
Design and optimization of an autonomous feature
selection pipeline for high dimensional,

heterogeneous feature spaces
Bernhard Schlegel

Bayerische Motoren Werke AG
Munich, Germany

Email: bernhard.bb.schlegel@bmw.de

Bernhard Sick
University of Kassel

Intelligent Embedded Systems
Kassel, Germany

Email: bsick@uni-kassel.de

Abstract—The growing complexity and diversity of vehicle
systems makes it increasingly hard to identify and resolve the
root cause of an unplanned maintenance session at hand in a
dealer workshop. This especially holds for workshop staff with
limited qualifications and experience. By today, the workshop
staff is supported by expert-based systems, where knowledge
was manually generated, i. e., by formalizing human knowledge
using rules. Due to the above mentioned reasons, this approach
is coming to its limits while the potential of car- and workshop-
data available today remains unused. A highly autonomous,
machine learning based approach seems promising. To unleash
its full potential, the selection of relevant features from the multi-
thousand dimensional feature space is indispensable. This feature
selection needs to take the automotive requirements into account.
These include, but are not limited to, sparse data, the requirement
that the selected features are interpretable, and the aim that the
trained models save warranty costs. This article presents and
evaluates a hands-free feature selection pipeline, paving the way
for automotive model building. The pipeline consists of three
layers: a feature preparation layer, a filter layer that significantly
reduces the feature space at low computational cost based on
entropy and statistical measures, and a wrapper layer that selects
the final feature set for training based on simple models. Finally,
highly performant logistic regression models have been trained
to generate the metrics used for evaluation.

I. INTRODUCTION

Misdiagnosed and misrepaired cars are an important cost
factor in the automotive field1 and influence the brand cus-
tomers’ perception negatively. The current expert knowledge
based offboard diagnostics practiced in workshops are not
able to cope with a growing variant diversity, differing envi-
ronmental conditions, and the increasing product complexity.
Because of hybrid cars integrating two drive trains, this trend
is expected to continue.

The shift from expert knowledge based diagnostic systems
to data-driven systems utilizing the available data is a promis-
ing approach. To cope with the vast amount of data produced
by cars and workshops nowawdays, relevant features in a
multi-thousand-dimensional feature space must be identified.
This becomes additionally challenging when the features vary
in their sparsity, noise level, and distribution.

1The warranty cost of BMW increased by 30% to 1.89 Billion from 2014
to 2015. [1]

To pave the way for a highly automated, machine learning
based diagnostic approach, a feature selection pipeline is
needed since 5000 features or more are not uncommon in an
automotive context. Often, as our results show, no more than
25 features are needed for modelling. Therefore, the pipeline
must be able to reduce the high-dimensional feature space by
up to 99.5%, taking into account the automotive application
requirements while ensuring maximum interpretability of the
produced results.

This article focuses on feature subset selection techniques
to ensure the interpretability of the selected features by hu-
mans. Dimension reduction techniques that transform features
into another (meta-)feature space (e.g., principal component
analysis [2], deep learning) or compress features based on
information theory are, therefore, not part of this research [3].

The contribution of this article is the implementation, sys-
tematic evaluation, and optimization of a highly autonomous
feature selection pipeline for high dimensional feature spaces.
Applications include, but are not limited to, offboard car-
diagnostics to assist workshop staff by predicting faulty parts
or suitable countermeasures and predictive maintenance. This
leads to three main topics that define the structure of this article
which is outlined below, after related work was examined
(Section II) and the data sets upon which this article is based
are introduced (Section III).

First, a formal description and evaluation of the existing fea-
tures and potential model outputs (targets) is needed (Section
IV). Second, the basic structure of the pipeline has to be de-
fined incorporating the aforementioned requirements (Section
V). Third, a multidimensional optimization problem needs to
be solved: How to identify the optimal hyperparameters and
algorithms for the pipeline and what are the most valuable
features? (Section VI)

The feature evaluation (Section IV) deals with the question
how the existing feature groups can be described and classi-
fied.

In the second part (Section V) we will answer the question,
how to chain available methods and algorithms in the most
promising way in a pipeline. This incorporates the following
questions: Which characteristics have to be obeyed when



preparing the features for the pipeline (Section V-A)? Which
filter measures (Section V-B) and wrapper algorithms (Section
V-C) should be evaluated? Which kind of model is suitable for
generating a pipeline performance metric, used for evaluation
and optimization (Section V-D)? And at last: Which parameter
values can be used for optimizing the pipeline (Section V-E)?

