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Abstract—Feature selection (FS) has proven to be useful
to improve the generalization performance of classifiers. For
applications with a small number of instances but a large number
of input features, FS methods based on single classifier evaluation
are subject to instability. We propose a new FS algorithm based on
SVM ensemble learning. First, an ensemble of SVM classifiers are
trained with re-sampled subsets of the training data. Then, with
a predefined feature ranking criterion, a new stability criterion
is defined on the ranking criterion values among the classifiers
to measure the relevance of a certain feature. This measure
favors the features which have stable ranking criterion values
over the features whose ranking criterion values are subject to
large variations. The unstable features usually do not have much
relative information to the class label, and can be removed to
improve the generalization performance of the classifier. To rank
the features, the method only requires a small number of SVM
classifiers to be trained. It is very fast to solve feature selection
problems with a large number of input features. Combined with a
backward elimination procedure, this method is robust to feature
selection problems with very small sample sizes. In this paper,
we evaluate its performance on nonlinear selection tasks.

I. INTRODUCTION

Feature selection has attracted extensive research attention
during the past few decades [1], [2], [3]. In classification
problems, the goal of feature selection is to eliminate irrel-
evant variables to enhance the generalization performance of
a given learning algorithm. Especially in application areas
where available datasets are often with thousands of input
features, feature selection can help to: (1) defy the curse of
dimensionality and improve the generalization performance;
(2) speed up computation in training and prediction; (3) reduce
data gathering and storage cost; (4) facilitate data visualization
and lead to some insights into the concept to be learned.

In addition to the traditional feature selection methods
which usually fall in the categories of wrapper methods and
filter methods [4], some novel feature selection methods based
on Support Vector Machines (SVMs) are recently proposed
[5], [6] and have shown their advantages for real-world ap-
plications. Generally speaking, preceding feature selection is
still an essential step to help design SVM classifiers with
high generalization ability in application areas such as gene
expression analysis and bio-informatics, where SVM classifiers
suffer from numerous redundant and noisy features. The SVM
based feature selection methods can be classified into two
categories: backward or forward feature selection based on
some predefined selection criteria [5], [6]; and embedded SVM
feature selection, in which a feature selection criterion is added
to the objective function [7], [8].

In this paper, we discuss feature selection for unstable
classifiers. A classifier is called unstable if small changes in

the training data lead to significantly different classifiers and
relatively large changes in accuracy [9]. Generally, the larger
the number of input features and the smaller the number of
training samples the more difficult to train a stable classifier.
Independent from classifier design, there are basically two ap-
proaches to improve a given classifier’s generalization ability.
On one hand, feature selection methods can remove noisy and
redundant features and get an improvement in generalization.
On the other hand, ensemble learning methods such as Bagging
[10], Boosting [11], and AdaBoost [12], can help improve
the generalization performance of an unstable classifier in a
statistical sense. Similar idea on deploy ensemble learning to
improve the generalization performance of learning system can
found in methods such as Random Forests (RF) [13], [14], [15]
and other [16], [17].

The SVM classifiers trained in the SVM-based feature
selection methods, e.g. the SVM Recursive Elimination (SVM-
RFE) method in [5], may overfit to the training set and
lead to failure in identifying the feature subset with best
prediction power. Instead of doing feature selection base on
the evaluation of features with a single classifier, we propose
to employ ensemble learning in the process. Suppose we are
given a sequence of training sets Dj (j = 1, . . . , J), each
of which consists of ℓj independent observations from the
same underlying distribution. Our goal is to use Dj to select
a more reliable subset of features than that acquired by a

single set D =
⋃J

j=1 Dj . Borrowing the idea from Bagging,
we can first train an ensemble of SVM classifiers from the
datasets. Then, the relevance of a certain feature is estimated
by its contribution to the class margins in an ensemble of
SVMs. Features which contribute much to the majority of
the SVMs are selected as significant features, while others are
eliminated from the feature set. Because the statistical property
of each feature can be obtained from an ensemble of SVMs
simultaneously and can be used to rank the features, only a
few number of SVMs need to be trained for feature selection.
Compared with the backward or forward selection, this method
is very fast for a feature selection task with large number
of input features. Furthermore, we can combine the proposed
method with a backward selection procedure to improve its
stability.

