
Classifying Streaming Data using Grammar-based
Immune Programming

Jaspreet Bassan
Department of Computer Science

Ryerson University
Toronto, Ontario M5B 2K3

Email: jaspreet.bassan@ryerson.ca

Marcus Santos
Department of Computer Science

Ryerson University
Toronto, Ontario M5B 2K3

Email: m3santos@ryerson.ca

Abstract—This work proposes a technique for classifying
unlabelled streaming data using grammar-based immune pro-
gramming, a hybrid meta-heuristic where the space of grammar
generated solutions is searched by an artificial immune system
inspired algorithm. Data is labelled using an active learning
technique and is buffered until the system trains adequately on
the labelled data. The proposed system is tested and evaluated
using synthetic and real-world data. The performance of the
system is compared with two benchmark problems. The proposed
classification system adapted well to the changing nature of
streaming data and the active learning technique made the
process less computationally expensive by retaining only those
instances which favoured the training process.

I. INTRODUCTION

The problem of inducing classifiers in offline environments1

is well understood and has a long history [1], [2]. This
is not the case, however, for streaming environments2. The
techniques used in inducing classifiers offline are not directly
transferrable to streaming environments, for the following
reasons. Firstly, streaming data is continuous; thus one can not
afford to store all the historical data. Also data in streaming
environments may not be representative, which could lead to
biased models and therefore to incorrect predictions affect-
ing the system’s performance. Streaming data is unlabelled.
Hence, it needs to be labelled before it can be used in
training, and this might prove expensive. Another major issue
of streaming data is “concept drift.” Concept drift causes data
which is being classified to change in various unpredictable
ways. For example: after watching a series of videos on
quantum computing on YouTube, the recommender will most
likely recommend videos related to this topic. The person may
gradually lose interest in quantum computing, thereby causing
a gradual drift in her choices. Conversely, after watching a
video on quantum computing, the person has suddenly drifted
from this topic to a completely different one.

Machine Learning (ML) has been quite successful in mining
information from data. One could employ a neural network [3],
support vector machine [4], and evolutionary algorithms (EAs)
[5] among others for classifying data. EAs induce a classifier
by evaluating the population against all the training instances

1Offline environments are static in nature and all data is available at once.
2Streaming environments are dynamic environments, where the data streams

in real-time.

for a number of iterations. This is a well understood problem
in the case of an offline environment where all the training
cases are available at once. On the other hand, one cannot
employ an iterative approach in a streaming environment as a
streaming classification system should output a result as soon
as it receives the data. It is argued that EAs perform better in
dynamic environments because of the availability of a diverse
set of solutions and their ability to adapt which potentially
makes it easier to detect change, or to tackle concept drift [6].
In spite of the apparent reasons for using evolutionary inspired
ML techniques that are able to develop self adapting solutions
to their ever changing environments, little research has been
done in EAs in dynamic environments [7], [8], and adequate
amount of research of EAs in streaming environments is
lacking.

Inspired from the biological immune system, Immune Pro-
gramming (IP) is a metaheuristic similar to Genetic Program-
ming (GP) in the sense that it also automatically generates
solutions but employs a different search engine. IP employs
CLONALG3 [9] in its search space. A Grammar-based IP
(GIP) [10] system is an IP system that utilizes a grammar to
generate and preserve syntactically correct programs. GIP has
been quite successful in regression problems (more successful
than Grammatical Evolution [11]), but it has not been applied
yet to classification problems. In GIP, hypermutation helps
maintain a balance between exploration and exploitation and
aids in restoring diversity, and maintaining a diverse set
of solutions is critically important in dynamic environments
[8]. We conjecture that these built-in evolutionary properties
of CLONALG and GIP make them amenable to streaming
environments.

