
Assisting Fuzzy Offline Handwriting Recognition
Using Recurrent Belief Propagation

Yilan Li, Zhe Li, Qinru Qiu
Department of Electrical Engineering and Computer Science

Syracuse University
Syracuse, NY 13244, USA

Email: {yli41, zli89, qiqiu}@syr.edu

Abstract—Recognizing handwritten texts is a challenging task
due to many different writing styles and lack of clear boundary
between adjacent characters. This problem has been tackled
by many previous researchers using techniques such as deep
learning networks and hidden Markov Models (HMM), etc. In
this work we aim at offline fuzzy recognition of handwritten texts.
A probabilistic inference network that performs recurrent belief
propagation is developed to post process the recognition results
of deep convolutional neural network (CNN) (e.g. LeNet) and
form individual characters to words. The post processing has the
capability of correcting deletion, insertion and replacement errors
in a noisy input. The output of the inference network is a set of
words with their probability of being the correct one. To limit the
size of candidate words, a series of improvements have been made
to the probabilistic inference network, including using a post
Gaussian Mixture Estimation model to prune insignificant words.
The experiments show that this model gives a competitively
average accuracy of 85.5%, and the improvements provides
46.57% reduction of invalid candidate words.

I. INTRODUCTION

In recent years, many studies focus on recognizing hand-
written words. Handwritten words demonstrate high variabili-
ties because each person possesses his/her own unique writing
style. Furthermore, clear boundaries cannot always be found
between characters in handwritten text. Adjacent characters
sometimes are connected or overlapped. This significantly
increases difficulty for detection algorithms solely based on
pattern matching. Without clear boundary, two characters that
are close to each other may be recognized as one character or
one character may be split into two characters. These errors are
usually referred as insertion or deletion errors. Recognitions of
handwritten characters in offline situation are more challeng-
ing, because it does not have dynamic representations of hand
writing trajectories, which is a useful feature for classification.

Some of recent approaches apply Histograms of Oriented
Gradients (HoGs) [1], discrete HMM [2,3] or deep neural net-
works [4,5] to recognize handwritten words. In general, these
works investigate two directions to improve the recognition
accuracy: 1) Searching for the set of more robust features that
are orientation, distortion insensitive; 2) Incorporate language
and dictionary information with the pattern recognition. S.
Yao [6] used a method based on sequences of HoG feature
vectors. This method normalizes and divides the input image
into equal-sized cells, and then organizes HoG descriptors into
horizontal and vertical directional features vectors. Discrete
HMM has been successfully used for handwritten Arabic
word recognition by M. Dehghan et al. [7]. They use the
histogram of 4-directional chain code as feature vectors, by

using a moving window scanning the input image from left
to right. However, directional features of handwritten words
are variable and they are hard to recognize with rotation and
distortion. A. Gupta [8] improved this by using Fourier de-
scriptors. However, exactly segmenting words into individual
characters is essential, which is less likely to achieve when the
input is noisy. Y. LeCun [9,10] proposed an efficient multilayer
convolutional neural network (CNN) for recognizing both
handwritten digits and characters.

To integrate dictionary information with character recog-
nition, [9] applies standard grammar graph to select the
output from the CNN based character recognizer and form the
selected characters into words. Although effective, only if both
recognition graph and standard grammar graph reach the end
nodes will an acceptable sequence of input symbols be selected
and the standard grammar graph is not recurrent, therefore,
it is not capable of correcting the deletion errors, which is
very likely to occur when no well-defined character boundaries
are found. This is improved by the multidimensional recurrent
neural network (RNN) proposed by Alex Graves [11]. Trained
with the image of whole words, the RNN is able to recall the
spatial pattern of adjacent characters, which improves recog-
nition accuracy. Esam Qaralleh et al. [12] tuned the recurrent
neural network to a deep neural network with three hidden
layers and two subsampling layers. Their approach segments
the input word into sub-words first and then recognized sub-
words using RNN. In this way, the complexity is greatly
reduced. The RNN provides a comprehensive solution for
spatial temporal pattern recall, however, its training is quite
expensive. In [13–15], a layered framework is developed that
utilizes cogent confabulation model in the upper layer to form
correct words and sentences based on the characters detected
by the bottom layer using pattern matching. However, similar
to [9], the confabulation model assumes that the images and
characters in the real word has one to one correspondence, it
cannot correct the insertion and deletion error.