The rest of the paper is organized as follows. Section II
gives a brief review on SVMs and the SVM-RFE algorithm.
Section III details the proposed algorithm. Numerical experi-
ments on toy problems and real-world datasets are described
in Section IV. Some discussions on the algorithms are reported
in Section V. Section VI concludes the paper.



II. SVMS AND SVM BASED FEATURE SELECTION

In this section, we first briefly review the formulation of
support vector learning, then we explain commonly used SVM-
based feature ranking criteria and show their applications in
the SVM-RFE algorithm.

A. Support Vector Learning

Support Vector Machines [18] realize the following idea.
Suppose we are given two classes of samples D =
{(xi, yi)|xi ∈ R

d, yi ∈ {−1, 1}, i = 1, · · · , ℓ, } as a training
set. We first map the input vector xi into a high (possibly
infinite) dimensional feature space, F , through a nonlinear
mapping function Φ; then construct the optimal hyperplane
that realizes the maximal margin in this space. With the so
called kernel trick, the mapping Φ is implicitly implemented
by some kernel function K(·, ·), which defines an inner product
in the feature space. The decision function given by SVM is
thus in a linear form of Φ(x) as:

f(x) = 〈w,Φ(x)〉+ b, (1)

where w is the normal vector of the decision hyperplane in F
and b the bias. A novel sample x with f(x) > 0 is assigned
to class {1}, otherwise it is assigned to class {-1}.

For an SVM classifier with misclassified samples being
linearly penalized with a positive soft margin parameter C,
the optimization problem can be written as:















min 1
2‖w‖2 + C

ℓ
∑

i=1

ξi,

s.t. yif(xi) ≥ 1− ξi,
ξi ≥ 0, i = 1, · · · , ℓ,

(2)

where the nonnegative slack variables ξi, i = 1, · · · , ℓ, are
introduced to guarantee feasible solutions always exist. The
solution of the problem in Equation (2) can be obtained with
the Lagrangian theory and w can be derived as:

w =
ℓ

∑

i=1

α∗i yiΦ(xi), (3)

where α∗i is the solution of the following quadratic optimiza-
tion problem, usually called a dual problem:






















max W (α) =
ℓ
∑

i=1

αi −
1
2

ℓ
∑

i,j=1

αiαjyiyjK (xi,xj),

s.t.
ℓ
∑

i=1

yiαi = 0,

0 ≤ αi ≤ C, i = 1, · · · , ℓ.

(4)

B. Ranking Criteria for Feature Selection

SVMs provides us many statistics to estimate their general-
ization performance from bounds on the leave-one-out error L.
The leave-one-out error is known to be an unbiased estimator
of the generalization performance of a classifier trained on
ℓ− 1 examples. One of the most common L error bounds for
SVMs is the radius/margin bound (for decision function with
non-zero bias b) [18]:

L ≤ 4r2‖w‖2, (5)

where r is the radius of the smallest hypersphere that contains
all the mapped data Φ(xi). The geometrical margin δ of
a separating hyperplane, which is the distance between the
hyperplane and an unbounded support vector, can be obtained
by

δ = 1/‖w‖. (6)

Thus, for an SVM, maximizing the margin corresponds to
minimizing ‖w‖.

Given the optimal solution of Equation (4) as α
∗ and w

∗,
it is easy to check that,

‖w∗‖2 =
ℓ
∑

i,j=1

yiyjα
∗
iα
∗
jK(xi,xj). (7)

For a linear SVM, Equation (7) can be simplified to

w
∗ =

ℓ
∑

i=1

yiα
∗
ixi. (8)

For the linear case, we can see that if some elements of
w
∗ are zero, the deletion of the associated input features will

not lead to variation in the decision function. Furthermore, a
feature associated with an element near to zero in w

∗ may
be considered insignificant, and can probably be deleted with-
out degeneration in generalization ability. Thus, the ranking
criterion of the kth feature for a linear problem is defined as

Rk =
√

‖w∗‖2 − ‖w∗(k)‖2 = |

ℓ
∑

i=1

yiα
∗
i xik|, (9)

where xik is the kth element of xi, and w
∗(k) is obtained from

w by setting all components xik to 0 for i = 1, . . . , ℓ.