In this work, we propose a novel technique for employ-
ing GIP for classification problems while labelling uncertain
instances in real-time. In this paper, we make use of the
IP terminology where a population of candidate solutions
for a problem is known as a repertoire of antibodies (Abs).
Training and testing data are known as Antigens (Ags). A
fitness measure assigned to the Abs is known as affinity which

3Note that, CLONALG falls under Artificial Immune Systems (AIS). EAs
and AIS have more similarities than distinctions. So, it is safe to assume that
the process undertaken by AIS to solve dynamic problems should be similar
to EAs.

is based on the number of correct classifications. Initially,
the system is exposed to a small set of labelled Ags. The
system then generates a repertoire of Abs using a defined
grammar and the repertoire evolves over time by subjecting the
Abs to affinity computation, selection, cloning, hypermutation,
affinity computation, reselection, and purging. In the first few
generations, the system behaves like an offline system as
it learns from the labelled Ags. New unlabelled Ags are
accepted from the raw streaming data into a buffer at every
iteration. They are then labelled by a committee of Abs at
fixed intervals. The entire process is repeated as long as the
Ags keep streaming. Testing is performed periodically on the
Ags available in the buffer.

Two variants of the GIP system are created to be employed
in the streaming environment: one that learns from the labelled
streaming data and another that learns from the unlabelled
streaming data; henceforth called LDS and UDS variants
respectively. The variants are compared with each other, and
are also compared with the benchmark problems presented
by Atwater et al. in his works [12], [13]. Our proposed LDS
variant performed better than the Atwater et al.’s work. The
labelling procedure was accurate as the unlabelled streaming
variant performed similar to its labelled counterpart. Our
labelling method is compared with the minimum-variance
method presented by Zhu et al. in his work [14]. The UDS
variant performed better than the second benchmark problem
when in the case of concept drift. The experiments performed
indicate both the variants achieved sufficient diversity to
maintain satisfactory performance.

This paper is organized in the following manner: Section II
presents the materials and methodology used in this work,
Section III analyses the results obtained from the different
variants of our implementation, and provides a comparison
with the benchmark problems, and lastly, Section IV provides
a summary of the proposed work and results, and provides the
work to be undertaken in the future.

II. METHODOLOGY

Any learning algorithm can be understood in terms of three
essential components, as seen in the equation, Learning =
Representation + Evaluation + Optimization [15]. In this
section, we present our methodology by describing our design
choice for representation, evaluation, and optimization. First,
we present in Figure 1 our proposed methodology and briefly
explain how it works.

The algorithm depicted in Figure 1 provides a bird’s eye
view of the UDS variant: Assume L and U are buffers
representing sliding windows that follow a FIFO policy where
L is the labelled set of instances and U is the unlabelled set of
instances. The first step was to load the grammar and initialize
all the parameters (such as population size, mutation rate,
number of clones, and so on.) Then we loaded some amount
of the labelled data into the L set and unlabelled data (which
is the streaming data) into U . We then generated a repertoire
of Abs (candidate solutions) using the grammar and calculated
their affinities. If time to slide L is true, then n new instances

from the Lbuffer are transferred into L by replacing its oldest
n instances. If time to label is true, we label some instances
from U using an Active Learning method. If time to test is
true, testing is performed. The Abs undergo evolution using
the selection and genetic operators, and finally U slides at the
end of every iteration. The entire process repeats as long as
the instances are available in U .

Fig. 1: Flowchart of the UDS variant

A. Representation

An appropriate representation must be selected which can
be easily handled by the computer. A correct representation
is crucial to ensure that the models learn effectively from
the environment, especially when the models have to undergo
continuous change.

In our approach we employ an “indirect” representation à
la Grammar-based Immune Programming (GIP) [10] which
in turn was inspired from Grammatical Evolution [11], where
each candidate classifier (i.e., Ab) is encoded as a fixed length
binary string (or genotype) that maps to a decision tree (or
phenotype) by means of a user-provided grammar that defines
the tree’s structure. In our experiments we used two grammars,
one for each dataset (see Section II-D). The grammar shown
in Figure 2 was used to define the syntax of the decision trees
used in the experiments involving the Real-world Dataset, and
the grammar shown in Figure 3 was used in the experiments
involving the Synthetic dataset.

Fig. 2: Grammar constructed for the real-world dataset

Fig. 3: Grammar constructed for the synthetic dataset

In the case of Figure 2, Attr represents attribute value. DT
can be derived into one or more of the possible attributes,
for example AGE, where AGE 3-Attr represents three possible
values of attribute AGE. Each Attr symbol can in turn derive
into one of the possible attributes like SEX or the terminals (0
or 1) where 0 and 1 stand for the salaries >50K and ≤50K
respectively.