In this work, we aim at incorporating dictionary information
to assist recognition of handwritten text images. We generalize
the definition of handwritten text to any text image with
irregular fonts and possible overlapped characters. To avoid
expensive training of an RNN, we adopted similar layered
approach as [9] and [13]. The bottom layer is a CNN for
pattern recognition and the upper layer is a recurrent belief
propagation network that searches for the possible words
that can be formed using the detected characters. The belief



propagation network generates fuzzy outputs. The output is
a set of possible words recognized from the given image and
their scores. The fuzzy output can further be refined if sentence
level information is provided.

The belief propagation network is a neural network con-
structed based on a given dictionary and the construction
complexity is linear to the size of the dictionary. Unlike the
models in [8] and [13], our network does not rely on accurate
separation of the characters. Each neuron maintains a memory.
The state of a neuron is not only determined by its input, but
also its historical value. These improvements not only enable
the model to correct insertion and deletion errors, but also
replacement errors. If a wrong spelled word that is not in
the dictionary, our system will give several most likely word
candidates with the correct spelling. Some examples are given
in Section III-D.

The goal of our research is to reduce the size of the output
set of word candidates and to increase the ranking of the
correct word within the output set. This is achieved by a
carefully designed inference network and certain pruning tech-
niques such as post Gaussian Mixture Estimation. Compared
to the standard grammar graph based word detection, we have
more than 5% improvement in word accuracy. Compared to
the result without post Gaussian estimation, 46.57% unrelated
word candidates are pruned with additional 7.2% ranking
increase.

The rest of paper is organized as the follows. Section II
provides the details about system architecture and algorithm.
Experimental results are given in Section III and Section IV
summarizes the current work and discusses future work of our
research.

II. SYSTEM ARCHITECTURE AND ALGORITHM

In this section, we will give the overview of the whole
framework and then describe each layer in detail.

A. Network Overview

The overall framework has three layers: (1) Segmentation
layer using Local Peak Finder Algorithm [16]; (2) Recognition
layer using LeNet-Structured CNN; and (3) Inference layer
using recurrent belief propagation network. Fig. 1 shows the
flowchart of the overall framework. Its input is handwriting
word images. The output is a fuzzy recognition. It consists of
a set of possible word candidates and their ranking and scores.

Using Local-peak finder algorithm, we divide a word image
into a sequence of segments. Then the LeNet-based recognizer
gives possible class labels with probabilities. The segmentation
step is a best effort approach to separate characters. Since
there is not always clear boundary between characters in
handwritten texts, the separation is not perfect. It is possible
that a segment consists of multiple characters. Those segments

Fig. 1. Overall Framework

are detected and processed using Space Displacement Neural
Network (SDNN) [17]. The details will be introduced in
Section II-B.

Lastly, the belief propagation network recalls words with
the highest likelihood based on the predictions from the CNN
and report their ranking and scores.

B. Segmentation based on Local Peak Finder Algorithm
Space Displacement Neural Network (SDNN) has been

proposed in [17] to apply CNN on text images with connected
digits. The neural network is used to process each sub-image
selected by a series of sliding windows, and the output is
connected using a Viterbi alignment module. Naively applying
SDNN to the original word image will unnecessarily increase
the computation complexity. In the first step, we segment the
image into separate characters or character groups and then
apply SDNN on each segment. In this work, we improved the
local peak finder algorithm in [16] to search for segmentation
point. The algorithm is shown in Algorithm 1.