We can extend this discussion to the nonlinear case where
deletion of an input feature corresponds to deletion of multiple
features in the feature space. In this case, features which
contribute least to ‖w∗‖ in Equation (7) can be possible
candidates for deletion. The contribution of the kth feature
to ‖w∗‖ can be evaluated as

Rk =
√

‖w∗‖2 − ‖w∗(k)‖2 (10)

=

ℓ
∑

i,j=1

yiyjα
∗
iα
∗
j (K(xi,xj)−K(x

(k)
i ,x

(k)
j ))1/2,

where x
(k) is the vector with the kth feature of x set to 0. Note

that for the sake of simplicity and speedup of computation,
α
∗(k), the solution of the optimization problem with the kth

feature deleted, is supposed to be equal to α
∗.

Another similar ranking criterion related with SVM has
been proposed in [19]. The idea was that from Equation (7),
||w||2 can be viewed as a function of the d× ℓ real variables
xik, i = 1, . . . , ℓ, k = 1, . . . , d. Based on the the assumption
that α∗ = α

∗(k), they compute the partial derivatives of ||w||2

with respect to all xij , and assign to the kth feature the score

Vk =

ℓ
∑

i=1

ℓ
∑

j=1

yiyjα
∗
iα
∗
j

∂K(xi,xj)

∂xjk
(11)

which gives the credit of the feature. Here, xjk is the kth
component of xj and the partial derivative is evaluated at xi.



For linear kernels, Equation (11) is equivalent to Equation (9)
while for nonlinear kernels, it is different from Equation (11)
which is adopted in our experiments.

C. SVM-RFE Algorithm

The SVM-RFE algorithm [5] was proposed to select rel-
evant genes for cancer classification problems. It follows the
backward selection method: one starts with all the features and
removes one or a subset of features at a time until a predefined
number of features are left. The removed feature is the one
whose removal minimizes the variation of ‖w∗‖2, i.e. the kth
feature with smallest Rk is eliminated.

Step 1 Initialization: Pf = {1,...,d}.
Step 2 Loop for feature selection

1o Train an SVM classifier with the features in Pf ;

2o Compute Rk , (k = 1, ..., |Pf |);
3o Ef = arg mink Rk; (Ef can be multiple features.)

4o Pf = Pf − Ef ;

Step 3 If |Pf | ≥ r, then go to step 2, otherwise stop.

TABLE I. THE BACKWARD SELECTION ALGORITHM FOR SVM-RFE.
IN THE TABLE, Pf IS THE SET OF PRESERVED FEATURES FOR SVM

TRAINING, Ef A SET OF FEATURES TO BE DELETED, Rk THE RANKING

CRITERION FOR THE kTH FEATURE WITH THE CURRENT SVM, r A

PREDEFINED NUMBER OF FEATURES, AND |Pf | IS THE CARDINAL NUMBER

OF FEATURE SET Pf .

To search the best r features, a greedy algorithm based
on backward selection is performed. A backward sequential
selection is used because of its lower computational complexity
compared to randomized or exponential algorithms and its
optimality in the subset selection problem [20]. Hence, the
algorithm starts with all features and repeatedly removes a
feature until r features are left or all variables have been
ranked. See Table I for the detailed algorithm.

III. FEATURE SUBSET SELECTION BY SVM ENSEMBLE

In this section we discuss the proposed feature selection
method. Because the features are ranked by some stability
evaluation criterion, we refer to the method as Stability Eval-
uation based feature selection, or in short SVM-SE. First we
discuss how to generalize the ensemble learning idea to feature
selection. Then the stability criterion based on the ranking
criterion adopted from SVM-RFE is defined. The SVM-SE
method and the combined method with a backward selection
procedure are described in Section 3.3.

A. Ensemble Learning Generalized to Feature Selection

Compared with other methods, the SVM-RFE method has
shown high performance in solving feature selection prob-
lems with microarray datasets. One of the drawbacks of the
microarray datasets is that they are always short in number
and suffer from abundant noisy features. These problems are
usually unstable: a small variation of the input can influence
the output of the system greatly. In such a case, the SVM
classifiers trained in the ranking procedure of the SVM-RFE
method may overfit to the training set and thus lead to failure
in identifying the feature subset with best prediction power.