In Section VI we analyse thousands of results to identify
the optimum hyperparameters of the pipeline and prove that
it is possible, given the available features, to create models
that produce results above a given performance threshold.
In a detailed evaluation we will address the question, which
filter algorithms rank features high in order to create highly
performant models (Section VI-A). Furthermore, a variety of
wrapper algorithms (Section VI-B), the pipeline, the remaining
hyperparameters (Section VI-C), and the different feature
groups are evaluated. Moreover: How does the proposed
pipeline perform on data sets for which it has not been
optimized (Section VI-E)?

Finally, we sum up the gained insights and give a recom-
mendation how to adapt the proposed pipeline and ideas to
other environments (Section VII), draw our conclusions, and
give an outlook (Section VIII).

II. RELATED WORK

Most known data-driven approaches from automotive con-
texts based on machine learning are specific in the sense
that they only diagnose a single type of component. These
components include, e.g., compressors, bearings, combustion
engines, or turbochargers [4]–[8].

Generic approaches are able to predict different types of
faults: Azarian et al. [9] propose a generic approach that is
only evaluated on three cars and requires high manual effort.
Another generic approach is proposed by Müller et al. [10].
Their model is based on

• Diagnostic Trouble Codes, DTCs (Based on the self-
diagnostic capabilities of electrical control units (ECUs),
e.g., discrepancies between measured and calculated val-
ues can be flagged as a DTC.)

• encoded customer and workshop staff perception,
• software versionnumbers of ECUs, and
• part numbers of switched parts.
In contrast, the pipeline proposed in this article is developed

and evaluated on the following feature groups
• long time measurement values, MV (Captured values

of slowly changing car parameters, e.g., adaption of
proportional-integral-derivative controllers integrated into
the engine control.),

• environmental conditions from DTCs (Every time a DTC
is flagged, environmental conditions such as the engine
rounds per minute are captured.),

• optional extra equipment (For example, if the vehicle is
equipped with leather seats or an aerodynamic kit.),

• basic car parameters (This information includes, e.g., the
engine power, steering type, etc.), and

• basic readout data (A readout contains, e.g., the current
odometer value.)

III. THE DATA SETS

The pipeline was developed based on the characteristics
of automotive workshop and car data (Section III-A). To
ensure comparability, the proposed pipeline was additionally
evaluated on publicly available data sets (Section III-B).

A. Workshop and car data

The automotive data set was collected from BMW Hybrid
cars and consists of non personal data only. In total, 80.000
observations, each with 5000 features were used to predict
over 3000 potential targets. These include the switched parts,
taken actions, and diagnostic codes. These codes are hash-like
values identifying the final result of the workshop repair. A
detailed evaluation is given in Section IV.

B. Publicly available data sets

Two publicly available data sets were used: The golub
(where the relevant features can be easily to figured out) [11],
and the secom data set [12]. Both data sets can be obtained
online and have a binary target variable.

The golub data set contains 72 observations with 7129
features each. The features in this case are gene expressions.
The target is to classify which of these observations indicate
type one leukemia (47) or type two (25).

Secom contains 1567 observations from a semi-conductor
manufacturing process. The 591 features represent sensor
values used for monitoring the process. The goal in this case is
to classify a “pass” of the factored product, which is recorded
1463 times. A “fail” is recorded 104 times.

IV. EVALUATION OF THE AUTOMOTIVE DATA

Since dealing with automotive data is the main goal of
this article, a detailed analysis was done prior to model
building. Each of the feature groups in the data set has its
own properties, making the feature selection process difficult.
Extra equipment is boolean (a car can either be equipped with
leather seats or not), car parameters are mostly categorical (a
car engine is only available at discrete performance levels), and
mostly all other parameters are numerical or interval scaled
after being preprocessed (e.g., the mileage of the readout, the
value of a specific MV, etc.). Additionally, the sparsity differs
between the different feature groups: DTCs have a sparsity of
99%, whereas MVs only have a sparsity of 65% and readout
data less than 1%.