Algorithm 1: Local Peak Finder Algorithm: pseudo code
True pixel peak set Tp = ∅;
Obtain column pixel value summation vector C;
Record positions and values of every valley Vi and peak Pt in

C;
Calculate maximum different ∆ between peak and valley ;
if column pixel value < 0.6∆ then

Remove the column from consideration;
end
Initialize found indicator found = true;
while position Vi in valley set not the end do

if found = true then
Find peak position Pt prior previous to Vi;
Set found = false;

end
Mark position Vimin of min valley between Pt and Vi;
if Vimin 6= Vi then

Set frame between Vimin between Vi as decision
region D;

Mark position P of max peak in decision region D;
if pixel value of P ≥ threshold T then

Add P to true peak set Tp;
Set found = true;

end
end
Move Vi to next valley position;

end
Separate input image at position value in set Tp;

In this work we consider black-white images with white
background and black foreground. The white pixel value is
255 and black pixel value is 0. Firstly, we calculate the
summation of the pixel values for each column and record the
positions and values of peak (column with local maximum
pixel value) and valley (column with local minimum pixel
value). The maximum difference between the peak and valley
are calculated and denoted as ∆. If a columns pixel value
is less than 0.6∆, it will be removed from consideration.
Therefore, only those columns with large number of white
pixels will be considered as potential point for segmentation.
Starting from the first valley position Vi, we look for the first
peak Pt to the left of Vi and the region between these two is
set as decision region. When the pixel values in this region



Fig. 2. Example for Segmentation Layer

Fig. 3. Example for Recognition Layer

are all greater than the value of Vi, Vi is move to the next
valley position. If there exists a point Vimin with smaller pixel
value than Vi and the peak between [Vimin, Vi] is greater than
a particular threshold T , we will segment the image at the
location of the peak, and continue processing the remaining
image using the same algorithm.

The segmentation algorithm is only a best effort approach. It
is possible that multiple connected characters will be included
in the same segment. Those segments whose width is less than
the average character width Tw will be processed directly by
the CNN for pattern matching. Tw is obtained from the training
set. For segments whose width is greater than Tw, a moving
window that is Tw wide is used to scan through the segment
from left to right with one pixel step size. Each image selected
by the window will be processed by the CNN.

Fig. 2 shows an example of the segmentation step. The
input word image is shown at the bottom. The column pixel
value is plotted and three segmentation point are identified
and highlighted. The middle segment is wider than average.
Applying a moving window to this segment, we got four
images for this area. Overall six images will be sent to CNN
for pattern recognition.

C. LeNet-Structured CNN Recognizer

We use the CNN structure defined by Berkeley Vision and
Learning Center [18] for pattern recognition. It is trained to
recognize 26 English alphabets. The structure is the same as
LeNet. The input is a 28 × 28 image and output is a set of
possible characters and their probabilities. Please note that the
image generated from the segmentation layer has with Tw,
which is less than 28. They are padded with white space to
make the size 28× 28. The base learning rate of the training
is set to 0.001 and number of iterations is set to 5000.

Each recognizer predicts a vector of N most likely labels for
every segment. Therefore the input of belief network in next

Fig. 4. Example for Neuron Pool

layer is a sequence of N dimensional vectors. Each vector
represents a set of possible candidates perceived at specific
location in the input image.

Using the segmentation results from Fig. 2 as an example,
we show how the recognition layer works in Fig. 3. Here N
is set to 2.

D. Recurrent Belief Propagation Network
The inference layer of belief propagation is a neural network

that consists of three types of neurons: input neurons (I),
interpretation neurons (P), and dictionary neurons (D).

Every substring of characters in a dictionary word starting
from the first character corresponds to a dictionary neuron. We
denote a dictionary neuron as Dα, where α is the substring
associated to the neuron. For example, the word “admin” is
associated to 5 dictionary neurons, Da ,Dad, Dadm, Dadmi,
and Dadmin. We can further divide the dictionary neurons into
two categories: neurons that represent real dictionary words or
neurons that represent substring of real words.

All dictionary neurons are connected in a Trie [19] structure,
and all connections are bi-directional. That means, neurons i
and j are connected, if i is the prefix of j or vice versa.
Furthermore, if i is the prefix of j, then we call the link from
i to j as prediction link, and the link from j to i as feedback
link. For example, there is a prediction link from neuron Da to
neuron Dad, and a feedback link from Dad to Da. However,
there is no connection between Da and Dadm or any other
neurons in previous example. The bidirectional connections
form a recurrent network.

In this work, the dictionary neurons are generated using
Mieliestronks list [20]. This dictionary has 58027 English
words with average length of 8 characters. It generates ap-
proximate 470000 dictionary neurons. We refer to the overall
dictionary neurons as the neuron pool. Fig. 4 shows all dic-
tionary neurons and their connections generated from a small
dictionary with only 15 words. All neurons that correspond
to real word are highlighted in orange. As we can see, the
network has a tree structure.

