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Abstract—A process chain comprises a series of se-
quential (production) processes, mostly in the area of
manufacturing engineering. It describes a consecutive
sequence of activities, which together form one single
system. Within this system the sub-processes are pre-
sumed to influence each other by transferring charac-
teristics. The single process steps of such a system can
easily be simulated using regression (or other statistical
learning) methods. The main obstacle in simulating
entire process chains, however, is to determine how to
handle prediction uncertainty in the transferred char-
acteristics. In this paper, we will describe how using
Error-in-Variable models instead of ordinary regression
models can solve this problem. We especially focus on
the question how uncertainty (measured by variance)
develops through the process chain and its influences
on the results along the process chain. We will also
discuss how the presented methods can be applied to
the field of process control. At this point, our research is
mainly limited to polynomial regression, but the basic
principals can be applied to other statistical learning
techniques, including classification and time series as
well.

I. INTRODUCTION

Industrial (production) processes usually do not consist
of one single production step but of several sequential sub-
processes. In common process analysis these sub-processes
are treated to be independent of one the other, even
though they interact in the way that the results of earlier
sub-processes are often critical for the performance of later
ones. A more suitable approach to describe this kind of
processes was introduced under the term process chains
[1]. A process chain by definition describes a consecutive
sequence of activities (sub-processes), which together are
seen as one single system. Within this system the sub-
processes are presumed to influence each other by trans-
ferring characteristics or features from one to another.
Throughout the process chain inputs are sequentially
transformed from one state into another. Figure 1 illus-
trates an example of a process chain from the field of au-
tomotive battery production. It shows that the production
indeed consists of several consecutive operations which are
conducted mainly independent from each another. They
only influence each other through the characteristics of
the manufactured "intermediate product" that is passed

forward to the next sub-process. This is in fact a very
simple example of a process chain. In more sophisticated
applications some of the sub-processes could, for example,
be conducted on parallel production lines without being
directly connected. Such a system would still qualify as one
process chain as long as all these production lines merge
into a single sub-process at some point of the production
chain.
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Fig. 1. Process Chain of Automotive Battery Production

In the following section, we will talk about simulating
complete process chains using statistical learning tech-
niques, focusing on the question how to handle the con-
nection between the sub-processes appropriately. This will
lead us to the introduction of the principals of Error-in-
Variable models for polynomial regression in section III.
Since there are two different types of Error-in-Variable
models, depending on the nature of the observed error, we
will argue which of them suits the presented problem in a
better manner. In section IV, we will extend our presen-
tation to the case of errors in the variables in polynomial
regression models. Furthermore, we will discuss how these
kinds of models can be implemented to simulate process
chains in section V. In section VI we will suggest how the
insight we presented in the previous sections can be used
to enhanced process control of process chain. At last, we
will give an outlook over future developments in section
VII. Before, we summarize our results in section VIII.

II. SIMULATION OF PROCESS CHAINS

It is easy to see that the single sub-processes of a process
chain can be simulated using regression, or depending on
the type of sub-process other statistical learning meth-
ods. Two different types of factors serve as independent
variables for these models: The parameters of the sub-
process itself, like machine settings, and the characteristics



of the product at the beginning of the sub-process. Its
characteristics after the sub-process would then be the
target variables. For every target variable a unique model
would have to be trained. In the structure of the simulated
process chains these models would be interpreted as paral-
lel sub-processes based on the same independent variables.
For reasons of simplicity we will assume that we are only
interested in one single characteristic of the intermediate
product after each sub-process from this point on, so every
sub-process can be represented by one single model. With
y; and x; j being the target and independent variables, 3;
being the regression parameters, and ¢; being the residuals
of model i, a process chain consisting of four sub-processes
mapped by linear regression models could look as follows:
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An easy and straight forward way to predict the results
at the end of a complete process chain would be to link
these models together with respect to the structure of the
original process chain. This would mean that the predicted
results of earlier models are used as independent variables
in later ones. Since these values are subject to prediction
uncertainty all predictions starting from the second sub-
process would be made based on faulty values in at least
one independent variable. Although the predictions made
by every single model are unbiased, this can still lead to
problems in both prediction precision and accuracy for
the whole process chain, as we will show later in this
paper. Luckily, the theory of Errors-in-Variables regression
addresses exactly this kind of problems. In the following
sections, we will introduce these kinds of regression models
and discuss how they can be applied to simulate process
chains more accurately. Since up to now this kind of
regression was mainly used to simulate single processes
we will handle the question of how the resulting models
influence each other throughout a process chain in sections
V and VI.