Many potential targets only appear at a very low rate. We set
the minimum number of observations per target to five. This
minimum is only exceeded by 69% of the parts, 56% of the
taken actions, and 40% of the diagnostic codes. Only targets
that matched this criterion (e.g., a part that was switched at
least five times) have been processed by the pipeline.

V. FEATURE SELECTION PIPELINE

The complete pipeline (see Figure 1) consists of preparation
layer (Section V-A), two feature selection layers, and a model
building layer (Section V-D), all implemented in R. The feature
selection layers include a filter layer (Section V-B) and a
wrapper layer (Section V-C).



after preparation

(nFAP)

modelwrapperfilter

after filter

(nFAF)

preparation

after wrapper

(nFAW)

used in model

(nFUM)

features

Fig. 1. Overview of the feature selection pipeline.

A. Preparation layer

To ensure maximized automation, this layer for data prepa-
ration is restricted to methods that do not, once implemented,
require any kind of manual intervention (parameter free).
Preparation involves removing constants, features that have
a linear correlation with other features, and coding textual
features (e.g., the software-version of the car which is encoded
like “BMW3-16-13-100”) into numbers.

Also, an automotive context suited outlier filter is imple-
mented for numeric values: Values that lie within the first
q0.01 or last q0.99 percentile are set to the closest, valid value.
This is necessary because standard outlier filters based on
mean and standard deviation end up in classifying too many
values as outliers due to the non-normal distribution of the
data. E.g., in Figure 2 all values on the right of the dashed
line would be wrongly classified as outliers. In this way, two
goals are accomplished: First, a broad range of values is kept.
Second, values initialized with extreme values (e.g., 65536) do
not shrink all other feature values (e.g., normally distributed
with µ = 1000 and σ = 100) when being centered (the
features mean is subtracted) and scaled (the centered values
are divided by the features standard deviation) prior to model
training. This results in a feature with µ(feature) = 0 and
σ(feature) = 1.

3x standard deviation
mean

1e+01

1e+03

1e+05

0 10000 20000 30000 40000
a measurement value

co
un

t

Fig. 2. Example why standard outlier filters fail.

Furthermore, a variety of nominal features exists that are
ordinally encoded. So, although being numerical per se, they
are not linearly interpretable. Take, e.g., the dealer number

referencing all BMW branches and workshops. Although
being numerical, a dealer referenced by 21788 may reside on
a different continent compared to a dealer that is only “1”
unit away. A translation to latitude and longitude coordinates
fixes this problem in most cases. Through these coordinates
a linear connection is established, making the geographical
information (e.g., dusty areas or areas with low gasoline
quality) accessible to the model.

After this step, the data are split into a training/validation
and a test set. All following steps that reduce the number of
dimensions are only conducted on the training/validation sets.

B. Filter layer

Filters are fast, scalable, and independent from the classifier
[3]. Therefore, the filter layer is a crucial building block in
the pipeline, reducing the dimensionality at low computational
cost. The filter layer evaluates the inputted features using
multiple, differing measures:

• Correlation: Measures the correlation between the feature
and the target variable.

• Chi-squared, χ2: Measures the similarity of the feature
and the target distribution.

• Gini coefficient: Measures the inequality for the features
frequency distribution.

• Information gain, IG : Entropy H based measure holding
the mutual information of the feature and the target.
Calculated using IG feature = H(Class) +H(feature)−
H(Class, feature) – unlike the IG from random forests.

• Relief : Estimates features based on how well their values
can be used to distinguish instances that are close to each
other in the feature space [13].

The final ranking is calculated “parameter-free” for every
feature by summing up all filter measure rankings, each
normalized to a range from 0 to 1. This is repeated for
every model, each representing one potential output. Also,
a “take top N approach” is evaluated. In this mode, the N
top performing features from each filter measure are selected,
followed by the features ranked high by the sum over all
algorithms. For this article, the values of N are set to 0 and
1, respectively.

A disadvantage of filters is that they ignore feature depen-
dencies as well as the classifier dependent feature preferences,
e.g., the total number of features used to create a classifier.
Therefore, as we will show later, the optimal pipeline selects as
many usefull features as possible from the filter layer, reducing
the risk of eliminating precious features and leaving it up to
the wrapper to choose the features that are really worth being
kept.