As shown in Fig. 5, each directional link between two
neurons is associated with a weight, which is set to be the
log conditional probability log[p(s|t)/p0] between the source
and target neurons of the link. The probability for prediction
links is collected statistically from the dictionary. For feedback
links, this value is always 1.

There are 26 input neurons, each represents a possible
character candidate detected by the CNN recognizer. An input
neuron is denoted as Iβ , where β is one of the 26 English
alphabet. Considering the possible errors in recognition, we
add a set of 26 interpretation neurons, denoted as Pγ , where



Fig. 5. Knowledge Link

Fig. 6. Example for Inference Layer

each γ is an English character. Links are established from
Iβ to Pγ , the weight of the link is the probability that γ
is recognized as β. This information is collected from the
training process. There is also knowledge links from the
interpretation neuron to the dictionary neuron. If γ is the
last character in the substring α, then there is a link from
interpretation neuronPγ to dictionary neuron Dα.

An example of all 3 types of neurons and their connections
is shown in Fig. 6 for the 15-words dictionary. The inter-
pretation and dictionary neurons are represented by rhombus
and circles respectively. To make the figure readable, we do
not show the connections between interpretation neurons and
dictionary neurons, but they are reflected by neuron colors, i.e.
there is a link between interpretation neuron and dictionary
neuron with the same color. In this example, there is a
0.076 probability that a letter “d” will be recognized as “a”,
therefore, the link from Ia to Pd has weight 0.076. The
interpretation neuron Pd will excite all dictionary neurons
that end with letter “d”, therefore, it has a connection to two
dictionary neurons, Dd and Dad .

Each neuron maintains its excitation level. The excitation
level of each input neuron is directly set to the corresponding
class probability reported by the CNN. The excitation levels
of all the other neurons are calculated as:

e(t) =
∑
k∈Fl

∑
s∈Sk

I(s)[ln(
p(t|s)
p0

)−ln(
p(s|t)
p0

)+B]+(1−α)I(t), t ∈ Sl (1)

where I(s) = e(s)/
∑
x∈P e(x) if s ∈ P , and I(s) =

e(s)/
∑
x∈D e(x) if s ∈ D, α is the diminishment ratio.

Variable I(s) is the normalized excitation level of neuron
s, and is referred as activation level. The normalization is
carried out across all neurons of the same type. As we can
see from the equation, the excitation level of a neuron t
is determined by both the input excitation and the neurons
current activation. In other words, a neuron has memory.
Even if it is not being excited externally, it will still remain

Fig. 7. (a) Confabulation Network, (b) Recurrent Belief Propagation Network,
(c) Example for Neuron Excitation Level Evaluation

active. However, its activation level will diminish a specific
percentage α if it does not receive input excitation. During the
normalization procedure, the activation of this neuron will be
inhibited as other neurons that have been excited externally
keeps on increasing their excitation level. For a dictionary
neuron Dα, its input comes the prediction link, the feedback
link and the link from the interpretation neuron. The predictive
signal predicts the next character that may be perceived, the
feedback signal confirms the previous perception based on
current inputs and the interpretation signal simply represents
the sensory input from the recognizers. The proposed model is
to certain degree similar to the HTM model [21]. However, the
HTM model uses a one-bit flag to indicate prediction status,
while the prediction in our model is lumped in the neuron
excitation level.

During recall, the excitation level of all neurons will be
updated each time a new input is received from the pattern
matching layer. Please note that the normalization is performed
after each update, therefore, the neurons with higher excitation
will suppress those with lower excitation in a soft winner-
takes-all manner. At the end of recall, a sequence of neurons
will be highly activated, which form a path (or multiple paths)
that lead to the predicted word(s).

