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Abstract—In the last decades, data fusion techniques proved
their performances especially in the case of complex recognition
system. The idea is to use those techniques in the context of tree
species recognition. In this paper, we propose to fuse information
extracted from barks with those extracted from leaves. The goal
is to increase the power of discrimination of the proposed fusion
system and to achieve better detection results than those obtained
when using only the leaves. Two fusion system architectures,
corresponding to two fusion strategies are compared in this paper.

I. INTRODUCTION

Tree species recognition is a very challenging task and is
one of the major concerns at present. Many researches have
been carried out in order to deal with this problem and to find
the better tree species recognition system.a very challenging
task. Some of those systems use attributes extracted from
leaves. In [1], a thresholding method is combined with an
H-maxima transformation based method to extract the leaf
veins. In [2], a new multi-resolution and multidirectional
curvelet transform is applied on subdivided leaf images to
extract leaf information. In other works, tree sepcies are
recognised through barks. The main used bark texture features
are Gabor filters [3] and Gray-level Co-occurrence matrices
(GLCM) [4] and [5]. Some other works use different tree
organs in order to recognise tree species. In [6], the tree
recognition system is based on the combination of component
retrievals, leaf, flower and bark. In [7], we presented two
strategies for tree species recognition through leaves allowing
the obtainment of a set of the five most corresponding
species. As the use of different trees organs proved its ability
to improve performances of the tree species recognition
system [6], the idea is to combine information about leaves
with information about barks, flowers, GPS information,...
Actually, we have only features extracted from leaves and
barks database. Thus, as a first step, we have decided to
combine those two sources of information and to evaluate the
ability of trees barks to improve performances achieved by
only leaves.

The data fusion techniques [8], consisting in combining data
from multiple sensors, proved their performances in different
domains. In the context of this work1, available information
are often uncertain, incomplete and imprecise for many

1This work has been supported by the French National Agency for Research
with the reference ANR-15-CE38-0004 (ReVeRIES project)

reasons that could be illustrated studying the specificities of
the barks and leaves database. First in this paper we consider
5067 photographs of leaves and 2587 photographs of barks
from PlantCLEF 2014 2. Those photographs represent 72
tree species found in the France territory. So, the supervised
classification problem we consider is a multi-class problem
with a very large number of classes (72 classes). It’s
important to note that the number of photographs per class
is different: some classes contain more than 200 samples
while others are represented by only five samples. This may
affect model training and generate biased results. Second,
there is a significant intra-class variability: a same species
can be represented by two or multiple leaves or barks
which are widely different. Also, we have a high inter-class
similarity: leaves or barks belonging to different species
can be very similar. Intra-class variability and inter-class
similarity between leaves are illustrated on figure 1. Figure
2 represents inter-class similarity and intra-class variability
between barks.

Specificities of used databases affect largely the quality
of attributes. Because of the intra-class variability and the
inter-class similarity, extracted attributes are not enough in-
formative, not linearly separable and even noisy. Different
theories to manage those data imperfections are proposed in
the literature: fuzzy set theory [9], possibility theory [10],
rough set theory [11] or imprecise probability theory [12].
The Dempster-Shafer theory (DST) [13] also known as Belief
functions has been shown to be a powerful framework for
reasoning with imprecise and uncertain sources of information
which is our case. For that reason, we choose to use it in
the context of tree species recognition. Yet, one of the major
problems of this theory is its high computational complexity
that increases exponentially with the number of classes to
be treated. To deal with this problem, the general framework
proposed by Martin [14] is used as well as an approximation of
belief functions. Section 2 exposes the proposed fusion system.
Tests on leaves and barks databases are presented in section
3.

2http://www.imageclef.org/2014/lifeclef/plant
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Fig. 1: (a) and (b) present the intra-classes variability (the
Holly), (b) and (c) present the inter-classes similarity (the
Holly and the Oak)

(a)
*

(b)

Fig. 2: (a) and (b) present respectively the similarity between
barks belonging to different species and the variability between
barks belonging to the same species

II. FUSION SYSTEM

The recognition of tree species through leaves and barks,
illustrated in figure 3, consists first in extracting attributes
characterising those two modalities. A supervised sub-
classification step consists then on using those attributes as
inputs of random forest classifiers (trained using 200 trees
and the information gain classification method) and providing
a distribution of probabilities in the space of species as
outputs. Finally, a fusion system allows the combination of
data provided by different sub-classifiers and provide a list of
the most corresponding species.

