features undergo in 
video can be captured such that the network can be invariant to 
them. Földiák was among the first to use a temporal consistency 
component for learning invariance in a network from sequences 
of data [6]. The network groups similar features together based 
on a learning principle coupled with the patterns found in natural 
motion. In order to track activation over time, Földiák introduces 
a trace variable, �� , which takes a running average of the 
activation, y, subject to (1). 

 ����� = �1 − 	�����
�� +  	���� (1) 

where δ measures the influence of the current activation on the 
running average, and y is the current activation of the unit. This 
low-pass filtering suppresses fast-changing features while 
preserving slow changing features. The method is only applied 

on synthetic sequences, yet shows that learning invariance by 
capturing slow changing features is possible. Einhäuser et al. 
[11] introduce a larger-scale model and apply it to real-world 
video with online learning using an adapted trace variable. It was 
found that feature orientations change more slowly than their 
position, thus, its nodes become tuned to features of similar 
orientation but varying position. This shows that translation 
invariance can be learned using temporal structure in natural 
video. Zou et al. [8] use temporal slowness in conjunction with 
a deep belief network to show that unsupervised training can 
learn increasing invariances as the network aggregates layers. 
Building upon the auto-encoder, the cost function is regularized 
with a temporal difference cost, which encourages the result of 
pooling nodes in a neighborhood to remain similar between time 
steps. With a neighborhood size of two, the network learns pairs 
of features which their respective pooling node becomes 
invariant to.  

When using static images to learn invariance, the idea of 
overlapping information or dependence is used as 
supplementary information. TICA [4] creates a smoothly-
varying topographic relationship between all of the components, 
where components outside of a neighborhood are independent, 
but components within a neighborhood are not. Similarly, Goh 
et al. [5] apply a regularizer to introduce 2D topography into an 
RBM, learning invariant color features that vary smoothly over 
the hidden layer. It is also claimed that sparsity and topography 
create more invariant features. That claim is tested in this work. 

III. BACKGROUND 

A. Restricted Boltzmann Machine 

The restricted Boltzmann machine(RBM) [12], shown in 
Fig. 1, is an undirected bipartite network which uses its hidden 
layer to represent input data from the visible layer. It is an 
energy-based model, and calculates the energy of the joint 
configuration of visible nodes and hidden nodes by (2). 

 ���, ℎ� =  −��� − ��ℎ − ℎ′�� (2) 

where v and h are the visible and hidden node states, 
respectively, a and b are the visible and hidden biases, 
respectively, and W are the symmetric weights connecting the 
hidden and visible nodes. 

 

Fig. 1. Restricted Boltzmann machine. 

Equation (3) determines the probability that a binary hidden 
node is on, given the visible vector.  To deal with image data, 
the visible vector is modeled using linear nodes. Equation (4) 
determines the visible node given the hidden vector. 

 ��ℎ� = 1 ��� = ������ ��� + ∑ "#��## � (3) 



  ���# = � |ℎ� = %��|�# +  ∑ "#�ℎ�� , 1� (4) 

where hj is the jth hidden node, v is the visible node vector, bj is 
the bias of the jth hidden node, ai is the bias of the ith visible node, 
wij is the weight connecting the ith visible node, vi, and hj, 
%�μ, '(� is a probability density of Gaussian distribution with 
mean μ  and standard deviation ' . Since the image data is 
normalized, unit variance is used.  

Training is accomplished using contrastive divergence (CD), 
and involves lowering the energy for preferred configurations of 
hidden and visible nodes, and raising the energy for undesirable 
configurations [12]. The training alternates between the positive 
phase and negative phase, where the positive phase samples the 
hidden state, h+

, and the visible state, v+
, from the data while the 

negative phase produces the reconstructions of the hidden state, 
h-, and the visible state, v-. The weight update is defined as: 

  ∆"#� =  *[< �#
-ℎ�

- > − < �#

ℎ�


 >] (5) 

where * is the learning rate, and <.> is the average over a number 
of samples. 