Please note that if we unroll the recurrent network over
time, it is actually similar to a confabulation network [22–
24]. Using the network for word “admin” as an example.
The belief network is shown in Fig. 7 (b). It consists of 7
dictionary neurons. Assume six images are separated (either
by segmentation or sliding window) for pattern recognition as
shown in Fig. 2, then the belief network will be evaluated 6



times. If we unroll the recurrent network over time and create a
copy of all dictionary neurons for each evaluation interval, then
we obtain a confabulation network with 6 lexicons as shown
in Fig. 7 (a), each lexicon has 7 symbols corresponding to
all dictionary neurons. Each symbol only connects to symbols
in its adjacent lexicons and there is no connection between
symbols in the same lexicon. The connections corresponding
to predictive and feedback links are illustrated in Green and
Blue. There is also a Red connection that links the same
neuron in adjacent lexicons. This models the memory of the
neurons, i.e. the neurons previous excitation level affects its
current excitation level. To make the figure simple, we only
show links between Lexicon 1 and Lexicon 2, however, these
links should repeat between all other adjacent lexicons. The
path shown by solid arrows leads to the correct word.

Assume that the recognizer recalls only 1 matching pattern
for each image, i.e. the output from the recognition layer is a
sequence of six 1-D vectors, and the output of the recognition
layer is the sequence “a, d, d, m, i, n”. Also assume that the
same set of characters are triggered in the interpretation layer.
These input signal will dynamically change the excitation level
of neurons. Fig. 7 (c) plots how the neuron activation level
changes over the time. For example, neurons “a” and “adma”
first get excited when the first input “a” is received. Neurons
“ad” and “adman” are being predicted then, and they further
predict downstream neurons. In the next, the input “d” is
received, and neuron “ad” is further excited. It sends feedback
signal to neuron “a” to confirm the previous observation and
continue predicting neuron “adm”. The excitation level of
“adma” diminishes gradually even though it got excited at the
beginning, because there is no feedback or input to confirm
the observation (or prediction). At the end, the word “admin”
accumulates the highest excitation. Also the set of neurons “a”,
“ad”, “adm”, “admi”, and “admin” has the highest activation
and they identify a path that leads to the correct word.

E. Further Improvements
Sometime, certain common combination of characters or

high-frequency words will reach high excitation simply from
prediction, even though some of their characters are not
reported by the recognizer. The last step of our work is to
lower the ranking of these words or eliminate them from the
candidate list. This is achieved by adding pre-processing and
post-processing.

We denote estimation of the word length and start-end
position constraint as pre-processing constraints. We firstly
estimate the probable number Nc of characters in the word,
which equals the quotient of input image pixel width divided
by average character width Tw. If the word candidate has more
than Nc characters, it will be eliminated. Furthermore, start-
end position constraint is used to strengthened the excitation
process of neurons. In the first evaluation interval, excited
neurons containing only one character will get more excitation
than others. Similarly, excited neurons representing a real
word will get more excitation if the input from the pattern
matching layer is the last. For example, adding start-end
position constraint will help to differentiate the first excitation
levels of “a” and “adma” in Fig. 7 (c), as “a” will get more
excitation increase than “adma”.

The post-processing is achieved by considering the location
distribution of each character. For any English character x,
we consider its location in a word is a random variable. The
probability that x will be the lth letter in the word is denoted
as prx(l). We assume that this distribution follows a Gaussian
Mixture Model (GMM), and the information reported by the
recognizer is a sample of the distribution, based on which the
whole distribution is constructed [25].

Using the GMM, a variable Prob(w) =
∏N
i=1 prxi(i) is

calculated for each word w, where xi is the ith character in
w. This variable indicates the possibility that w is the correct
word by considering where each character in w is located.
The excitation level of word w is then adjusted based on
the probability by calculating: el′(w) = el(w) + ln prob(w)

p0
.

Please note that the excitation level el(w) is actually the
log probability of w estimated using the inference network,
therefore, the adjustment is actually calculating the product
of the two probabilities to combine the prediction results
from different approaches. Our experimental results show that
combining with GMM will improve the ranking of the correct
word by 7.2%.

III. EXPERIMENTAL RESULTS

In this section, we demonstrate the performance of the hand-
writing recognition framework. Several simple improvement
techniques are also discussed.