In this work, two fusion system strategies are proposed. The
first strategy consists first in fusing information provided by
different leaves sub-classifiers and then refine obtained results
with information about barks. Contrary to the first strategy,
the second strategy doesn’t separate leaves sub-classifiers from
barks sub-classifiers, it fuse all of them in cascade according

Fig. 3: Principal steps of tree species recognition

TABLE I: sizes of vectors
−→
Ai for each morphological charac-

teristic Ci

Modality Ci
−→
Ai [ai,1, ..., ai,j ]

the leaf C1: the base and the apex
−→
A1 [a1,1, ..., a1,10]

C2: the margin
−→
A2 [a2,1, ..., a2,9]

C3: the global shape
−→
A3 [a3,1, ..., a3,5]

the bark C4: the color of the bark texture
−→
A4 [a4,1, ..., a4,255]

C5: the orientation of the bark tex-
ture

−→
A5 [a5,1, ..., a5,3]

to an order driven by the sub-classifiers performances.
A feature selection step, presented in [15], allows the building
of 3 vectors of attributes extracted from leaves: The vector
of attributes noted

−→
A1 characterising the margin and extracted

using LMS descriptor [16], the vector of attributes
−→
A2 charac-

terising the apex and the base of the leaf and extracted using
a polygonal model parameters, leaves base parameters and tip
models as well as a curvature scale histogram [15] and finally
the vector

−→
A3 characterising the shape of the leaf [17]. 2 other

vectors of attributes are extracted from barks: The vector
−→
A4

characterising the color hue H of the HSV color space (this
color shade is used since it is robust with regard to the stem
luminosity variations) [18] and the vector

−→
A5 characterising

the orientation and the frequency of the structure composing
the bark [19]. Table I shows the sizes of each vector.

Globally, we remark that vectors sizes are not very
important expect

−→
A4 which wasn’t reduced since the

reduction causes less of this vector performances. Each
vector of attributes is used to train a random forest [20]
sub-classifier. As output of each sub-classifier, we have a
distribution of probabilities Pi in the space of species E with
E = {e1, ..., ek, ..., e72}.

The fusion system is based on the theory of Dempster-
Shafer [13] called also theory of Belief functions that provides
an efficient frame to deal with imprecise information.
Let Θ = {Θ1, ...,ΘN} be a frame of discernment
composed of N exclusive and exhaustive hypothesis
and 2Θ = {∅,Θ1,Θ2, ...,ΘN , {Θ1,Θ2}, {Θ1,Θ3}, ...,Θ} the
power set of all possible combinations of the elements of Θ.
A mass function defined on the power set of Θ is a function
m : 2Θ → [0, 1] verifying:

∑
A⊆Θ

m(A) = 1 (1)

In our application, the frame of discernment corresponds
to E, the set of sought-after species.

To transit from the theory of probabilities (output of the sub-
classifiers) to the theory of belief functions, we implement the
method named “an Ω BBAs Subset” presented in details in
[21]. It consists first in ordering the probabilities Pi of a sub-
classifier Si



Pi(e(1)) ≥ Pi(e(2)) ≥ Pi(e(3)) ≥ ...Pi(e(N−1)) ≥ Pi(e(N))
and then computing the masses as follows:

m{e(1), e(2), ..., e(N−1), e(N)} ≡N ∗ Pi(e(N))

m{e(1), e(2), ..., e(N−2), e(N−1)} ≡(N − 1) ∗ (Pi(e(N−1))−
Pi(e(N)))

m{e(1), e(2), ..., e(N−3), e(N−2)} ≡(N − 2) ∗ (Pi(e(N−2))−
Pi(e(N−1)))

...

m{e(1), e(2), e(3)} ≡(3) ∗ (Pi(e(3))− Pi(e(4)))

m{e(1), e(2)} ≡(2) ∗ (Pi(e(2))− Pi(e(3)))

m{e(1)} ≡(1) ∗ (Pi(e(1))− Pi(e(2)))