B. Evaluation

Before optimization, all candidate classifiers (i.e., the Abs)
have to be evaluated and assigned a measure of quality (or
fitness) with respect to the training dataset. In this subsection
we provide details about the fitness measures we used, the
buffering method we employed for training in a streaming data
environment, and how we labeled (i.e, assigned class labels)
the incoming raw training instances from the data stream.

1) Fitness: Our classification system employs two mea-
sures of fitness Rank and Affinity. We evaluated the phenotype
of the Abs.

Rank is the total number of correct classifications. This is
the raw fitness of an Ab and is used to determine its affinity.

Affinity is the main measure of fitness used in CLONALG
to evaluate and optimize the Abs. This measure of fitness is
derived from the rank of an Ab. Equation 1 is used to calculate
the affinity of Ab, where rank is the rank of an Ab, min
is the lowest rank of the Ab in the repertoire, and range is
(max−min) where max is the highest rank of the Ab in the
repertoire. If range is 0, affinity is set to 0.5.

affinity =
rank −min

range
(1)

Affinity is in the range 0 to 1, implying that the best possible
affinity to achieve is 1 and the worst is 0.

2) Streaming Interfaces: Streaming data can arrive from
disparate sources. For example, monitoring a boiler in a
power plant may involve processing continuous data arriving
from disparate sensors. It is necessary to employ a control
mechanism to pool the data from these sources into a buffer,
called sliding window (SW), an interface between streaming
data and the model [8], [12], [16]. It is infeasible to store
all the historical data as discussed before, hence employing a
replacement policy to SW is inevitable.

Fig. 4: Streaming interfaces

As depicted in Figure 4, two sliding windows are employed,
one for buffering unlabelled data (U) and one for storing
labelled data (L) from which the classifiers learn. Interfaces
U and L are slid whenever it is time to slide them. A
labelling mechanism truly labels the data and buffers them
in Lbuffer from where the instances are transferred to L. All
the interfaces employ a First In First Out replacement policy.

3) Labelling: We employed an Active Learning approach
to label the data stream as it is infeasible to label all the
incoming instances in real-time. Labelling was performed at
regular intervals. Algorithms 1 and 2 depict the labelling
procedure. If time to label is true, a committee of size c is
created by selecting top c Abs from the repertoire. To make the
system less computationally expensive, we randomly selected
a subset (Utemp) of size r from U to participate in the labelling
procedure.

Data: Ab, a repertoire of Abs ;
U , an unlabelled set of Ags ;
r, length of the subset of U ;
c, length of the committee ;
bn, number of Ags to be permanently labelled ;
Lbuffer, a set of permanently labelled Ags ;
Result: bn labelled Ags

1 committee ← select top c Abs from Ab ;
2 Utemp ← randomly select r Ags from U ;
3 Uaff−temp ← assign-affinity(Utemp) ;
4 bufbn ← select bn least certain Ags from Utemp ;
5 Lbuffer ← append bufbn ;
6 U ← remove bufbn ;
Algorithm 1: Algorithm for permanently labelling the
Ags

Ags in Utemp are assigned an affinity, this process is shown
in Algorithm 2. The committee temporarily labels the Ag by
taking a majority vote of the labels predicted.

The evaluation-set is formed by appending the recently
labelled Ag to Ltemp which is the copy of the labelled set of
instances. The affinity of each Ab in the repertoire is computed
using the evaluation-set and an average is taken. The average
affinity is then assigned to the Ag. This process repeats for all
the Ags available in Utemp.