III. ERROR-IN-VARIABLES MODELS

Errors-in-Variables models deal with statistical learning
problems where the values of the independent variables are
subject to errors. This means that the true value = of at
least one independent variable is unknown. Instead, only
a faulty value * which differs from x by an unbiased (and
in most cases normal distributed) error term w is known
or can be observed. For this reason, the value z* is called
the observed value of the independent variable x. In the
situation described in section II, we use predicted values as
independent variables and these prediction (§) differ from

the true values (y), only by the prediction error e. So in
this case ¢ is the observed value of y.

In 1950, J.Berkson [2] proved that for linear regression
the effect of errors in the independent variables on the
models in the observed variables differs highly with respect
to the nature of the relationship between the two values
x and x*. Actually, two different kinds of relationships
were described which lead to different solutions. Before
we proceed, we first have to decide which of the two cases
fits our problem best. To do so, we will take a look at
both cases for the simple linear regression model. The
following model represents the true relationship between
the independent and the target variable.

y=0o+x p1+e

A. Classical Measurement Error in Simple Linear Regres-
sion

In classical Errors-in-Variables models the errors in
the variables are the result of measurement uncertainty.
In these cases the observed variable x* equals the true
variable x plus an independent measurement error term u
with E(u) = 0 and Var(u) = 02, leading to 2* = x+u. For
example, if the ambient temperature has to be measured.
In this case, u and x are independent from each other while
u and z* are not. If we assume the stochastic variable
from which the true value x is drawn to be X~N(p,02),
the standard least sum of squares (LSS) estimation for the
Error-in-Variables model (although called the model in the
observed variables) looks like this:

E(ylz") = By + E(z|z") - f1 = fg + 2" - f1
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The adjusted model in the observed variable is still a
linear model. Its prediction error has grown, which is no
surprise since we added uncertainty to the independent
variable. But the regression coefficients have changed too.
And both changes do not only depend on the variance of
the measurement error but also on the variance of the true
independent variable X. If we take a closer look, we can see
that the values of the regression coefficients change with
respect to the ratio of the variance of the true variable X,
Var(X) = 02 and the variance of the observed variable
Var(X + u) = Var(X) + Var(u) = 02 + 02.



B. Berkson Error in Simple Linear Regression

In the historically earlier Berkson error case, the true
variable x equals the observed variable x* plus an inde-
pendent error term u with E(u) = 0 and Var(u) = o2,
changing their relationship to z* + v = z. On first
sight, this does not seem to differ from the measurement
error case. However, it results in a change of dependency
between the error and the variables. This case is relevant,
if the value of the observed variable can be controlled
by an operator. For example, if the ambient temperature
can be adjusted by the operator using a thermostat. The
temperature entered in the thermostat would then be the
observed value z*. In this case, © and z* are independent
from each other while u and z are not. In this kind of
situation, the distribution of the true variable X has no
influence on the LSS estimation of the Errors-in-Variables
model, which looks like this:

E(ylz®) = Bo + 2" - B
with a prediction variance of:
Var(yla™) = o + 7 - o3,

Thus, the model based on the observed variable is the
same as the original one. But still, adding uncertainty
to the independent variables leads to a worse prediction
precision.

The effect of a measurement error and a Berkson error
on a simple linear regression model are illustrated in figure
2.

In both scatterplots the original regression line was
estimated using the same data sample (red). Then an
amount of uncertainty (meassured by variance) has been
added to the independent variable (blue). For the first
graphic the uncertainty has been added in form of a
classical meassurement error and for the second in form
of a berkson type error.

Proofs for both the effect of measurement and Berkson
errors on a simple linear regression model can for example

be found in [2] and [3].

IV. ERROR-IN-VARIABLES MODELS IN PROCESS CHAINS

When we take a look at the relationship between the
predicted and the true values in a simulated process chain,
we see that the true values y are in fact the sum of
the predicted values § and the error term e. Since every
predicted value is the result of a linear combination of
independent variables (§ = Bo +Zf:1 x; - B), the operator
can control it by controlling the independent variables.
This leads to the conclusion that the errors created by
linking the single models are in fact Berkson type errors.
For that reason, in this section we will discuss the effect
of such Berkson errors on the simulation of a process
chain by expanding the considered models from linear to
polynomial regression.
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Fig. 2. Effects of different kinds of errors in the independent variable
(blue) on a simple linear regression model (red). (top: measurement
error, bottom: Berkson-error)

We have said in section II, that we will focus on
sequential process chains where only one characteristic
is transferred from one sub-process to the next and by
that only one independent variable in every regression
model will be subject to an error. Yet, we will discuss
the theory of Errors-in-Variables models in a more general
form allowing different types of errors in more than one
independent variable.