The global idea of the fusion system is to fuse the sub-
classifiers two by two. Thus, at each fusion level n we can
analysis the contribution of each sub-classifier. Each time we
fuse two sub-classifiers together, the appropriate combination
rule should be chosen. The combination rule allows to fuse 2
masses m1(B) and m2(C) originate from 2 different sources
in order to obtain a mass function m(A) with A, B and C
are elements of the power set 2Θ . This combination consists
in according a mass to all elements of the power set 2Θ. As
we work with potentially conflicting data, this choice depends
on the degree of conflict which is expressed in the interval [0
, 1] and refers to the calculation of the mass of the empty set
as follows:

m(∅) =
∑

B∩C=∅

m1(B)m2(C) (2)

If the conflict is important (≥ 0.8), we use the disjunctive
combination rule

m(A) =
∑
B∪C

m1(B)m2(C),∀A ∈ 2Θ (3)

Else we use the combination rule of Dempster

m(A) =

∑
B∩C=A m1(B)m2(C)

1−
∑

B∩C=∅m1(B)m2(C)
(4)

The problem we treat is a complex real world problem
with a lot of confusion, uncertainty and imprecision. If, as
a result of the fusion process, we present to the user just
the first most likely species, this response may contain an
important degree of uncertainty. On the other hand, if the
response of the system is in the form of a sub-set of the
most likely species, the degree of uncertainty will be reduced.
We think that providing an information which is less precise
but more certain may be more useful for the user. Thus,
the decision making step we propose allows the selection
of the most corresponding sub-sets of species by using two
of the most used criteria for making decision in the theory
of belief functions: The plausibility Pl and the credibility

TABLE II: Performances Ri of sub-classifiers Si

Si S1 S2 S3 S4 S5

Ri 41% 28% 43% 30% 12%

Cr [13]. We use those decision making criterion in order to
find the more suitable to the problem we treat. Indeed, the
classification problem presented in this paper is a multiclass
problem with a relatively huge number of classes (72 classes).
It is preferable that the system provides the user with the most
precise information while having always a good performance
and a minimum of errors. Thus, the goal is to obtain a sub-set
of classes with a small size while having always a relatively
important classification ratio. Thus, we consider that the best
decision making criterion is the one which provides the best
compromise between the classification ratio and the size of
the selected sub-set. As presented in equations 5 and 6 the
maximum of credibility and plausibility criterion appears to
be respectively an optimistic and a pessimistic criterion.

Cr(A) =
∑

B⊆A,B 6=∅

m(B) (5)

Pl(A) =
∑

A∩B 6=∅

m(B) (6)

With those criteria, we obtain for each individual an element
A of the power set of E having the maximum of plausibility
or the maximum of credibility and containing several species.

III. EXPERIMENTS AND RESULTS

A. evaluation of sub-classifiers quality

At learning step, sub-classifiers Si were trained using
attributes extracted from 2535 photos of leaves and 1292
photos of barks. The performances of the sub-classifiers are
presented in Table II and are calculated as the percentage
of well classified individuals at test step relised on 2532
photos of leaves and 1295 photos of barks. We remark
that sub-classifiers performances are limited. That’s due to
multiple factors: specificities related to the database, quality of
extracted attributes... To evaluate the quality of sub-classifiers,
we plot the confusion matrix corresponding to leaves and
barks sub-classifiers and we take as an example in this paper
the confusion matrix corresponding to the apex and the base
of the leaves S1 and the HSV space S4 (color of barks).
Presented in figure 4, the confusion matrix (the rows present
known classes and the columns present the predicted ones)
corresponding to S1 shows the relatively important ability of
the base and apex sub-classifier to discriminate species. The
majority of species are well identified. However, we note
that some species are hard to identify: species 21 to 26 and
species 59 to 63. Presented in figure 5, we remark that the
confusion matrix relative to the classification of the attributes
characterising the barks color S4 is largely less good than
the confusion matrix relative to S1. There is an important
confusion between species that appear into the matrix by



Fig. 4: Confusion matrix of the base and apex sub-classifier S1

Fig. 5: Confusion matrix of the HSV space sub-classifier S4

value outside the diagonal, sign of miss classification.

We can conclude that discrimination of species using leaves
is much more efficient than with barks. Moreover, it is possible
that barks provide information that could be useful to improve
classification ratio obtained with only leaves as we remark that
species which are hard to discriminate using leaves, may be
easily discriminated using barks. These observations led to the
implementation of 2 fusion strategies.