Data: cmt, a committee of c best Abs ;
Utemp, a randomly selected subset of U ;
Ltemp, the copy of labelled set of instances ;
Ab, a repertoire of Abs ;
Result: Label Ags from Utemp

1 i← 0 ;
2 while i < |Utemp| do
3 Labels← predict labels for Agi using the cmt ;
4 label← select a label from Labels using a

majority vote ;
5 Agi ← assign label ;
6 evaluation-set ← Ltemp ∪ Agi ;
7 avg-aff ← calculate the average affinity of the Ab

using the evaluation-set;
8 Agi ← assign avg-aff ;
9 i++ ;

10 end
Algorithm 2: Algorithm for temporarily labelling the
Ags

After assigning affinities to Ags, bn Ags with the lowest
affinities are selected to permanently include them in Lbuffer.
That is, the most uncertain Ags are permanently labelled so
that the candidate solutions can learn from them. Changes
can occur either on the boundary, near the boundary, or
further away from the boundary of the search space. Labelling
uncertain instances captures the changes occurring on or near
the boundary of the search space. Another reason for randomly

selecting a subset of U is to potentially increase the search
space in order to capture both near and remote changes.

C. Optimization

The Abs are optimized after the process of affinity calcu-
lation, labelling, and testing (only when their times to slide
are true). The evolve process shown in Figure 1 is similar
to the CLONALG algorithm [9]. After calculating the affinity
of the Abs, n best Abs are selected for cloning. The cloned
Abs undergo hypermutation. The mutated clones are added to
the repertoire of Abs after computing their affinities. We then
replace d worst Abs from the reselected set with d randomly
generated Abs. This is performed to potentially increase the
search space of the solutions.

D. Datasets

We made use of two datasets for training and testing
our system, a real-world dataset and synthetic dataset whose
properties are well-known in various data mining (DM) and
machine learning (ML) applications in order to compare the
performance of our system’s variants with two benchmark
problems: Atwater et al. works presented in [12], [13] and
Zhu et al. work presented in [14].

1) Real-world Dataset: The adult dataset, available freely
in the UCI Machine Learning Repository [17], has been widely
used to evaluate the performances of various DM and ML-
based system and is thus used to compare the performance of
the employed variants with the benchmark problems. All the
attributes of this dataset were discretized and made nominal,
and the missing values were treated as noise and were thus
discarded.

2) Synthetic Dataset: For training and testing the proposed
system, we need a large volume of ordered data whose tempo-
ral and behavioural properties are known. Another reason to
generate a synthetic dataset is to simulate concept drift which
is lacking in real-world datasets. Synthetic data was generated
using a similar process described in Atwater et al. and Zhu et
al. [13], [14] which contains all numeric values.

The properties of these datasets can be found in Table I.

classes Adult Synthetic
with CD

class 1 75% 3.3%
class 2 25% 4%
class 3 - 92.7%
no. of at-
tributes

14 10

no. of in-
stances

45,222 2M

TABLE I: Properties of the datasets used in training and
testing. CD stands for concept drift.

III. EMPIRICAL EVALUATION

We created two variants of the system: labelled-data stream-
ing system and unlabelled-data streaming system. The first
variant assumes that the data is labelled by some oracle and
the second variant performed labelling.

A. Labelled-data Streaming System (LDS)

1) Parameterization: One sliding window was used which
accepts streaming data labelled by an oracle and its size
was initialized to 200 to decrease the cost of computation.
At every generation, the sliding window would slide and
accept sp (sp stands for sliding parameter) new instances by
replacing the old sp instances (see Table II). The number of
generations was 30000 for the synthetic dataset, and 750 for
the adult dataset due to the scarcity of the training instances.
The GIP parameters of the labelled-data streaming system
were initialized to the values stated in Table II. Size of the
population was inspired from Atwater et al. [12]. Out of 120
instances, 40 best genotypes were selected for optimization
and 3 clones were generated for each selected genotype. A
high mutation rate must be initialized to sustain diversity. The
implemented system negates this value, thus the value 1 is
the highest possible mutation value. Too much mutation could
exploit the genomes; therefore, this parameter was initialized
to 3.5.

2) Results and Discussion: Tests were performed every
200 generation using the data available in the window. At
generation 1, tests were performed on the untrained candidate
solutions with the default affinity of -100. Thus, the first
randomly generated Ab was selected to test the Ags in the
sliding window. Therefore, for the all variants, a steep growth
or drop was observed in generation 1.