C. Wrapper layer

Once the feature space has been “filtered” at low computa-
tional cost, the wrapper layer evaluates the remaining features
in greater detail. Three concepts were implemented and eval-
uated: The information gain based ranking of a random-forest
(RF) wrapper, the feature-weight based ranking of a logistic



regression (LR) wrapper, and a k-nearest neighbors (KNN)
greedy forward selection [14] [15] embedded approach.

An embedded approach performs feature selection as a
part of the learning procedure (e.g., RF and LR). A wrap-
per approach, on the other hand, performs the selection by
evaluating the model-performance on different feature subsets
of the features passed from the filter layer (e.g., KNN) [14].
For simplification, both approaches (wrapper and embedded)
will be referenced as “wrappers” due to their similarity.

The RF wrapper uses the random forest provided by the
caret package, available for R. The feature ranking is
calculated using the averaged position in the trained trees (the
forest). This way, feature dependencies are taken into account.
The position depends on the feature specific information gain
IG (the bigger the IG , the higher the feature is located in the
tree). In this case, IG is calculated according to [2] using the
entropy H before and after the tree was split into two branches
by the evaluated feature:

IG = Hbefore −Hafter

= Hbefore − (HleftBranch +HrightBranch), where

H = −np
nt
∗ log2(

np
nt

)− nn
nt
∗ log2(

nn
nt

),

nt = np + nn,
np/n : number of positive/negative observations.

The LR wrapper uses the feature weights after training has
finished, considering feature dependencies.

The greedy KNN embedded approach calculates the KNN
model accuracy for every feature one by one. After every
iteration, the feature is added to the final ranking and removed
from the list that contains the features which still have to be
evaluated. In this way, feature dependencies are not taken into
account.

D. Model layer
To generate the metrics used for evaluating the pipeline, a

L1-regularized LR model was used. We used the LiblineaR
implementation – a wrapper for the LIBLINEAR C/C++
library [16]. During training, the following unconstrained

optimization problem is solved for all instance-label pairs
(xi, yi), i = 1, ..., l, xi ∈ Rn, yi ∈ {−1,+1}:

min
w

1

2
wTw + C

l∑
i=1

ξ(w; xi, yi)

For each model, seven different costvalues C are evaluated
and optimized (ranging from 103 to 10−3) with regard to
the area under the Receiver Operating Characteristic curve
(ROC, see Section V-E) using a 5-fold cross validation. C
indicates the trade-off between regularization (shrinking w)
and correct classification (minimizing the loss function ξ). The
loss function is defined as

ξ(w; xi, yi) = log(1 + e−yiwT xi)

The LR was used, because the output of a “predicted proba-
bility” (ranging from 0 to 1) enables an in-depth evaluation.
Also, the computational complexity is relatively low.

E. Defining the optimization criteria

In order to be able to compare the various methods and
algorithms described in the following, an objective perfor-
mance measure for the LR model is needed. A scalar value
has practical advantages by allowing for an easy comparison.

All measures calculated from a confusion matrix such as
accuracy, precision, recall, F1 score (F1), etc. disregard the
predicted probability by setting a fixed threshold2 ignoring
valuable information. In contrast, the ROC is a 2D curve taking
this information into account. The same applies to a precision-
recall curve, but the precision is dependent on the positive to
negative sampling rate, which is varied and evaluated.

This predicted probability corresponds to the predicted value
of the LR model: An output of 0.99 meaning the model
considers a result of 1 to be very likely. If the output is 0.63
the model is definitely less “sure” what the output will really
be. For detailed information how to draw an ROC curve based
on these “predicted probabilities”, we refer to [17].

Integrating the ROC curve results in an one-dimensional
characteristic, the area under the ROC curve or AUC. It can be
empirically and formally shown that AUC is a better measure
than the widely used accuracy [18] [19]. In addition, the AUC
is enhanced by the corresponding F1 in the following.

VI. EVALUATION AND OPTIMIZATION OF THE PIPELINE

The search grid is spanned up by systematically varying
each of the following hyperparameters, defining the shape and
behaviour of the pipeline:

• nFAF : The number of features left after the filter layer
(25, 50, 100, 200, 500).

• nFAW : The number of features left after the wrapper/
embedded layer (5, 10, 15, 25, 50, 500).

• NPR: The positive to negative observations sample ratio
defines how many negative observations (e.g., part was
not switched) are sampled from the data set depending on
the number of available, positive (e.g., part was switched)
observations (1, 3 or 5 times).