A. Experiment setup

The dataset that we use for training and testing are generated
based on images from Chars74k [26]. Our dictionary is the
Mieliestronks list [20]. In this list, the British spelling was
preferred and American versions are deleted. Only lower
words are tested in our experiments. The word images are
generated using the method as mentioned in [9]. We first
randomly select a word from the Mieliestronks list. For every
character in the word, we then randomly select a character
image from different writing styles in the Chars74k dataset
and put them close together. We allow adjacent characters to
connect to each other. We keep the height of the word image
to be 28 pixels by scaling without changing its aspect ratio.
Some sample input word images are shown in Fig. 8.

B. Training of CNN-based Recognizer Component

We train the CNN-based recognizer with a subset of
Chars74K [26]. Chars74K contains 26 classes and 55 samples
for each class. All the 3410 hand drawn characters in the
dataset are lower-case English characters, from a to z. We use
32 samples per class for training and the rest 13 samples per
class for testing. We choose 28×28 as the size of input images,
which is the same as defined in [18] LeNet caffemodel.

During testing, the CNN report a set of class labels and their
matching probabilities. The test accuracy of various training
learning rates and iterations is reported in Fig. 9. “ith” means

Fig. 8. (a) dog (b) admin (3) function (4) initial (5) segment



Fig. 9. Test Accuracy of CNN-based Recognizer

that the correct labels score is within the ith highest predicted
score. According to these results, we choose 0.001 as base
learning rate and 5000 iterations to train the CNN model. To
limit the complexity of probabilistic inference, we only send
six highest possible class labels to the next layer.

C. Word Recognition Accuracy

We test the whole system under an environment using
NVIDIA R© GeForce GTX 750 with 512 CUDA cores. In the
experiments, 187200 input images containing 6240 different
words which are randomly selected in [20] are generated.
Word candidates are selected from the highest excitation level
to the lowest. We report the results from three aspects: (1)
the chances that the correct word is within top 5, 10 and 20
predictions; (2) the number of word candidates; (3) expected
ranking of the correct word.

Firstly, Fig. 10 shows the chances that the correct word
is within top 5, top 10 and top 20 predictions respectively
after adding improvement techniques. As we can see from the
figure, we got 46.07% average accuracy increase if the correct
word is predicted within Top 5. 36.84% accuracy improvement
is got when the word is correctly predicted within Top 10. The
accuracy will increase 18.75% if the correct word is predicted
within Top 20.

As the end of belief propagation, the dictionary neurons
corresponding to real words and whose excitation level is
non-zero are reported as candidates. Large amount of word
candidates means high complexity and ambiguity. Therefore,
we show how the pre- and post-processing techniques can help
improve the validity of our network.

Fig. 11 shows the decrease of average number of word
candidates after applying different improvement techniques.
Adding preprocessing constraints can help prune 58.06%
irrelevant word candidates. Applying Local Peak Finder based

Fig. 10. Accuracy Improvement

Fig. 11. Average Number of Word Candidates Improvement

Fig. 12. Expectation Ranking Improvement of Correct Word

segmentation will further reduce 53.21% word candidates.
Combining these with post Gaussian estimation gives another
46.57% reduction. Overall, the number of word candidates can
be reduced to 39 on average. Fig. 12 shows the expectation
ranking improvement of the correct word if it is reported
within Top 20 predictions. The lower ranking means better
recognition quality. The figure indicates that the expected
ranking of the correct word is 8.3 when only preprocessing
constraints are applied. With segmentation, this value drops
to 6.37. Finally, after using post Gaussian estimation, the
expected ranking of correct word reduces to 5.91.

As a base line reference, we also implement the standard
Grammar Graph, which is a type of finite-state transducers
[27], mentioned in [9], and use it to replace the belief network.
Fig. 13 compares the accuracy of the two approaches after
applying preprocessing constraints, local peak finder algorithm
and post-processing. Again, the accuracy is measured by the
chances that the correct word is within the Top 5, 10 and 20
predictions. The results show that our approach is 5∼8% better
than the standard Grammar Graph.