The so called “Bagging”—a name derived from “bootstrap
aggregation”—tries to improve the recognition of a given
classifier by using multiple versions of a training set, each

created by drawing N < ℓ samples from D with replacement
[10]. An original classifier tries to learn from a training set
D = {(yi,xi), i = 1, . . . , ℓ} and get a predictor ψ(x,D).
If the input is x, the prediction y is given by ψ(x,D).
Bagging suggests a better predictor by learning from multiple
versions of the training set. Suppose we are given a sequence
of learning sets Dj = {(yi,xi)} each of which consists
of N independent observations from the same underlying
distribution as D. Note the averaged predictor of ψ(x,Dj) over
j as ψA(x) = EDψ(x,Dj), where ED denotes the expectation
over D, and the subscript A in ψA denotes aggregation. ψA(x)
is able to show better generalization performance on unstable
classifiers [10]. For cases where only a single training set D is
available, Bagging uses an imitation of the process by taking
repeated bootstrap samples Dj from D, and form ψ(x,Dj).
The bootstrap samples Dj are drawn at random, but with
replacement. Each (yi,xi) may appear repeated times or not
at all in any particular Dj . The final prediction is based on the
vote of all the predictors ψ(x,Dj).

We can generalize the idea in Bagging to feature selection
problems. Consider the following problem as an example. Sup-
pose we have a sequence of training sets Dj = {(yi,xi), i =
1, . . . , N} independently and identically sampled from a given
problem. If we perform feature selection for each of the
datasets separately, will the multiple runs of the same feature
selection algorithm on different datasets yield identical subsets
of features? Generally speaking, if the number of samples
in the datasets are sufficient to learn the concept generating
the data, the answer could be yes. However, as a dataset
(take the example of an microarray dataset) may contain
thousands of features but only a few number of instances,
the answer probably will be negative. A further question on
the above issue can lead us to the proposed method. That is,
can we combine the training sets to improve feature selection?
Apparently, the answer is yes, for the reason that more data
will certainly offer more insight into the concept to be learned.
Suppose that all available training data still are not sufficient to
get a stable classifier. Then, rather than combining the datasets
into one and following the feature selection procedure of SVM-
RFE, we would more likely to trust in the performance of the
features in an ensemble of classifiers.

B. Stability Evaluation

Given a predefined ranking criterion, the proposed feature
selection method can be formally stated as follows.

Suppose we are given a sequence of training sets Dj

(j = 1, . . . , J), each of which consists of ℓj independent
observations from the same underlying distribution. Our goal
is to use Dj to select a more reliable subset of features

than that acquired by a single set D =
⋃J

j=1 Dj . In case
when only a single training set D is available without the
replicates, we can follow the procedure in Bagging to resample
subsets for training. Let p be the fixed ratio of of the subsets
to the full training set. Repeated bootstrap samples Dj of
size pℓ are drawn randomly from D with replacement. Then
Dj are replicate training sets approximating the distribution
underlying D.

From the training sets Dj (j = 1, . . . , J,), we can learn
J SVMs each of which gives an estimation of the separating



hyperplane. Given a predefined ranking criterion, each SVM
suggests a feature ranking order. Instead of ranking the features
by the absolute values of the ranking criterion, we rank them
by some stability evaluation. In a statistical sense, the standard
deviation of the ranking criterion defined in Equations (9) and
(11) may offer a good estimate of the feature’s stability. On the
other hand, we have to take the absolute value of the criterion
into consideration. Thus based on the ranking criteria described
in Section 2, we define the stability criterion of the kth feature
as

Sk = |µk(R)|/σk(R), (12)

where µk(R) is the mean of the feature’s ranking criterion,
σk(R) the standard deviation. µk(R) and σk(R) are functions
of R. In the rest of the paper, if their is no confusion, we note
them as µk and σk. Then, the larger the absolute mean or the
smaller the standard deviation, the more relevant the feature
is.

Equation (12) implies that a feature that performs consis-
tently (i.e. has large |µk| but a very small σk) will always
be ranked better than a feature that is sometimes good and
sometimes bad (i.e. has lower |µk| but higher σk). Take the
problem in Fig.IV-C1 as an example again. For the first feature,
|µ1| = 13.937 and σ1 = 1.228. For the second feature,
|µ2| = 5.000 and σ2 = 2.042. As we have mentioned, feature
2 offers no discriminability. Still, it has a rather large value
of |µ2|. On the other hand, since it contains mere noise, its
ranking criterion has a large variance. The stability criteria
of the two features are S1 = 11.346 and S2 = 2.449. In
this case, compared with using merely the |µj | or σj as
the ranking criterion, the proposed stability criterion is more
reliable. Generally, when the sign of wk associated with feature
k varies in the SVM ensemble, the stability criterion of the
feature will have a small value.