Sparsity has been shown to increase discriminative power 
and optimize RBM representation of data by forcing only a 
subset of nodes to represent presented data. Lee et al. [3] 
specifies a sparsity target and adds a regularization term to 
encourage activation with the target frequency by increasing or 
decreasing the bias. 

B. Gaussian Filters 

The purposes of the Gaussian filter in this work are 
conceptually varied, despite obvious similarities. In the case of 
the topographic RBM, the Gaussian filter incorporates 
information from local hidden nodes to induce a dependence 
thus influencing nodes to develop properties similar to its 
neighbors. In the case of temporal low-pass filtering, the 
Gaussian filter serves to remove fast-changing signals such that 
only constant features, despite mild transformations, cause 
activation. For the purpose of image blurring, the Gaussian filter 
serves to soften edges such that the network learns blurrier 
features. The effect of the sigma value, which represents the 
standard deviation of the Gaussian function, determines the 
magnitude of the induced effect. Note that these filters are 
normalized such that their gain stays at 1. 

IV. COMPARED BIASING METHODS 

The idea of this work is to compare the application of 
Gaussian filters to induce different effects during unsupervised 
learning of visual features in an RBM. The compared biasing 
methods will be: regular RBM, topography, temporal low-pass 
filtering, and input blurring. 

When training in a batch, the weighted sums in (3) and (4) 
are performed by matrix multiplication. The visible input matrix 
contains all of the training data to be used in the current batch, 
where each row represents a training pattern, or image patch in 
this work, and each column represents a visible node. The 
weight matrix contains the weights connecting each visible node 
to each hidden node. The hidden activation matrix is calculated 

by multiplying the visible matrix and the weight matrix, 
resulting in a matrix of activations with each row representing a 
pattern and each column representing a hidden node. Fig. 2 
shows how a Gaussian filter is applied in the visible matrix and 
hidden activation matrix for each method which will be 
compared. 

Fig. 2. Application of convolution, where h are hidden node activations, v are 

visible inputs, M is the # of visible nodes, N is the # of hidden nodes, and R is 

# of patterns. Gaussian filters for topography induction and for temporal low-

pass filtering are applied to the hidden activation matrix in the shown directions 

(top), while the input blurring filter is applied to the visible inputs matrix 

(bottom). 

A. Regular RBM 

An RBM with regularization only to induce sparsity [3] is 
used as a control and will be compared as a baseline. This will 
be referred to as the regular RBM. 

B. Topography 

Topography is induced in the RBM by regularization. By 
ordering the nodes for a 1D topography, or arranging the hidden 
nodes in a grid for a 2D or 3D topography, neighboring nodes 
can be determined. Applying a Gaussian filter to hidden node 
activations at each example, each node incorporates information 
about its neighboring nodes. Applied during learning, adjacent 
nodes develop slightly different features that gradually vary 
across the grid.  

Assuming batch training, a Gaussian filter is applied among 
adjacent hidden nodes exposed to the same pattern in the 
activation matrix. The positive phase activations of the hidden 
nodes are modified by (6) as found in [5]. 

 ℎ0�
�1� =  ∑ ℎ2

�1�-3�4, 5�6
2  (6) 

where ℎ0�
�1�

 is the topography-induced positive activation of 

hidden node j at pattern k, ℎ2
�1�-

 is the positive phase hidden 
activation of hidden node n at pattern k, and the neighborhood 
function, 3 , is a set of fixed neighborhood weights which 



controls the impact of the surroundings on each activation. 3 is 
set to a Gaussian function. A 1x3, 3x3, and 3x3x3 kernel is used 
for the 1D, 2D, and 3D topographies, respectively. 

Fig. 3 depicts this by showing the results of training a RBM 
when inducing 2D topography, where each element in the 20x20 
grid is a visualization of the feature that each hidden node learns. 
For example, a vertical feature node responds best to vertical 
edges, a colored feature node responds best to the displayed 
color, and a patterned feature node responds best to the 
displayed pattern. 