B. Evaluation of the final decision

The making decision step selects, for each individual and by
the use of a decision criterion, a sub-set of species which is the
most susceptible to contain the true species. The set of species
resulting from this selection is noted R and is an element of the

power set of E. It have a variable size which depends on all the
fusion process. When an individual corresponds to conflicting
data, the fusion system will use the disjunctive combination
rule which leads to the building of big size sub-sets. Thus, the
making decision step normally ends with a selection of a big
size sub-set of species. The evaluation of the fusion system
results is done at each fusion level n and based on 4 criterion:

• T : classification ratio computed by assessing the presence
of the true species in R

• NBmoy: the mean cardinality of R
• NBmax and NBmin: the maximum and the minimum

size of R
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Fig. 6: First fusion strategy

C. First fusion strategy

The first fusion strategy, presented in figure 6, consists in
fusing data provided by leaves sub-classifiers, fusing data
provided by barks sub-classifiers and then fusing obtained
results together.
As presented in Table III, we have a classification ratio of
84.20% when fusing leaves sub-classifiers with NBmean = 6
and NBmax = 37. The application of the first fusion
strategy increases the classification ratio with 0.67% with
NBmean = 7 and NBmax = 39. It’s true that the addition
of barks doesn’t bring an important improvement to the
classification results. But, it is important to note that,
although the weak classification ratio relative to barks
modality (Table IV) which brings confusion to the system,
the architecture of the proposed fusion system does not
allow to confusing sources of information to decrease its
performances. To gather more evidence about the system
behavior, we tried to analyse the behavior of each species.

Figure 7 represents the classification ratio per species. We
remark that the classification ratio is highly variable from
one species to another. For some species, we have a null
classification ratio while for others all belonging individuals
are well classified. When using only barks, we obtain 13
species which have a null classification ratio and 2 species
with a null classification ratio when using only leaves. When
fusing those 2 modalities, we remark that we have no more
species with a null classification ratio. Moreover, only 6
species have a classification ratio less than 40%.

As we have the decision corresponding to each pattern,
it is possible to recognise the species which corresponding
individuals present very conflicting data. For those species,
the mean size of R is important since, when combining
different sources of information, the disjunctive combination
rule is used each time the degree of conflict is superior to
0.8. The use of this rule leads to big size focal elements.
For that, the idea is to gather patterns belonging to the
same species and to calculate the mean size of R subsets
for each species. Figure 8 shows that the mean size of R
per species is, for the most of the species, more important
for barks compared to the leaves. In the case of barks, we
note important imprecision for species 20, 51, 55, 58, 64
and 67. When fusing leaves with barks, we remark that the

TABLE III: Results of leaves sub-classifiers fusion at each
fusion level n (first fusion strategy)

max Pl max Cr

n=1 T 73.93% 86.22%
NBmoy 3 8
NBmax 24 42
NBmin 1 1

n=2 T 71.52% 84.20%
NBmoy 2 6
NBmax 33 37
NBmin 1 1

TABLE IV: Results of barks sub-classifiers fusion (first fusion
strategy)

max Pl max Cr

n=1 T 45.10% 56.37%
NBmoy 7 12
NBmax 52 58
NBmin 1 2

mean size of R decreases for some species and increases for
others like species 10, 25 and 42. Thus, we can say that the
fusion of leaves with barks leads to an improvement of the
system precision for some species and a degradation for others.

Figure 9 shows, for each species, the percentage of
individuals which have a mean number of species NBmean

superior to 7 after the fusion process (The threshold is fixed
to 7 as we consider that species which have an important
percentage of individuals with NBmean superior to 7 are
imprecise). The barks are very confusing. The leaves also
but are a little better. The fusion of the barks and the leaves
increases the imprecision of the system.

The analysis of the first strategy allows us to say that,
although their relatively poor quality, barks sub-classifiers
permit an increase of the classification ratio per species. But,
they decrease the precision of some species at the same time.
It is worth to note that a better management of barks data may
provide more useful information to the fusion system and thus
improve the performances of the fusion system while keeping
a good compromise between classification ratio and precision.