Accuracy: The solid line of Figure 5 represents the number
of true positives of the best Ab and the dotted line represents
the average number of true positives of the Abs available in
the repertoire. The streaming system trained using the labelled
adult dataset achieved an average accuracy of approximately
77% (the total number of instances is 200) which is illustrated
in Figure 5a. The data available in the window may not be
representative which explains the variation in the accuracy.
Also, the best Ab could be different at every generation which
explains the variation in performance. At generation 135, the
best and the average accuracy as shown in Figure 5a was the
same implying that all the solutions of the repertoire were the
same or performed similarly. But the solutions after generation
135 were diverse and a steady diversity was maintained
after generation 400. The average accuracy achieved by the
system trained using synthetic dataset with concept drift was
approximately 93% (see Figure 5b). Unlike the best Ab in the
adult dataset which never performs equivalently, the accuracy
in Figure 5b appears to be stable after generation 7,000.
Synthetic dataset (see Figure 5b) managed to reach an almost-
converged state after generation 2000. A very small amount of
diversity was maintained by the system which was enough to
achieve good performance. However, the amount of diversity

preserved may not be sufficient for the system to perform well
in the long run.

Average Detection Rate:Average Detection Rate (DR) is
the average of true positives for every class. The mean of
average DR for the adult dataset was 0.66, see Figure 6a. The
average DR of the w01P case4 of the benchmark problem
introduced by Atwater et al. in his work [12] varied from
(approximately) 45% to 68% with distinct fluctuations. On
the other hand, our average DR varied from 65% to 71%
implying that in spite of having a smaller sliding window
size and less number of generations, our streaming system
achieved better performance. As shown in Figure 6b, the mean
of the average DR for the synthetic dataset was approximately
0.70. Contrasting average DRs were achieved at different
generations. One of the reasons behind obtaining poor average
DR could be the absence of one or more classes of the
test cases available in the window. The absence of one class
affects the average DR by 33.33%. Both, the planar dataset5

of the benchmark problem and our synthetic dataset were
produced through the same process. The average DR of the
planar dataset of [13] varied from approximately 30% to 90%
whereas the average DR of our synthetic dataset (as shown in
Figure 6b) varied from 30% to 100% confirming that the GIP
system performed better in the dynamic environment than the
GP system under comparison while using a very small window
size of 200.

Diversity:Measuring diversity using the training dataset
provides more information about evolvability or survivability.
We computed the genotypic (binary strings) and phenotypic
(decision trees) diversities of the repertoire under training
dataset using the measure of variance. As shown in Figure 7a,
the system managed to maintain a stable genotypic diversity
after generation 150. In spite of achieving a stable genotypic
diversity, we achieved a gradual increase in the phenotypic di-
versity which was what we aimed for. The system maintained a
diverse repertoire of binary strings throughout its life time. The
graph in Figure 7b depicts the diversity achieved by the can-
didate solutions of the synthetic dataset during training. This
is the only experiment where the binary strings are the most
diverse and the decision trees reached an almost converged
state after generation 5000. Neutral mutations can cause the
system to behave in such a way. In spite of maintaining a very
diverse set of binary strings, neutral mutations always select
the same production rule to generate its corresponding decision
tree. Overall, the LDS variant for synthetic dataset did not
quite achieve a satisfactory phenotypic diversity under training
data. This is not desired for streaming systems, as a converged
solution may not incorporate environmental changes which
could affect the system’s performance.

4The w01P case of Atwater et al. works [12] employed a sliding window
of size 1% of the dataset. Thus for the adult dataset, the size of the sliding
window was 480 and the number of generations was initialized to 30,000.

5The size for the planar dataset also used in [13] was initialized to 7500.

(a) Adult dataset (b) Synthetic dataset with CD

Fig. 5: LDS variant: The dotted line represents the average
accuracy of the population and the solid line represents the
number of true positives of the best Ab.

(a) Adult dataset (b) Synthetic dataset with CD

Fig. 6: LDS variant: Average Detection Rate during training.

(a) Adult dataset (b) Synthetic dataset with CD

Fig. 7: LDS variant: Measuring genotypic versus phenotypic
diversity for synthetic dataset with concept drift training.