A. Berkson Error in multiple linear Regression Models

It has been proven in [4], that in case of Berkson errors in
a multiple linear regression model with £ > 1 independent
variables the effect is similar to that in a simple regression
model. The Errors-in-Variables model stays the same as
the one in the true variables and the prediction variance
increases. Assume the original model to take the form:
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If the first [ < k variables zi,...,z; were subject
to Berkson style errors wq,...,u; and we would define
z* = (z%,..., 2, %141,. .., %K), the observed model and
its prediction variance would lead to:

E(ylz")
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Var(y|lz*) = 02 + 02 = 02 + Zﬁf o2

i=1
B. Berkson Error in multiple linear Regression Models

with Interactions between two variables

Let us now consider a situation where the linear regres-
sion model includes interaction effects between some of the
variables:

y—ﬁo+zxz @-FZ Z xi-xj- P te
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Using the notations above, the conditional expected
value and variance become (for a proof, see [4]):
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Thus, the model in the true variables would still produce
unbiased predictions using the observed values. The pre-
diction variance in the observed model, on the other hand,
does not only grow but now depends on the true values x;.
This means that the variance is no longer homoscedastic
and the LSS estimators are no longer efficient in the
observed model.

C. Berkson Error in Quadratic Regression Models with
Interactions between two variables

If we add quadratic terms to the model above, another
problem occurs in the Errors-in-Variables model. The new
true quadratic model takes the form:

y_/80+le 61+szz Zj - /67,J+€
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Now, following the results from [4] the expected value
and prediction variance of the model in the observed
variables become:
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Thus, at this point using the true model for prediction
based on the observed values would lead to biased estima-
tions. Moreover, using LSS estimation to calculate a model
in the observed values would lead to inefficient estimators
for the coefficients.

D. Higher dimensional polynomials and efficient estima-
tors

If the sub-processes are simulated using higher dimen-
sional polynomials, the effects described above are getting
stronger and the bias becomes a polynomial function of
the true values x. We have shown that training regression
models in the true variables for all the sub-processes and
executing them in the correct order does not provide
accurate estimations for a process chain.



However, with respect to the variances of the errors in
the variables, the true models can be used to calculate
unbiased regression models for the observed variables. In
the next section, we will discuss how this can be used for
the statistical analysis of process chains.

V. UNBIASED ESTIMATION IN PROCESS CHAINS

Before we start to describe how to use the results
displayed in the last section, we need to take a closer look
on the situation and the data basis we are dealing with.

In most applications of Errors-in-Variables regression,
only the observed values are known and the original
data and the variances of the errors in the variables
are unknown. In this situation, it is usually the aim to
identify the model in the true unobservable variables. In
the case of process chain analysis we are facing a slightly
different task. We actually know the true values of the
variables and we want to construct models in the observed
variables. Since the observed values are the results of
estimations done based on the true values, we also know
the observed values. Since we are interested in accurate
predictions over the whole process chain, we could use
the observed values to calculate regression models. This
means that we would train the model for the first sub-
process based on the true variables (since there is no error
in the variables here). Then, we would predict the values
of the target variable for our training data and use these
predicted values as substitutes of the true values of the
corresponding "independent"' variable in the training data
set for the simulation of the next sub-process and so on.
Now we would be able to predict unbiased results for the
whole process chain. We will refer to this as the practical
approach.

Another way to construct models in the observed vari-
ables would be what we call the functional approach. From
the last section, we know that the expected value of y
conditioned on x* is actually a function of y, x, and wu.

E(ylz") = E(yl(z + u) == g(y, =, u)

More precisely, it is a function of the expected value of
y conditioned on z and the variance of the error o2.

9(y, z,u) = g(E(y|z),07)

This means that we can calculate the models in the
observed variables from the models in the true variables if
we know the variances of the errors in the variables.

Although both approaches seem to be sufficient to sim-
ulate a process chain, the latter one holds some significant
advantages over the practical approach. First of all, we
have learned that the errors of the model in the observed
variables are heteroscedastic. Because of that, the LSS
estimators of the regression coefficients are not efficient,
and more complicated ways to predict them have to be
considered.