Fig. 7: Classification ratio per species (first fusion strategy)

TABLE V: Results of barks and leaves fusion (first fusion
strategy)

max Pl max Cr

n=1 T 72.47% 84.87%
NBmoy 3 7
NBmax 31 39
NBmin 1 1

Fig. 8: Mean size of R per species (first fusion strategy)

D. Second fusion strategy

The second fusion strategy, presented in figure 10, consists
in ordering all sub-classifiers according to their performances

Fig. 9: Percentage of individuals with NBmean > 7 per
species (first fusion strategy)

and fusing them in cascade while respecting the established
order. Table VI shows results obtained with this strategy. We
obtain a classification ratio of 78.79% with NBmean = 7 and
NBmax = 58. Using this strategy and compared to the results
obtained when fusing only leaves sub-classifiers, we note that
the addition of the barks decreases the performances of the
system.

As in the case of the first strategy, the fusion of the barks
and the leaves presented in 11 shows an improvement in
terms of the number of species which still having a null
classification ratio after the fusion process. But, in terms
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Fig. 10: Second fusion strategy

of the mean size of subsets per species NBmean presented
in figure 12, we note that NBmean per species increases
and reached peaks more important than those reached with
the first strategy. That may be explained as follow: in the
first strategy, we fuse barks sub-classifiers which have a
relative poor quality. This fusion allows an improvement
of the quality of those sub-classifiers. Thus, when fusing
them with results of leaves sub-classifiers, the degree of
conflict is lightened. In contrast, when fusing in cascade
all sub-classifiers, there is more important chances to fuse
very conflicting information and thus to use the disjunctive
combination rule which influences directly the size of the
constructed subsets. Also, the use of a totally cascade fusion
topology leads to the accumulation of errors. Indeed, the
major drawback of this topology is the incapacity of the
following sub-classifiers to compensate errors made by the
fusion of the previous sub-classifiers [22] [23]. Finally, we
remark that the percentage of individuals with NBmean

superior to 7 per species, presented in 13, is less important
than in the case of the first strategy. The reduction of the size
of the subsets may explain the decrease of the classification
ratio. Indeed, the cascade topology fusion accumulate errors
made by previous sub-classifiers while reducing the subsets
size as we use the Dempster combination rule for non
conflicting data. All those factors may lead to the decrease
of the percentage of individuals with NBmean superior to 7
while accumulating errors which leads to the decrease of the
classification ratio per species.

Comparison of results obtained when using the 2 fusion
strategies shows that the first strategy is more interesting and
more performing than the second strategy. We tried in this pa-
per to improve performances obtained when using only leaves
by adding information about barks. Through experiments and
interpretation, we can see that combining all information we
have about barks with information we have about leaves isn’t
the most appropriate strategy. It seems that for some species,
the addition of barks isn’t very useful and causes the injection
of confusion in the fusion system. Thus, it will be more
interesting to bring information about barks only when the
information about leaves is insufficient and information about
barks is enough reliable.

Fig. 11: Classification ratio per species (second fusion strat-
egy)

Fig. 12: Mean size of R per species (second fusion strategy)

IV. CONCLUSION AND PROSPECTS

In this paper, we propose two fusion strategies aiming to
recognise tree species through leaves and barks. It is worth
noting that leaves sub-classifiers are more performing and
bring much useful information than barks sub-classifiers. Thus,
the system should be able to manage confusion introduced
by barks. Compared to the second strategy, the first strategy



Fig. 13: Percentage of individuals with NBmean > 7 per
species (second fusion strategy)

TABLE VI: Results of second fusion strategy

max Pl max Cr

n=1 T 68.76% 80.85%
NBmoy 3 10
NBmax 43 55
NBmin 1 1

n=2 T 71.60% 79.90%
NBmoy 3 7
NBmax 51 56
NBmin 1 1

n=3 T 72.35% 79.50%
NBmoy 3 7
NBmax 51 56
NBmin 1 1

n=4 T 72.47% 78.79%
NBmoy 4 7
NBmax 58 58
NBmin 1 1

proved its performances and its ability to manage such a kind
of problem. But, it still needs many improvements in order
to further increase the classification ratio when fusing leaves
with barks. As perspectives, it will be important to adapt the
system to the quality of recognition of each species. Thus,
species which are well identified using only leaves will not
use information about barks in order to reduce confusion. If
barks are enough to identify species, information about leaves
will not be used. Despite Random forest classifiers, which
algorithms has built-in bagging, are used as classifiers in this
work, it will be interesting to further explore ensemble learning
methods (boosting [24], bagging [25],...) in order to inject
diversity in data level and achieve the optimal performances
of the classifiers.
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