• SPLIT : E.g., 0.7 meaning 70% of the data is used for
training. Evaluated values are 0.7 and 0.8.

• WA: The used wrapper algorithm – either KNN, RF, or
LR.

• TFA: Use the top ranked feature from each filter measure
in any case (1) or select features based on the summed
ranking over all filter measures (0).

This yields nsp = 5 ∗ 6 ∗ 3 ∗ 2 ∗ 3 ∗ 2 = 1080 sampling
points. E.g., one being defined as nFAF = 200, nFAW = 15,
NPR = 3, SPLIT = 0.8, WA = KNN and TFA = 1.
Every point is sampled 10 times for smoothing. Multiplied by
the total number of successfully evaluated targets (832) this
yields ntrainedModels = nsp ∗ 10 ∗ 832 = 8.986 ∗ 106. For each
sampling point, minimum, maximum, standard deviation (σ),
mean, and median of AUC and F1 are recorded.

2For example, if the threshold is 0.5, all predicted probabilities ≥ 0.5 will
be considered positive for the confusion matrix.



The pipeline can only be evaluated3 if the available features
allow for a creation of models at all. Only potential targets with
five or more observations have been processed. This only holds
true for ≈ 35% of all potential targets. Figure 3 shows the
percentage of models for the remaining targets that performed
above a given average AUC and F1 depending on the target
type. An explanation for the partially low AUC and F1 is
that some potential targets are too generic. Take, e.g., a bolt
(switched part) that is used in a variety of different situations,
the clearing of all DTCs (a taken action) which is common
after a fault has been found and fixed, or a planned routine
maintenance (diagnostic code) that has no unique triggers
other than an approximate mileage or other specified usage.

0.00

0.25

0.50

0.75

1.00

0.5 0.6 0.7 0.8 0.9
min(AUC , F1)

pe
rc

en
ta

ge
ab

ov
e

th
re

sh
ol

d

F1

AUC

DC

SP

TA

Fig. 3. Average model performance depending on target type.

The following sections examine the effect of the pipeline
hyperparameters, evaluate the algorithms, and give a measure
of the overall pipeline performance.

A. Filter Layer Evaluation

The implemented filter measures are evaluated to identify
those measures that positively affect the performance of the
pipeline. On the other hand, measures that only contribute
little to the overall classification performance but significantly
increase the computational complexity can be eliminated. This
way, the pipeline is optimized for future research.

To rank the filter measures, more than 39000 filter rankings
have been matched with the resulting models. The results are
listed in Table I.

Every time, a filter measure ranks a feature higher than
wmin = 0.001 that is used in the model with an absolute
feature weight higher than wmin , a hit is counted. The column
“% hit” in Table I is the number of hits (every hit counts as 1)
from each measure divided by the number of features with an
absolute weight higher than wmin , in the following referred
to as nGT0 , used across all trained models.

Therefore, a high “hit percentage” does not necessarily
imply a useful filter measure: A filter measure ranking all
features passed to the next layer with an “importance” ranking
of 0.01 would score 100%.

In addition to counting the number of “hits”, the “contribu-
tion” column takes the filter measure ranking and the feature

3We used a HP Z840 workstation equipped with two Xeon E5-2640 CPUs
and 96GB of RAM.

TABLE I
FILTER MEASURE PERFORMANCE.

measure % hit contribution runtime [s]

Relief 0.961% 0.466 13.722
Information gain 0.829% 0.763 2.381
Correlation 0.988% 0.671 0.262
χ2 0.829% 0.890 1.916
Gini 0.989% 0.674 0.243

TABLE II
INFLUENCE OF THE WRAPPER ALGORITM ON THE PIPELINE

PERFORMANCE.

algorithm AUC F1 runtime [s]

KNN 0.923 0.771 27.851
LR 0.948 0.836 0.258
RF 0.928 0.791 10.710

weight of the model into account. In case of a “hit”, the
filter measures importance ranking is multiplied by the feature
weight in model. This number is summed over all models and
divided by nGT0 .