B. Unlabelled-data Streaming System (UDS)

1) Parameterization: Due to the satisfactory performance
of the LDS variant, we initialized the GIP parameters to the
same values depicted in Table II. The streaming interface
parameters highly differ from the LDS variant mostly because
of labelling and it’s cost of computation. As stated in Table II,
the size of U was initialized to 1000 as a larger window size
consists of more representative data which helps improve per-
formance which slides every generation for synthetic dataset

and every 100 generation for adult dataset (to compensate for
scarce data). The system was trained with new labelled data
every 501 and 1001 generations for synthetic and adult datasets
respectively because labelling was performed only at 500
and 1000 generations for these datasets. It was infeasible to
perform labelling at every generation as it is a very expensive
task which requires a powerful computer. All the interfaces,
U , L, and Lbuffer slid by 60 instances. A committee of size
10 labelled r randomly selected instances from U into Lbuffer
and bn most uncertain instances were transferred to L. This
constituted in decreasing the cost of computation. The size of
the test data was initialized to 200.

2) Results and Discussion: Analogous to the LDS variant,
testing was performed every 200 generations for the synthetic
dataset and every 500 generations for the adult dataset. It is
impractical to use unlabelled data to perform tests. Therefore,
we made use of another data stream of the labelled instances
just for the testing purpose. No test exemplars were used to
train the system.

Accuracy:The solid line of Figure 8 represents the number
of true positives of the committee and the dotted line repre-
sents the average number of true positives of the Abs available
in the repertoire. The average accuracy of the committee of
the adult dataset (as shown in Figure 8a) was approximately
80%, which is 3.8% better than the LDS variant. The similar
accuracies of the LDS and UDS variants prove that the
labelling process was accurate. The accuracy of Zhu et al.’s
system [14] under comparison which employed C4.5 algorithm
varied from 81 to 84% making the average 82.5% which was
3% better than our accuracy making our performance a tad
unsatisfactory. The average accuracy achieved by synthetic
dataset (as shown in Figure 8b) was approximately 86%,
which is 9% less than its (LDS) counterpart. The accuracy
of our system was 9% better than the benchmark problem
which employed C4.5 and 32% better than the benchmark
problem which employed Naive Bayes (NB) [14]. Thus, our
evolutionary system was more capable of addressing concept
drift than its non-evolutionary counterpart. The accuracy of
the committee remains stable until generation 10,000 which
started declining thereafter. This is mostly because the duration
after which the system was trained using new labelled data was
not small enough to incorporate fast unpredictable changes
(concept drift) making the performance decline gradually.

Average Detection Rate:Analogous to the LDS variant, the
mean of average DR in Figure 9a of the adult dataset was
approximately 0.68. Similar accuracy and average DR also
prove that the labelling process was effective. Similar to the
accuracy, the graph of average DR of synthetic dataset as
shown in Figure 9b experienced a linear decrease. The mean
of average DR was 0.74 which was 6% better than the average
DR of the labelled streaming system. This does not imply that
UDS variant performed better than its (LDS) counterpart as the
LDS variant achieved fluctuating data but without a gradual
decrease in its value.

(a) Adult dataset (b) Synthetic dataset

Fig. 8: UDS variant:The dotted line represents the average
accuracy of the population and the solid line represents the
number of true positives of the committee of Abs.

(a) Adult dataset (b) Synthetic dataset

Fig. 9: UDS variant: Average Detection Rate of the best Ab
during training.

(a) Adult dataset (b) Synthetic dataset

Fig. 10: UDS variant: Average Detection Rate of the best Ab
during training.

Diversity:The linear growth in the phenotypic diversity of
the repertoire as shown in Figure 10a while maintaining
genotypic diversity demonstrates the success of the UDS
variant (using the adult dataset) in achieving evolvability. The
phenotypic diversity increased linearly until generation 25,000
after which it appears to attain stability. It is very interesting
to note the distinctions obtained in the phenotypic diversities
of both the variants (see Figures 7a and 10a). Although, the

genotypic diversity for both the variants remained stable after
generation 1, the phenotypic diversity increased at different
rates. It appears that the UDS variant for the adult dataset
achieved more evolvability than its (LDS) counterpart. A very
interesting trend was observed in the diversity of synthetic
dataset using training data (see Figure 10b). A linear decrease
in its accuracy and average DR fabricated an assumption that
the results of the variance-based measures will also follow
the same pattern. But instead, similar to the adult dataset,
a linear growth was obtained in the phenotypic diversity of
this variant while sustaining genotypic diversity using training
data. A gradual increase in the phenotypic diversity is proof
enough that the system did in fact achieve evolvability.