 

 

Fig. 3. 20x20 grid of features produced by 2D topography in an RBM. 

C. Temporal low-pass filtering 

Invariant representations may also be learned from video. 
Prior work has indicated that temporal low-pass filtering on 
activations during learning of transformation sequences gives 
rise to invariant features [6, 13]. 

Since consecutive patterns, or rows in the visible inputs 
matrix, are the same image patch in consecutive time frames 
extracted from Hollywood2, a temporal continuity effect is 
induced during batch training by applying a Gaussian filter to 
the hidden activation matrix perpendicular to the way it was in 
the topography organization, meaning blurring among the same 
hidden node exposed to adjacent patterns as shown in (7). This 
transposes the ideas presented in the discussed papers to the 
RBM framework used in this work. 

 ℎ0�
�1� =  ∑ ℎ�

�7�-3�8, 9�:
7;�  (7) 

where this 3  represents the Gaussian weighting of the 
activation that different patterns produce on the same hidden 
node, which is a type of temporal low-pass filter. 

D. Input blurring 

Though blurring could fall under preprocessing, it is 

addressed as a method used for comparison. Image patches are 

blurred using a Gaussian filter with kernel width 3 and varying 

sigmas, using (8), before being passed to the RBM. 

 �#
�1� =  ∑ �<

�1�3��, ��=
<;�  (8) 

where �#
�1�

 is the visible node i at pattern k being blurred, �<
�1�

 

is a neighboring visible node m at pattern k, and the 

neighborhood function, 3, is the Gaussian filter 

V. EXPERIMENT DESIGN 

A. Preprocessing 

In both training and testing, the color patches are contrast 

normalized and whitened, as these are common techniques to 

reduce redundant information [1]. 

B. Training 

Primarily, the Hollywood2 action dataset [9] was used for 

training. It is a natural video dataset containing color video clips 

taken from Hollywood films; two examples are shown in Fig. 

4.  

Fig. 4. Examples from Hollywood2 dataset. 

The dataset contains enough real-world scenery, image 

variation, and motion to suit the training algorithms that use 

static images (regular, topographic, input blurred methods) as 

well as the ones that make use of video (temporal low-pass 

method). To efficiently use the video dataset, motion is found 

via background subtraction between adjacent frames, selecting 

the position with the highest difference, and using the image 

patch at that location as a training example. The sequence lasts 

for 5 frames until a new position is found through the same 

process. Sequential time frames are consecutive training 

examples such that the temporal low-pass filter can operate as 

described. The network was trained for 300 epochs, on 10,000 

5-frame sequences, divided into batches of 100. As an 

additional experiment, the methods were also trained on 

CIFAR-10 [10] to see if the same effects persisted across 

training datasets. 50,000 random patches were used as training 

data, and the other training parameters remained the same. 

C. Testing 

As a measure of how effective the techniques are, the 

trained networks are applied on two datasets, CIFAR-10 [10] 

and STL-10 [1], which are composed of real-world images 

containing objects belonging to various classes. Classification 



accuracy is reported according to the standard testing procedure 

for each dataset. Samples of CIFAR-10 are shown in Fig. 5. 

 

 

Fig. 5. Some examples of images found in CIFAR-10, with labels of dog, 

automobile, and airplane (left to right). 

The classification procedure follows the one outlined in [1]. 
The training example is transformed into a set of subpatches, 
each of which are passed through the RBM to generate a set of 
feature vectors representing the entire image. Experiments in 
this work use a stride of 1, which means no patches are skipped 
over. Therefore, an image of n-by-n pixels, and an input-patch 
size of w-by-w, produces an (n-w+1)-by-(n-w+1) 
representation with K features. yij denotes the K-dimensional 
representation extracted at position (i,j).  A simple pooling 
mechanism is implemented by dividing the image into 4 
quadrants, and the feature vector is reduced from a (n-w+1)-by-
(n-w+1)-by-K representation to a 2-by-2-by-K representation 
by summing the yij’s in each quadrant. A standard linear 
classifier is used for classification with the summed feature 
vectors and the associated label. 