To estimate the standard deviation and rank the features, an
ensemble of J SVM classifiers should be trained. Compared
to the number of SVMs to be trained for a backward selection
algorithm such as SVM-RFE, the number of SVM classifiers
to be trained can be reduced greatly: given the number of input
features as d, if one feature is removed at a time, SVM-RFE
needs to train d SVMs. Generally, J << d holds for datasets
with large number of input features, especially for nowaday
microarray datasets. However, there are two drawbacks of
ranking the features directly on the defined stability criterion.
First, since the initialization of the ensemble of SVMs involves
a random procedure and the prediction power of the feature
subset is sensitive to slight variation in the feature ranking
sequence, the test performance varies slightly from time to
time. Second, the SVM classifiers with most input features
as noise may be greatly different from those trained with less
noisy features. Hence, to improve the stability of the algorithm,
we can combine the above method with a backward selection
procedure. As the experiments show, we can eliminate a rather
large number of insignificant features at a step without large
influence on the finally preserved features.

C. Algorithm

Here we detail the algorithm of the proposed method. As
the features are ranked based on their stability evaluations, the

method is called a Stability Evaluation based feature selection
method (SVM-SE). The procedure is listed in Table II.

Step 1 Initialize J training sets Dj ;

Step 2 Loop for j = 1, . . . , J
1o Train the SVM classifier for Dj ;

2o Compute ranking criterion Rk for feature k, k = 1, . . . , d,

and store them in an array R;

Step 3 Compute stability criterion Sk (k = 1, . . . , d) from R.

Step 4 Sort the features based on the stability criteria.

TABLE II. THE SVM-SE ALGORITHM. IN THE TABLE, J IS THE

NUMBER OF RESAMPLED TRAINING SETS, d THE NUMBER OF INPUT

FEATURES.

In Step 1, to initialize the training sets Dj , data are
randomly sampled from the training set with replacement.
The ratio of a subset to the full training set is denoted by
a parameter p. In the loop, K SVM classifiers are trained for
all the training sets and for each SVM, the ranking criteria
R for all the features are stored in R. Thus, R is an d × J
array with Rkj storing the ranking criterion of the kth feature
computed from the jth training set. In Step 3, the stability
criterion Sk for each feature is computed from R. Finally,
the features are ranked in a list according to their stability
criteria in descending order. The more relevant a feature is to
the classification problem, the smaller its index in the list. If
the number of features to predict the class label of incoming
samples, r, is predefined, the first r features can be used to
train an SVM classifier on the full training set and test on new
coming data. Otherwise, a simple forward selection procedure
based on the ranking order in the list can help to decide how
many features are needed to train a classifier with a good
generalization ability. Note that, to save memory, during the
computation of the stability criterion, only the aggregated sums
∑

j

Rjk and
∑

j

R2
jk need to be stored, not the full matrix R.

Generally speaking, we can apply this method to various
ranking criteria, for example, the margin based criteria, some
span estimation based criteria, or their gradients. As reported
by [6], the zero order of ‖w∗‖2 criterion used in SVM-RFE,
i.e. the margin based criteria defined in Equations (9) and
(11), outperforms other criteria with most of the examined
datasets. In the experiments, for a linear problem, the criterion
in Equation (9) is adopted, while for a nonlinear problem, the
criterion in Equation (10) is evaluated.

In the SVM-SE algorithm, only K SVM classifiers need
to be trained. Here we take the assumption that these SVM
classifiers can give good generalization performance with all
the input features. However, as the presence of many noisy
features, to make the classifiers more stable, a more feasible
method is to perform the procedure for many times, with a
subset of features deleted at each time. Thus we can combine
the SVM-SE method with a backward selection procedure. To
terminate the algorithm, we check the cross validation rate v.
Note the recognition rate of the SVM classifier trained from
dataset Dj and tested on D−Dj as vj . v is defined as the mean
of vj , j = 1, . . . , J . If the cross validation rate successively
decreases for s times, then we stop the algorithm. The output
feature subset is the one with the best cross validation rate.