GIP parameters Streaming parameters

#gen 30000 |U | 1000
|pop| 120 |L| 500

(1000)
|genotype| 240 ttU 1

(100)
select 33.33% ttL 501

(1001)
#clones 3 sp 60
mutate 3.5 r 500
purge 10% bn 50
#runs 30 |committee| 10
- - ttLab 500

(1000)
|Test
data|

200 |Test
data|

200

TABLE II: Parameters of the UDS variant. Note that, the
values within parentheses indicate the values of the adult
dataset-based variants.

IV. CONCLUSIONS AND FUTURE WORK

No research was found which employs GIP for classification
problems. Also, to the best of our knowledge none of the
EA-based systems simultaneously evolve classifiers while la-
belling streaming data in real-time. The LDS variant produced
the most satisfactory results as it performed better than the
benchmark problem. The LDS variant trained using the adult
dataset achieved the most diverse solutions which is a by
product of evolvability. The LDS variant trained using the
synthetic dataset with concept drift did not maintain a diverse
set of solutions at every time of its execution implying that it
did not achieve much evolvability. Typically, in an EA, it is
infeasible to introduce variations to a converged solution. But
our AIS-based system was capable of introducing variations
to it in small amounts whenever the environment changed.
This proves that hypermutation does in fact aid in restoring
diversity by maintaining a balance between exploration and
exploitation, thereby verifying the hypothesis of Dempsey
et al. stated in [8]. The amount of diversity achieved for

both the datasets was plenty for addressing concept drift and
achieving satisfactory performance. Our work also proved that
a grammar-based AIS performs better than a non-grammar
based system as our streaming system performed better than
GP-based benchmark problem.

The satisfactory results achieved by the LDS variant in-
spired us to continue our work in streaming environments
using unlabelled data. Similar results achieved by the adult
dataset for the LDS and UDS variants provided us a proof of
concept that the active learning process accurately labelled the
streaming data.

We noticed that when a dynamic system is set to operate
as a static system for a certain amount of generations, it
achieves a linear growth in its phenotypic diversity while
sustaining genotypic diversity, which is the most essential in
dynamic environments as maintaining different solutions can
easily address environmental changes. The linearly decreasing
performance and the linearly increasing diversity of the models
of the unlabelled system using synthetic data with concept drift
demands the need of training the system at every generation.
Training the system at every generation requires labelling
the streaming data at every generation which was infeasible
because of its considerable computational expense and our
limited access to a powerful computer. We also showed that
our GIP system which is evolutionary in nature is more capable
of addressing concept drift than the non-evolutionary ML
algorithms of C4.5 and NB.

There is a lot of room for experimenting the implemented
variants using different types of real-world datasets employed
in different settings, static and dynamic. Due to the limitation
of time, we could not compare our results with various other
ML techniques such as neural networks, SVMs, and so on
and thus we have left this as a future work. As future work,
the control parameters will be made adaptive in accordance
with the system’s performance. For example, low performance
would indicate the system to increase its mutation rate. Success
of the symbiotic-based GP system [12], [13] in streaming
environments is an inspiration to employ an archive for retain-
ing past important exemplars which should aid in increasing
the average detection rate of the system. Maintaining sub-
populations on different parts of the training exemplars and
co-evolving them thereby maintaining sub-optimal solutions
could potentially aid in sustaining diversity. Our system could
benefit from this as one of the goals of this work was to
achieve evolvability. Another possible development could be
to explore evolvable grammar in order to improve evolvability
by achieving more diversity and survivability. Dempsey et al.
introduced this concept in his study, Grammatical Evolution by
Grammatical Evolution (GE2) [8] which proved more success-
ful than the traditional GE in dynamic environments. Finally,
deploying our system to real-world dynamic applications such
as sensor networks in a power plant, analysing electricity
demand, and recommender systems to name a few is left as a
future work.