D. Invariance Metric 

The metric proposed by Goodfellow et al. [14] simplifies 

each network's invariance properties into a comparable value. 

The idea is to compare a feature's activation when presented 

with transformed optimal stimuli versus random stimuli. The 

local trajectory T(x) is a set of stimuli that are semantically 

similar to a reference stimulus x: 

 >�?� = @A�?, *�| * ∈  Γ} (9) 

where τ(x,γ) transforms a stimulus x into a new stimulus, and γ 
is a transformation which comes from a set of possible 
transformations, Γ. For example, these transformations could be 
all translations within 5 pixel radius, or rotations within 45 
degrees. The robustness of a hidden node is calculated by the 
firing of a hidden node when applied to local trajectories around 
inputs which maximally activate that node: 

 E�4� =  �
|F|

∑ �
|G�H�|H I F ∑ J��?�K I G�H�  (10) 

where fj(x) is the activation, calculated by (3), of hidden node j 
when presented with stimulus x. Z is the set of inputs that 
produce a high activation from that same hidden node, and T(z) 
is the set of local trajectories around input z. The global firing 
rate, G(j), is the firing rate of a hidden node when applied to 
stimuli drawn randomly from a distribution of possible inputs 
defined for the test. Finally, the invariance score, S(j) is 
calculated: 

 L�4�  =  M���

N���
 (11) 

This calculation represents the robustness of the hidden node 
divided by the global firing rate, where L(j) indicates the node’s 
robustness, while G(j) ensures that the hidden node is selective 
and not always active. A higher invariance score indicates that 
the hidden node is more invariant. Since the network may not 
dedicate all of its resources to encoding invariance information, 
only the p top-scoring nodes are used in calculating the average 
score for the network. 

VI. RESULTS AND ANALYSIS 

Experiments were carried out with RBMs using the 
methodologies detailed earlier: regular, 1D, 2D, and 3D 
topographies, temporal low-pass and input blurred. All networks 
are regularized with a sparsity of 0.01 and weight decay of 
0.002, with no momentum term and no decaying of any 
hyperparameters. The Hollywood2 dataset is used for training 
unless otherwise stated. An 8x8 color receptive field size was 
used in all tests.  An 8x8 field is sufficiently small to yield good 
classification results, while being large enough that optimal 
stimuli can be appropriately translated and rotated to generate 
enough data for the invariance score metric. Any other 
parameters specific to each method are outlined in the results.  

In the 3D topography, to keep the same number of nodes in 
each dimension, a different number of total nodes than the 1D 
and 2D topography was chosen for comparison. The largest cube 
number that is smaller than the comparison number is chosen as 
the number of hidden nodes for the 3D topography. This 
amounts to 216, 343, 512, 729, 1000, and 1331 nodes for the 3D 
topography corresponding to 225, 400, 625, 900, 1225, and 1600 
nodes for the 1D and 2D topographies, respectively. Examples 
of features learned by the regular, temporal low-pass, and input 
blurred RBMs, with 400 hidden nodes, are shown in Fig. 6, 7, 
and 8, respectively. The 2D topography is shown in Fig. 3. 

Fig. 6. 20x20 grid of features produced by the regular RBM. 



Fig. 7. 20x20 grid of features produced by the temporal low-pass RBM. 

Fig. 8. 20x20 grid of features produced by the input blurred RBM. 

The 2D topography contains smooth variations among 
neighboring nodes in both axes. The temporal low-pass filtered 
RBM produces very similar features to the regular RBM. The 
features learned by the RBM with input blurring shows more 
high frequency features with less localization. The 
topographical RBM also has more high frequency features with 
less localization, but they look less clean and isolated; while 
less pleasant to look at, it may indicate that it has learned a more 
diverse and complex set of correlations. 