A method to receive more efficient estimators for the
observed model are the so-called weighted least squares
(WLS) estimators. A way to construct these WLS esti-
mators for Errors-in-Variable regression models has been
presented in [5].

By using the true models and adjusting them, we simply
avoid this problem. Another reason to choose this method,
is that if there is a change in one of the models because
a of a change in its corresponding sub-process, the effect
on the other models (later in the process chain) can been
calculated without the need to train new models. This
leaves us with the problem that we still need to know the
variance of the errors in the variables at every point of
the process chain to calculate the models in the observed
variables from the models in the true variables. A solution
for this problem will be presented in the next section.

VI. PROCESS CONTROL IN PROCESS CHAINS

In this section, we want to present several ideas on how
to use error-in-variables models to improve statistical pro-
cess control (SPC) and process optimization of sequential
process chains. This includes a method to gain a better
understanding of the effect of variance in the results of
sub-processes and using this knowledge to optimize the
results of the whole process chain. We will also propose
a new way to predict a process capability index based on
the simulated process chain. In this context it is crucial to
realize that the prediction variance of the models trained
to simulate the sub-processes of a process chain is an
estimator for the production variance of the said sub-
processes, since the predicted value itself is an estimator
for the mean of the production given a fixed set of inde-
pendent variables.

A. Predictions within the Process Chain

Until now, we have only discussed a way to predict the
final results of a process chain from its start. In practical
application, we might also be interested in predicting the
final result of an intermediate product from a later sub-
process. Imagine a process chain containing ten sequential
sub-processes. As explained before, one characteristic of
the result of every sub-process is transferred to the next
one. Now, we start production of one single product. If
we know the values of all external input variables, we are
able to predict the results of the final product using the
regression models calculated following the instructions in
the previous section. Let us further imagine that we let
our product pass the first two sub-process of the process
chain. Thus, we know the true value of the characteristic
transferred to the third sub-process. If we now want to
predict the final result of that product, the models we
calculated earlier are not sufficient to do so. Since we
do not have to predict the results of the first two sub-
processes, the variance in the prediction of the rest of the
process chain has changed.



The best example for this, is the prediction of the third
sub-process. Since we know the results of the second sub-
process there is no error in the variables of the third model
at all. Meaning that we should actually use the model in
the true variables to predict this step. As we have seen
in section IV, the prediction variance of the true model is
different from the variance of the model in the predicted
variables. This again changes the error in the variables of
the next model and so on.

And it gets even worse: The prediction variance of the
models in the observed variables depends on the value of
the true variable itself (heteroscedasticity). This means
that the following models also depend on that value. So
the set of models used to simulate the process chain is
only valid for a fixed set of external variables. Luckily,
the observed values are unbiased estimators for the true
values (2* + u = z and E(u) = 0) and we are able to
calculate new models for every situation, as long as we
know the prediction variance of each regression model in
the observed variables.

This leads us to another matter of importance: In all our
considerations so far, we have assumed that we know the
structure of the errors in the variables of all the models. In
fact, we only know the prediction variances of the models
in the true variables (named o2 in section IV) because
those were the models we trained. However, we can show
that the theoretical prediction variance of the models in
the observed variables can be calculated from those in the
true variables. Let us take another look at the process
chain described above and remind ourselves that we use
the true model to predict the first sub-process (since
there is no error in the variables). Now, the prediction
variance of this model is the variance of the error in the
variable in the next model, because the predicted value
of the target variable of the first model is used as an
independent variable in the next one. As we saw in section
1V, the prediction variance of a model in the observed
variables depends on the prediction variable of the true
model and the variance of the errors in the variables.
Generally speaking, the prediction variance of any model
in the observed variables is a function of the prediction
variances of all the true models up to that moment. We call
this the variance development within the process chain.

Var(y;|z}) := fi(u;) + Var(y;|z;)

= fi(Var(yi|z1), . .., Var(yi—1|zi—1))+Var(y;|z;)
= fi(Var(yi|@1), ..., Var(y|z;))

with ¢ =1,...,10 and y; being the target variable, and
x; being the vector of independent variables of model i.

For the process chain consisting of four sub-processes
mapped by linear regression models that we have pre-
sented in section II the variance development would look
like this:
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A detailed discussion about the development of variance
in simulated process chains based on linear regression
models can be found in [6].