Fig. 13. Comparison for Accuracy



Fig. 14. Comparison for Average Number of Word Candidates

TABLE I
WORD CANDIDATES OF SAMPLE WORDS

Input Image Output Word Candidates Excitation Level
best 10.350
test 10.1219
beet 9.9260
stet 8.5189

admin 7.8904
adman 5.1902
initial 5.4023
fantail -1.0919
lenient -3.4354
strict 9.4421
script 8.5002
spirit 8.4568

junction 9.9152
function 9.8459
fraction -30.9105
friction -71.5689

segment 9.5512
tensest 8.7067
tempest -23.0852

D. Recognition Results of Recurrent Belief Propagation Net-
work

In this section, we list recognition examples generated by
our recurrent belief propagation network. Table I lists the top
predicted word candidates for some input images. The columns
labeled as “Output Word Candidates” and “Excitation Level”
give word candidates in the output set with their corresponding
excitation level (i.e. score) in descending order. The correct
word is highlighted in bold.

Table II lists the recognition for some word images with
wrong spellings. These wrong spelled words are randomly
selected from [28]. Again, the highest predicted words are
reported with their excitation levels listed in descending order.
The words in bold font are the actual correct ones.

IV. CONCLUSION AND FUTURE WORK

We have introduced a recurrent belief propagation network
for handwriting recognition system. The system construction,
processing algorithm and recall process are presented. In
our self-structured system, allowing multiple neurons got
excited helps improve quality of knowledge link information

TABLE II
WORD CANDIDATES OF SAMPLE WRONG SPELL WORDS

Input Image Output Word Candidates Excitation Level
describe 12.3928
disperse 11.9450
perspire 11.8388
effete 12.7191
effect 12.6600
efface 11.9770
defect 10.5627
colour 11.8852

column 9.2361

and maintain a relatively high accuracy at the same time.
Because neurons can retain the knowledge information and
reduce the chance of wrong recognition caused by CNN.
The proposed preprocessing and post processing techniques
effectively reduces the size of predicted word candidates and
improves the expected ranking of correct words. The presented
belief propagation network is general enough to be applied in
other applications for sequence prediction and recall. One of
our future work is to extend it for speech recognition. The
similar segmentation and deep neural network can be used
for pattern matching. A belief propagation network will be
constructed with neurons representing phonemes or phoneme
sequences and knowledge links between lexicons represent
connection between neighboring phonemes. We will also con-
sidering other promising methods, such as incorporating higher
level context, to improve the accuracy and generality of the
framework.

REFERENCES

[1] S. Bhowmik, M. G. Roushan, R. Sarkar, M. Nasipuri, S. Polley, and
S. Malakar, “Handwritten bangla word recognition using hog descriptor,”
in Emerging Applications of Information Technology (EAIT), 2014
Fourth International Conference of. IEEE, 2014, pp. 193–197.

[2] M. Dehghan, K. Faez, M. Ahmadi, and M. Shridhar, “Holistic handwrit-
ten word recognition using discrete hmm and self-organizing feature
map,” in Systems, Man, and Cybernetics, 2000 IEEE International
Conference on, vol. 4. IEEE, 2000, pp. 2735–2739.

[3] P. Jifroodian-Haghighi, “A discrete hidden markov model for the
recognition of handwritten farsi words,” Ph.D. dissertation, Concordia
University, 2010.

[4] V. Frinken and S. Uchida, “Deep blstm neural networks for uncon-
strained continuous handwritten text recognition,” in Document Analysis
and Recognition (ICDAR), 2015 13th International Conference on.
IEEE, 2015, pp. 911–915.

[5] B. Su, X. Zhang, S. Lu, and C. L. Tan, “Segmented handwritten text
recognition with recurrent neural network classifiers,” in Document
Analysis and Recognition (ICDAR), 2015 13th International Conference
on. IEEE, 2015, pp. 386–390.

[6] S. Yao, Y. Wen, and Y. Lu, “Hog based two-directional dynamic time
warping for handwritten word spotting,” in Document Analysis and
Recognition (ICDAR), 2015 13th International Conference on. IEEE,
2015, pp. 161–165.

[7] M. Dehghan, K. Faez, M. Ahmadi, and M. Shridhar, “Handwritten farsi
(arabic) word recognition: a holistic approach using discrete hmm,”
Pattern Recognition, vol. 34, no. 5, pp. 1057–1065, 2001.

[8] A. Gupta, M. Srivastava, and C. Mahanta, “Offline handwritten char-
acter recognition using neural network,” in Computer Applications and
Industrial Electronics (ICCAIE), 2011 IEEE International Conference
on. IEEE, 2011, pp. 102–107.