A. Classification 

The methods and their classification accuracies on CIFAR-
10 relative to the number of hidden nodes in the network are 
shown in Fig. 9. Within each method, the sigma with the best 
CIFAR-10 classification accuracy at 1600 nodes is the 
representative, determined by evaluations of sigma between 0.0 
and 2.0. Here, the input blurring and the topographical methods 
show a constant improvement over the regular RBM and 
temporal low-pass filtered RBM at each node count. 

 

Fig. 9. Best parameters for each method comparing the classification accuracy 

on the CIFAR-10 test set vs the number of hidden nodes. 

To show that these improvements are not due to the 
Hollywood2 dataset nor the method to select regions of interest, 
the networks are trained on the CIFAR-10 dataset. The best 
classification results for each method on CIFAR-10 and STL-
10, after being trained on Hollywood2 and CIFAR-10, are 
shown in Table 1. The temporal low-pass method is not trained 
on CIFAR-10 since training samples are not temporally related.  

TABLE I.  BEST CLASSIFICATION RESULTS, WITH 1600 NODES, ON 

CIFAR-10 AND STL-10, WHEN TRAINED ON HOLLYWOOD2. NOTE THAT THE 

TOPOGRAPHIC 3D RBM USES 1331 NODES. 

 

It is visible that the methods achieve similar performance 
increases relative to the regular RBM regardless of the training 
dataset. All of the methods perform measurably better than the 
regular RBM, with the exception of the temporal low-pass 
filtered RBM. STL-10 contains much less labeled data than 
CIFAR-10, causing it to suffer from a lower classification rate. 
However, the values reported are consistent with the 
performance of single-layer networks using this classification 
protocol on these datasets [1]. 

Method (RBM) 

Classification Accuracy (%) 

Trained on 

Hollywood2 

Trained on 

 CIFAR-10 

CIFAR STL CIFAR STL 

Regular RBM 70.26 48.63 73.82 51.49 

Topographic 1D (σ=1.25) 72.29 53.05 75.41 52.21 

Topographic 2D (σ=1.00) 73.49 53.63 76.24 54.06 

Topographic 3D (σ=0.75) 73.09 51.68 75.65 54.76 

Temporal low-pass (σ=0.30) 69.85 49.32 N/A N/A 

Input blurred (σ=1.50) 74.00 51.50 74.76 52.10 



Using basic Gaussian blurring as input preprocessing 
produces a surprising increase in classification accuracy. So 
much that it exceeds the regular RBM’s performance, when 
trained on Hollywood2, by 6 percent when compared at 225 
nodes and 3 percent at 1600 nodes.  

The topographic methods perform best, and classification 
accuracy is boosted even without pooling, as the features 
themselves benefit from the shared information within the 
neighborhood during training. With topography, the grid 
arrangement is not important after training. Though 
neighborhood pooling would improve results, it would bleed 
over into becoming a two-layer network; as a result, it is not 
discussed here. 

Overall, the 1D topography produces similar results to the 
2D and 3D topographies. However, it is computationally 
simpler, since its 1x3 kernel only requires 2 neighbors. Thus, 
sharing a small amount of information between nodes produces 
a large improvement in features, and this improvement does not 
correlate with the number of neighbors, given that the results of 
the 2D topography typically exceed those of the 3D topography. 
For these reasons, the 1D topography is a better solution than the 
other topographic methods when training time is important. 
Otherwise, the 2D topography is the solution which produces the 
best results. The 3D topography is the least efficient, since it 
does not produce much better results than the 2D topography yet 
requires more computation. 

The results show that the convolution of a Gaussian filter 
with the RBM’s activation matrix to incorporate local 
information from the same example, whether it is applied to 
input nodes or hidden nodes, provides a notable increase in 
classification performance. Incorporating temporal information 
in this manner does not seem to provide any discernible benefit. 