In Table III, we detail the SVM-SE algorithm with a
combined backward selection procedure. In the initialization
step, the set of preserved features, Pf , is initialized to include



Step 1 Initialization: D = {(x1, y1), . . . , (xℓ, yℓ)}, Pf ← {1, ..., d},
t← 0, vold ← 0.0, s← s0;

Step 2 While t < s and Pf 6= φ
1o Compute the stability criteria Sk , for k = 1, . . . , d;

2o Ef ← arg mink Sk; (Ef can be multiple features.)

3o Pf ← Pf − Ef ;

4o Compute vj for j = 1, . . . , J ;

5o v ← 1/J
J∑

j=1

vj ;

6o If v < vold then t← t + 1, else vold ← v, t← 0;

Step 3 End.

TABLE III. BACKWARD FEATURE SELECTION WITH STABILITY

EVALUATION. IN THE TABLE, Pf IS THE SET OF PRESERVED FEATURES FOR

SVM ENSEMBLE TRAINING, Ef A SET OF FEATURES TO BE DELETED, Sk

THE STABILITY CRITERION FOR THE kTH FEATURE, AND s0 A PREDEFINED

NUMBER OF ITERATIONS.

all the features. In the second step, we use the SVM-SE
method in Table II to get the stability criteria Sk for all the
features. To speed up the algorithm, multiple features at the
end of the ranked list are deleted from set Pf in each step.
In the experiment, we adopt the following approach: a fixed
proportion (noted as a ratio parameter β) of the least relevant
features are deleted from the preserved feature set Pf at a time.
Then the generalization performance of the preserved features
in Pf is tested by cross validation. During the loop, if the
cross validation rate successively decreases for s times, then
the algorithm stops. The algorithm also can be stopped when
all features are ranked.

IV. EXPERIMENTS

In this section, we report some experimental results with
artificial and real-world datasets. We compare the classification
performance associated with the selected features acquired by
the SVM-RFE method, the proposed SVM-SE method, and
the combined method. As references, the recognition rates of
stand-alone SVM classifiers are reported.

A. Datasets

Table IV lists the number of input features, training set
size, and test set size the datasets reported in the experiments.
(The hyperparamters for SVM learning listed in the same table
are discussed later.) The first dataset is a toy problem and the
rest are real-word tasks.

1) Toy Problem: For the toy experiment, we use the dataset
described in [8].

Two features of 52 are relevant. The probabilities of y = 1
and y = −1 are equal. For y = −1, x1 and x2 are
drawn from N(µ1,Σ) or N(µ2,Σ) with equal probability,
µ1 = (−3/4,−3), µ2 = (3/4, 3), and Σ = I . For y = 1, x1
and x2 are drawn from two normal distributions with equal
probabilities, with µ1 = (3,−3), µ2 = (−3, 3), and Σ = I .
Here N(µ,Σ) is a multivariate normal distribution with mean
vector µ and covariance matrix Σ. The remaining features are
noises xi = N(0, 20), i = 3, · · · , 52.

2) Nonlinear Real-life Datasets: For nonlinear feature se-
lection we show results on two datasets: Wisconsin diagnostic
breast cancer (WDBC) [21] dataset and the USPS dataset [22].
The USPS dataset contains 10 classes denoting 10 handwritten
digits, however as we only consider 2-class problems in the

Dataset #Train #Test #Feature C γ

Nonlinear Toy 50 1000 52 100 1

WDBC 200 369 30 100 0.033

USPS: 3 vs. 5 236 1214 256 10 0.031

USPS: 6 vs. 8 100 153 256 10 0.031

TABLE IV. DATASETS IN THE EXPERIMENTS. IN THE TABLE, #TRAIN

STANDS FOR TRAINING SET SIZE, #TEST FOR TEST SET SIZE, AND

#FEATURE FOR NUMBER OF INPUTS. C IS THE SOFT MARGIN PARAMETER

IN THE SVM FORMULATION. γ IS THE WIDTH PARAMETER WHEN A

GAUSSIAN KERNEL IS ENGAGED.

paper, the dataset is divided into pairwise subproblems and
two representative subproblems from the 45 are reported.