The insight about this variance development can also be
used to help to optimize the process chain. If the functions
fi are known, we can quantify the effect of every sub-
process on the variance of the whole process chain and

use this information to help to identify which of the sub-
processes should be optimized.

2 2
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B. Instant Process Capability

In SPC process capability indexes are used to determine
the ability of a process to produce within given speci-
fication limits. While there already are several different
approaches to quantify process capability [7], we do not
suggest a new form of process capability index but a way
to apply them to the special circumstances when dealing
with process chains.

The most common version of process capability indexes
is the Cpj-Index.

USL—j fi—LSL
3.6 ' 3.6

with USL and LSL being the upper and lower specifi-
cation limit, /i the estimated mean of the production, and
& its estimated standard deviation. The standard way to
predict process capability indexes of a process chain would
be to collect data at the end of the chain and predict
the mean and the standard deviation. The problem with
this approach is that the predicted value actually does not
represent the capability of the process chain at the time
the data was raised. This can be illustrated by an example:
One of the most common problems in process control is a
change of variance in the process. Let us take another look
at the process chain containing ten sub-processes described
above and imagine a change of the production variance in
the first sub-process. This change will not become visible
in the process capability for as long as it takes the product
to pass the whole process chain.

Cpr = min



So we suggest to use the regression models trained
to simulate the process chain to predict the mean and
standard deviation of the product at the end of the chain.
Because the capability index based on these estimations
takes into account the state of all the sub-processes
without any temporal delay we suggest the term Instant
Process Capability Index for this method. This method is
mostly intended for situations like the one described above
when there is a change in one of the sub-processes. It could
help to assess if such a change is crucial to the results of
the whole process chain or not. This information could
help making the decision to stop the production to adjust
said sub-process immediately or to keep producing.

VII. FURTHER DEVELOPMENT

At this point, our research in the field of statistical
process chain analysis is still in an early stage. For that
reason, we would like to give a short outlook on some of
the work we are planning to address ourselves or that we
deem interesting for further research in general.

A. Application and Implementation

In association with the Center for Solar Energy and
Hydrogen Research Baden-Wiirttemberg (ZSW) we are
given the possibility to apply the theoretical results we
have presented in this paper to a real live process chain
from the field of battery cell production. As part of a
national research network with the goal to enhance the
production of lithium-ion batteries, we hope not only to
implement our own research but also to gain from the
expertise of our partners.

As part of our research we plan to publish an R [8] soft-
ware package containing methods for statistical analysis
of process chains in 2017.

B. Method Development

The methods described in this paper have been lim-
ited to process chains that can be mapped by regression
models. For the future it would make sense to extend our
view to classification and time series models. The effect
of Berkson case errors in the independent variables for
logistic regression has already been discussed in [9].

C. Measurement Errors

As described in section IV the Berkson case error
produced by linking processes is not the only kind of
error in the variables. Uncertainty created by measurement
errors is a common problem in many kinds of production
processes. Since the effect of this kind of errors is similar
to those described in this paper it makes sense to include
them in the analysis of process chains.

VIII. SUMMARY

In this paper, we have discussed how production chains
consisting of several sequential sub-processes can be sim-
ulated using statistical learning methods.

The main obstacle in doing so is the fact that the
single sub-processes influence each other by transferring
characteristics. In the simulation of the process chain the
values of these characteristics can only be determined with
respect to prediction errors. In the situation we are facing,
we are able to train models for every sub-process based on
the true values of the transferred characteristics. However,
if we want to predict results for the whole process chain we
only have predicted values for the characteristics. This led
us to the theory of Errors-in-Variables regression, or more
precisely to the special case of Berkson type errors in the
independent variables. This method deals with situations
in which the observed values of an independent variable
differ from their true values by an error term u (in our case
the prediction error). We showed that using the models
in the true variables and making predictions based on
their observed values can lead to biased results and other
problems. We further showed, that those models can be
adjusted with respect to the variances of the errors in
the independent variables to produce unbiased predictions
and presented a way to predict said variances from the
prediction variance of the original models. This does not
only allow us to produce unbiased predictions over frac-
tions of the process chain, but also gives important insight
about the influence of single sub-processes on the result
at the end of the process chain. Then we suggested to
use the models that simulate the process chain to predict
its process capability index. The main advantage of this
method is, that the effect of a change in the quality of
any sub-process on the process capability of the process
chain can be predicted nearly without temporal delay. We
finished with some ideas for future developments in the
field of statistical analysis of process chains.
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