[9] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE, vol. 86,
no. 11, pp. 2278–2324, 1998.

[10] Y. LeCun, K. Kavukcuoglu, C. Farabet et al., “Convolutional networks
and applications in vision.” in ISCAS, 2010, pp. 253–256.



[11] A. Graves and J. Schmidhuber, “Offline handwriting recognition with
multidimensional recurrent neural networks,” in Advances in neural
information processing systems, 2009, pp. 545–552.

[12] E. Qaralleh, G. Abandah, F. Jamour et al., “Tuning recurrent neural
networks for recognizing handwritten arabic words,” Journal of Software
Engineering and Applications, vol. 6, no. 10, p. 533, 2013.

[13] Q. Qiu, Q. Wu, M. Bishop, R. E. Pino, and R. W. Linderman, “A parallel
neuromorphic text recognition system and its implementation on a
heterogeneous high-performance computing cluster,” IEEE Transactions
on Computers, vol. 62, no. 5, pp. 886–899, 2013.

[14] Q. Qiu, Z. Li, K. Ahmed, H. H. Li, and M. Hu, “Neuromorphic
acceleration for context aware text image recognition,” in 2014 IEEE
Workshop on Signal Processing Systems (SiPS). IEEE, 2014, pp. 1–6.

[15] Q. Qiu, Z. Li, K. Ahmed, W. Liu, S. F. Habib, H. H. Li, and M. Hu,
“A neuromorphic architecture for context aware text image recognition,”
Journal of Signal Processing Systems, pp. 1–15, 2015.

[16] N. Yoder, “Peakfinder: Quickly finds local maxima (peaks) or minima
(valleys) in a noisy signal,” 2014.

[17] O. Matan, C. J. Burges, Y. LeCun, and J. S. Denker, “Multi-digit
recognition using a space displacement neural network,” in NIPS, 1991,
pp. 488–495.

[18] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick,
S. Guadarrama, and T. Darrell, “Caffe: Convolutional architecture for
fast feature embedding,” in Proceedings of the 22nd ACM international
conference on Multimedia. ACM, 2014, pp. 675–678.

[19] Wikipedia, “Trie — wikipedia, the free encyclopedia.”
[20] “Mieliestronk dictionary.” [Online]. Available:

http://www.mieliestronk.com/wordlist.html
[21] A. M. Zyarah, “Design and analysis of a reconfigurable hierarchical

temporal memory architecture,” 2015.
[22] Q. Qiu, Q. Wu, D. J. Burns, M. J. Moore, R. E. Pino, M. Bishop,

and R. W. Linderman, “Confabulation based sentence completion for
machine reading,” in Computational Intelligence, Cognitive Algorithms,
Mind, and Brain (CCMB), 2011 IEEE Symposium on. IEEE, 2011, pp.
1–8.

[23] Z. Li and Q. Qiu, “Completion and parsing chinese sentences using
cogent confabulation,” in Computational Intelligence, Cognitive Algo-
rithms, Mind, and Brain (CCMB), 2014 IEEE Symposium on. IEEE,
2014, pp. 31–38.

[24] Z. Li, Q. Qiu, and M. Tamhankar, “Towards parallel implementation
of associative inference for cogent confabulation,” in High Performance
Extreme Computing (HPEC), 2016 IEEE Conference on. IEEE, 2016.

[25] “Machine learning and pattern recognition den-
sity estimation: Gaussians.” [Online]. Available:
http://www.inf.ed.ac.uk/teaching/courses/mlpr/lectures/mlpr-
gaussian.pdf

[26] T. E. de Campos, B. R. Babu, and M. Varma, “Character recognition in
natural images.” in VISAPP (2), 2009, pp. 273–280.

[27] F. Pereira, M. Riley, and R. Sproat, “Weighted rational transductions
and their application to human language processing,” in Proceedings
of the workshop on Human Language Technology. Association for
Computational Linguistics, 1994, pp. 262–267.

[28] “240 common spelling mistakes in english.” [Online].
Available: http://www.engvid.com/english-resource/common-spelling-
mistakes-in-english/