B. Invariance 

The invariance score, calculated by (11), is used to evaluate 

how invariant the learned features are. For this score, the 

methods were trained on grayscale versions of the Hollywood2 

dataset. Then, the optimal stimulus for each hidden node was 

found by searching through all possible line segments, with all 

possible thicknesses, that fit in the image patch and selecting 

the one with the highest response. Since most features nodes 

respond to shapes similar to lines, they were used as the shape 

by which the optimal stimulus is defined; an example optimal 

stimulus corresponding to a hidden node feature is shown in 

Fig. 10. 

 

 

Fig. 10. Hidden node feature (left). Optimal stimulus (right). 

Translations of -4 to +4 pixels in both axes, and rotations of 
-45 to +45 degrees were used as local trajectories according to 
(9), and the final scores, calculated by (11), were summed 
together. As in [14], a firing threshold for each node is selected 
such that its firing rate when applied to random stimuli, G(j), is 
0.01. The top 10% of the scores were used to calculate the 
means, which are reported in Table 2. 

TABLE II.  INVARIANCE SCORES OF ALL METHODS, WITH 225 NODES 

(216 FOR TOPOGRAPHIC 3D RBM) TRAINED ON GRAYSCALE VERSIONS OF 

HOLLYWOOD2. 

Method (RBM) Invariance Score 

 Regular  22.7 

 Topographic 1D (σ=1.25) 13.1 

 Topographic 2D (σ=1.00) 34.4 

 Topographic 3D (σ=0.75) 48.6 

 Temporal low-pass (σ=0.30) 25.7 

 Input Blurring (σ=1.50) 56.4 

 

As shown in the classification results, the topographic and 
input blurred RBMs outperform the regular RBM and temporal 
low-pass RBM. However, the invariance scores do not 
necessarily reflect that invariance is the main reason for this 
improvement. The topographic 2D and 3D RBMs, as well as the 
input blurred RBM, have higher invariance scores and higher 
classification results, however the topographic 1D RBM has a 
lower invariance score than even the regular RBM, yet still 
produces higher classification results. The discrepancy in 
invariance scores between the 1D and 2D RBM is significant, 
but that does not translate into a significant discrepancy in 
classification accuracy. Therefore, the ability to form a good 
representation goes far beyond the ability to generate invariant 
features. 

There are many reasons as to why these techniques produce 
better representations. With input blurring, edges are softened, 
resulting in the network learning features that cover a larger 
area. Thus, it has invariance to small transformations of a sharp 
feature within that area. With the induction of topography by 
locally sharing information, neighboring nodes learn similar 
features. This forces features into interpolating between 
neighbors, resulting in a higher response to a larger range of 
transformations. Overall, input blurring and topography are 
simple methods to improve the learning of visual feature 
representations. 

VII. CONCLUSION 

This paper performed a comparison between the biasing 
effects of Gaussian filters in unsupervised training of an RBM 
to evaluate their relative performance when it comes to learning 
invariant detectors for image features. In addition to 
improvements in classification results, an invariance metric was 
shown to see how invariant the features are to transformations 
of their optimal stimulus. 

The simple blurring of training images produces a surprising 
increase in classification accuracy and invariance metrics, 
sometimes outperforming the other techniques. The biasing to 
induce topography also quite obviously produces better 
classification results than without biasing. Temporal low-pass 
filtering with video does not produce features that are any better 



at classification than the RBM without biasing, yet their 
invariance measure is higher.   

The comparison between invariant properties and 
classification results of different learning methodologies for 
unsupervised networks produces tangible evidence that, despite 
differences in the approach, improved features can be achieved 
by biasing the network appropriately. Invariance is an important 
property to allow compact representation, and strike a balance 
between generalization and specificity. However, improved 
classification results, and the idea of learning good features, 
should not necessarily be credited to invariant features since 
there are more factors involved, evidenced by the increased 
classification performance of the 1D topography despite a lower 
invariance score.  

Overall, this work shows that simple preprocessing and 
regularization methods are capable of balancing the properties 
of invariance and achieving good features.  
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