B. Computations

Experiments show that a J value ranging from 20 to 100
does not lead to a large variance in the performance. Thus to
save computations, we set J = 20 in all the experiments. In
the SVM-SE algorithm, the features are ranked based on the
stability criteria with the J SVM classifiers. Each resampled
training set contains 80% of the full training set, e.g. p = 0.8.

To get the referential result of the SVM-RFE algorithm,
as suggested in [8], one feature is removed in each step. For
the proposed combined method, at each iteration, 5% of the
features are deleted, i.e. β = 0.05. To compare with the
result of SVM-RFE, we do not stop the algorithm until all
features are ranked. Gaussian kernels are used for the nonlinear
problems. The hyperparameters C and γ (when a Gaussian
kernel is engaged) are selected by 10-fold cross validation
on the training set. We list the parameters adopted in the
experiment in Table IV. A C parameter ranging from 1 to
10000 leads to the same recognition rate in cross validation.
We set C = 1000 in case the problem turns to be non-
separable with some feature subsets. All the SVM classifiers
are implemented with the LIBSVM toolbox [23]. Experiments
are run on a Linux server with quad core 3.4GHz Xeon CPU.

As a reference, we also check the performance of a simple
correlation coefficients based feature ranking method adapted
from [24]. The correlation coefficients of the kth feature is
defined as follows:

wk = (µk(+)− µk(−))/(σk(+) + σk(−)), (13)

where µk(·) and σk(·), k = 1, . . . , d, are the mean and standard
deviation of the kth feature for the corresponding class. Large
positive wk values indicate strong correlation with class (+)
whereas large negative wk values indicate strong correlation
with class (−). We refer to it as a baseline method in the rest
of the paper.

C. Numerical Results

1) Artificial Dataset: The recognition rates of the three
methods on 1000 test samples for the nonlinear toy problem
is listed in Table V. The recognition rate of an SVM trained
from the full feature set is shown as a reference. In the
table, a recognition rate on the test set is followed by the
selected number of features with the best prediction power.
For the nonlinear toy dataset, SVM performs poorly: it gives
a recognition rate of 0.672. The three methods select the
same first 2 features with recognition rate 0.965. As the



selected number of features increases, the three methods show
comparable performance. The baseline method fails to select
the most relevant features of the nonlinear problem.

Fig. 1. Feature selection results of the nonlinear toy problem.

2) Nonlinear Real-life Datasets: For the WDBC dataset,
we can see from Fig.2(a) that there are many redundant
features. All the three SVM based methods can find a rel-
atively small feature subset without too much degeneration
in generalization ability: with 5 features, they all achieve a
recognition rate above 0.97 — better than the recognition rate,
0.968, yielded by an SVM classifier with all the input features.
Obviously, the proposed methods can successfully select the
relevant features. The optimal recognition rates given by the
four methods are reported in Table V. With about 20 features,
the three SVM based methods can give a recognition rate above
0.980. The baseline method gives a recognition rate of 0.976
with 26 features.

In Figures 2(b) and 2(c), we show the results for the
two USPS 2-class subproblems. The first subproblem consists
of hand written “3” and “5”, and the second subproblem
consists of “6” and “8”. For both of the problems, with
about 40 features, we can get SVM classifiers with equivalent
recognition rates to SVMs trained with all the input features.
With some more features added to the feature subset, the
generalization performance can be improved.

As we can read from Table V, SVM-RFE, SVM-SE, and
the combined method show comparable performance. For the
first subproblem, they can get a recognition rate close to
0.980 with about 50 features, while the baseline method has
a recognition rate of 0.957 with 94 features. For the second
subproblem, they give almost the same recognition rate with
39, 40, 42 features respectively, while the baseline method
has a recognition rate of 0.994 with 98 features. The baseline
method also can help to reduce the number of relevant features,
however, it works no better than the three SVM based methods.

Figure 3 shows the selected features by the four feature
selection algorithms for the two USPS subproblems. In the
first row of Fig.3, the class mean of digits are shown. In the
other two rows, we show the selected subset of features by
SVM-RFE, SVM-SE, the combined method, and the baseline
method. The ranking order of each pixel is also shown in the
figures. From the figures we can see that SVM-RFE, SVM-SE,

and the combined method selects the pixels in the same region
although the ranking orders of the features are a little different
with each other. The baseline method mainly selects features
where the two target classes do not overlap and neglects the
overlapping regions. However, the overlapping regions may
also carry class information as the three SVM-based methods
show.