The measure Relief is unreasonable to use, given it’s ex-
traordinary high computational cost (runtime = 13.722s, see
Table I), and the fact that its contribution turned out to be
about the half of the χ2-measure. Also, the results of χ2

and the information gain based filter yield the exact same
results regarding the hit percentage. Therefore, the information
gain measure may be dropped due to its higher computational
complexity (runtime = 2.381s) compared to the χ2 measure
(runtime = 1.916s) if the computational complexity needs to
be reduced.

B. Wrapper Layer Evaluation

Three different wrapper algorithms were evaluated (hyper-
parameter WA): A greedy KNN, RF, and an LR (Table II). The
KNN and RF wrapper algorithms yield comparable results
in terms of model performance (AUC RF ,average = 0.928,
AUC KNN ,average = 0.923), only the LR wrapper yields
slightly higher AUC and F1 scores. This may be due to the fact
that the model is also an LR. Both, the RF and especially LR
wrapper algorithms are way less computationally expensive
compared to the KNN approach.

Figure 4 shows the number of actually used features by
the model nFUM depending on nFAW . Especially for high
thresholds, where a feature is only counted if its feature weight
w4 in the final model exceeds threshold t ≥ 1, nFUM starts
decreasing after more than nFAW ≈ 30 features are passed
by the model. The number of selected features with threshold
higher than 0.1 increases monotonically. Therefore, at least 30
features should be passed to the final model.

4Averaged across all trained models, w was defined by the following
metrics: mean = 0, median = 0, σ = 2.35, min = −603, and
max = 452.



0

10

20

30

40

50

0 50 100 150 200
nFAW

n
F

U
M

threshold
0.001

0.01

0.1

1.0

Fig. 4. Number of features used in final model above threshold.

TABLE III
INFLUENCE OF nFAF ON PIPELINE PERFORMANCE.

nFAF AUC F1

25 0.928 0.784
50 0.934 0.799

100 0.934 0.801
200 0.934 0.802
500 0.934 0.806

TABLE IV
INFLUENCE OF nFAW ON MODEL PERFORMANCE AND TRAINING TIME.

nFAW AUC F1 average training time [s]

5 0.906 0.722 0.105
10 0.928 0.786 0.143
15 0.936 0.810 0.166
25 0.944 0.831 0.177
50 0.953 0.847 0.159

500 0.951 0.845 0.255

C. Remaining hyperparameters

The influence of nFAF on the pipeline’s performance is
given in Table III. For nFAW we refer to Table IV. Both, nFAF

and nFAW positively correlate with the pipeline’s performance
(corr(nFAF ,AUC ) = 0.011, corr(nFAW ,AUC ) = 0.064).
This means, the more features are passed from the filter layer
over the wrapper layer to the model layer, the higher the
performance (in terms of AUC and F1).

Although a higher nFAW leads to a higher model perfor-
mance, the model training time increases disproportionately:
While the AUC increases by only 5.2% (F1 increases by
17, 31%) when increasing the number of features used by the
model from 5 to 50, the model training time increases by
51.4%. Since the increase of training time is 10 times (four
times) as high as the increase of the AUC (F1), the optimum
number of features passed from the wrapper layer to the model
is set implicitly by the desired model performance in terms of
AUC and F1.

The next hyperparameter we evaluated is NPR. According
to the results in Table V, the AUC increases with a higher

TABLE V
INFLUENCES OF NPR ON THE PIPELINE PERFORMANCE AND TRAINING

TIME.

NPR AUC F1 model training time [s]

1 0.919 0.878 0.076
3 0.938 0.796 0.139
5 0.942 0.724 0.245

NPR. A reason, why F1 does not increase as well, can be
explained by the way F1 is calculated [2]:

F1 = 2 ∗ precision ∗ recall

precision + recall

It represents the harmonic mean of precision and recall . Thus,
a lower precision always causes a lower F1 if the recall
remains the same. Precision and recall are calculated as
shown below:

precision =
TP

TP + FP
recall =

TP

TP + FN
TP : true positives FN : false negatives
FP : false positives

An increase of the number of negative samples in the used
data set will always lead to a higher number of FPs under the
assumption that the FP to true negative ratio is constant. This
leads to a smaller precision while the recall is not dependent
on the number of negative samples. Therefore, increasing the
number of negative observations in the used data set, will
always lead to a smaller or equal F1.

0

250

500

750

1000

5100 250 500 750 1325
processed features

co
m

pu
ta

tio
n

tim
e

[s
]

filterall

filtersub

KNN

LR

RF

Fig. 5. Computation time: KNN, RF and the filter layer.