REFERENCES

[1] I. H. Witten and E. Frank, Data Mining: Practical machine learning
tools and techniques. Morgan Kaufmann, 2005.

[2] S. B. Kotsiantis, I. Zaharakis, and P. Pintelas, “Supervised machine
learning: A review of classification techniques,” 2007.

[3] G. P. Zhang, “Neural networks for classification: a survey,” IEEE
Transactions on Systems, Man, and Cybernetics, Part C (Applications
and Reviews), vol. 30, no. 4, pp. 451–462, 2000.

[4] S. Tong and D. Koller, “Support vector machine active learning with
applications to text classification,” The Journal of Machine Learning
Research, vol. 2, pp. 45–66, 2002.

[5] A. A. Freitas, A Survey of Evolutionary Algorithms for Data
Mining and Knowledge Discovery. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2003, pp. 819–845. [Online]. Available: http:
//dx.doi.org/10.1007/978-3-642-18965-4 33

[6] M. I. Heywood, “Evolutionary model building under streaming
data for classification tasks: opportunities and challenges,” Genetic
Programming and Evolvable Machines, vol. 16, no. 3, pp. 283–326,
2015. [Online]. Available: http://dx.doi.org/10.1007/s10710-014-9236-y

[7] M. O’Neill, L. Vanneschi, S. Gustafson, and W. Banzhaf, “Open
issues in genetic programming,” Genetic Programming and Evolvable
Machines, vol. 11, no. 3-4, pp. 339–363, 2010.

[8] I. Dempsey, M. O’Neill, and A. Brabazon, Foundations in grammatical
evolution for dynamic environments. Springer, 2009, vol. 194.

[9] L. N. De Castro and F. J. Von Zuben, “Learning and optimization
using the clonal selection principle,” Evolutionary Computation, IEEE
Transactions on, vol. 6, no. 3, pp. 239–251, 2002.

[10] H. S. Bernardino and H. J. C. Barbosa, “Grammar-
based immune programming,” Natural Computing, vol. 10,
no. 1, pp. 209–241, 2011. [Online]. Available:
http://www.scopus.com/inward/record.url?eid=2-s2.0-79952756158&
partnerID=40&md5=a8c4c74fb421deb0a8a4565f164d14f1

[11] M. O’Neill and C. Ryan, “Grammatical evolution,” Evolutionary Com-
putation, IEEE Transactions on, vol. 5, no. 4, pp. 349–358, Aug 2001.

[12] A. Atwater, M. I. Heywood, and N. Zincir-Heywood, “Gp under
streaming data constraints: A case for pareto archiving?” in Proceedings
of the 14th Annual Conference on Genetic and Evolutionary
Computation, ser. GECCO ’12. New York, NY, USA: ACM, 2012,
pp. 703–710. [Online]. Available: http://doi.acm.org/10.1145/2330163.
2330262

[13] A. Atwater and M. I. Heywood, “Benchmarking pareto archiving heuris-
tics in the presence of concept drift: diversity versus age,” in Proceedings
of the 15th annual conference on Genetic and evolutionary computation.
ACM, 2013, pp. 885–892.

[14] X. Zhu, P. Zhang, X. Lin, and Y. Shi, “Active learning from stream
data using optimal weight classifier ensemble,” Systems, Man, and
Cybernetics, Part B: Cybernetics, IEEE Transactions on, vol. 40, no. 6,
pp. 1607–1621, Dec 2010.

[15] P. Domingos, “A few useful things to know about machine learning,”
Communications of the ACM, vol. 55, no. 10, pp. 78–87, 2012.

[16] A. Vahdat, A. Atwater, A. R. McIntyre, and M. I. Heywood, “On
the application of gp to streaming data classification tasks with label
budgets,” in Proceedings of the 2014 Conference Companion on
Genetic and Evolutionary Computation Companion, ser. GECCO Comp
’14. New York, NY, USA: ACM, 2014, pp. 1287–1294. [Online].
Available: http://doi.acm.org/10.1145/2598394.2611385

[17] M. Lichman, “UCI machine learning repository,” 2013. [Online].
Available: http://archive.ics.uci.edu/ml