V. DISCUSSIONS

In this section, we discuss some questions that have arisen
from the proposed algorithm.

A. Computation Costs

SVM based feature selection methods spend most of the
running time on SVM learning. Then, the computation cost
can be measured by the number of SVM classifiers trained in
the procedure.

Let the number of input features be d. For the SVM-
RFE method, if one feature is removed at a time, d SVMs
should be trained. The number of SVMs to be trained is
O(d). For the SVM-SE algorithm, J SVMs have to be trained
to get the stability evaluation of the features. Given J as a
predefined constant, O(1) SVM classifiers must be trained.
For the combined method, as a proportion β of the features

are removed at a time, we have to train −J log(d)
log(1−β) SVMs. If

J << d, then the SVM-SE method is expected to outperform
SVM-RFE. When the number of input features are large
enough the combined method will take less time than SVM-
RFE. In practice, SVM-RFE can be sped up by eliminating
multiple features at a step, although perhaps not as many as the
combined method. Note that as the selected number of features
decreases, there will be some speedup in SVM training. So the
above assertion is not always true.

Table V also lists the computation time on the datasets. For
all the datasets, the SVM-SE method outperforms the other
two methods in speed. For the microarray datasets with large
number of input features, the combined method is faster than
SVM-RFE. For WDBC dataset, SVM-RFE runs faster. For
the other datasets, the combined method and SVM-RFE show
comparable computation time.

B. Extending to Multi-class Problems

We do not explore application of feature selection to multi-
class problems. Here, we suggest an approach to extend a two-
class feature selection algorithm to solve multi-class problems.
Some general discussions to apply a binary feature selection
method to multi-class cases can be found in [25].

SVMs are originally formulated for two-class problems. In
the literature, there are many discussions on how to extend
SVMs to solve multiclass problems. See [26] for detailed dis-
cussions. Among them, the one-against-all SVM and pairwise
SVM first divide a multiclass problem into a series of two-class
problems and then do classification based on the two-class
SVMs according to some voting strategy. Here we suggest to
do feature selection using the pairwise SVM technique for the
following reasons. (1) Pairwise SVMs are reported to have
better performances for real applications. (2) Feature selection
can be done more effectively for a pairwise classifier than for



Dataset SVM SVM-RFE SVM-SE Combined Baseline

Rate Time Rate Time Rate Time Rate Time

Nonlinear Toy 0.672 0.965(2) 1.05 0.965(2) 0.89 0.965(2) 5.66 0.829(21) 0.42

WDBC 0.968 0.981(25) 0.61 0.986(21) 0.91 0.984(20) 4.89 0.976(26) 0.19

USPS3&5 0.951 0.974(50) 2279 0.974(50) 267.6 0.979(46) 2398 0.957(94) 245.0

USPS6&8 0.985 0.996(39) 987.4 0.997(40) 109.4 0.997(42) 1065 0.994(98) 119.3

TABLE V. FEATURE SELECTION RESULTS ON THE TEST SETS. THE NUMBERS IN BRACKETS SHOWS THE NUMBER OF FEATURES WITH THE OPTIMAL

PREDICTION PERFORMANCE.

(a) (b) (c)

Fig. 2. Feature selection results for nonlinear datasets. (a) WDBC dataset. (b) USPS subset, “3” v.s. “5”. (c) USPS subset “6” v.s. “8”.

a one-against-all classifier because the discriminative features
will probably be fewer when only two classes are considered.

VI. CONCLUSION

We have presented a new feature selection algorithm for
SVMs which works by estimating the stability of a feature’s
contribution to some evaluation criterion in an ensemble of
SVM classifiers. Unlike the SVM-RFE method, to solve a
feature selection problem, the proposed SVM-SE only has to
learn a few number of SVM classifiers. To improve the stability
of the algorithm, we combine the proposed SVM-SE algorithm
with a backward selection procedure. We have also addressed
the problem of using a validation dataset to select number
of features with optimal prediction power and improve the
performance of the proposed algorithms.

Experiments on well studied problems and real-life prob-
lems are reported. In all of the reported datasets, the proposed
SVM-SE method shows comparable performances compared
with the SVM-RFE method. It shows large reduction in
computation costs. The combined method shows best results
on most of the datasets with a sacrifice of training time.
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