We achieved higher results with a SPLIT of 0.8, inde-
pendent of the number of available positive observations. The
influence of TFA can be neglected. This can be explained by
the fact that a feature that is ranked high by a specific filter
measure will be very likely part of the of feature set passed
to the wrapper layer if 20 or even 200 features are selected.

Aside from evaluating the given hyperparameters, we also
addressed computational complexity and scalability of the
proposed pipeline. Figure 5 shows the computation time
depending on the number of processed features. For the
numerical values, we refer to Table VI. To generate the values
for column filterall , all measures introduced in Section V-B



have been used. For two reasons we introduced a subset of
filter measures: First, some filter measures are unreasonable
to use as shown in Section VI-A. Second, an LR wrapper
is computationally very cheap. Column filter sub in Table VI
therefore only includes the correlation and Gini measures and
computes faster than the LR wrapper.

Because of an computation time almost independent on the
number of processed features, both filter layer configurations
and the LR wrapper algorithm are considered absolutely
scalable. The RF wrapper algorithm does also scale, but takes
longer to compute. In contrast, the computation time of the
KNN algorithm grows disproportionately.

To approximate the time savings gained by using the pro-
posed pipeline, we use the following, conservative formula
(where 100 features are processed by the RF wrapper). We
compare the processing time of a standalone wrapper approach
to a combined filter/wrapper approach. The number of features
inputted does not exceed nunfiltered = 1325 in this example.
This limitation may not hold in future or other applications,
where the time savings would be even greater:

tsaving,RF = tRF ,unfiltered − (tfilter sub ,unfiltered + tRF ,100 )

= 252.433s− (4.460s+ 31.613s)

= 216.307s

which results in a saving of
tsaving,RF /tRF,unfiltered

= 85.689%

As shown in Table VI, there are combinations where no time is
saved, though. E.g., if the filter layer utilizes all filter measures
and the wrapper layer is using an LR:

tsaving,LR = tLR,unfiltered − (tfilterall ,unfiltered + tLR,100 )

= 1.550s− (4.460s+ 0.267s)

= −3.177s

Only the use of a subset of filter measures (e.g., filter sub) in
a pipeline incorporating an LR wrapper causes a decrease in
terms of runtime.

D. Importance of feature groups

Evaluating all successfully trained models, the used feature
groups (FG) are evaluated in Table VII. The row “Bias”
references the linear offset of the LR model, being part of
all created models. The column “used” shows a mixture of
features used averaged across all models:

usedFG =

∑M
m=1

∑Fm

f=1 C(f,FG)∑M
m=1 Fm

, with

C(f,FG) =

{
1, if f is a feature of FG

0, otherwise

M : number of models,
Fm : number of features in model m.

Whereby “used” only considers if a feature from the cor-
responding group is used or not, the “weighted” column

TABLE VI
OVERVIEW OVER THE LAYER RUNTIMES IN SECONDS DEPENDING ON THE

NUMBER OF PROCESSED FEATURES.

nfeature filterall filtersub KNN LR RF

5 0.043 0.007 0.740 0.103 6.957
10 0.060 0.007 1.320 0.100 7.797
20 0.100 0.040 3.517 0.140 10.393
25 0.130 0.033 4.810 0.213 12.127
50 0.217 0.047 14.113 0.187 18.703
75 0.353 0.073 26.213 0.267 24.837

100 0.497 0.120 43.040 0.267 31.613
200 0.950 0.197 128.847 0.360 70.710
250 1.153 0.267 215.013 0.437 84.610
500 2.530 0.607 1070.317 0.950 184.763
750 3.883 0.800 17950.257 1.787 233.550

1325 4.460 0.957 22288.270 1.550 252.433

TABLE VII
FEATURE GROUP IMPORTANCE.

FG used weighted

MV 66.2% 57.4%
Bias 5.1% 16.0%
RO 4.8% 7.1%
CP 5.4% 6.7%
EC 4.7% 4.5%
DTC 5.2% 4.4%
EE 8.7% 3.8%

also takes into account the feature weight, used by the L1
regularized LR model. The summed feature weight of each
feature group is divided by the total weight of all features
used by the model. Again, this number is averaged across all
models for all FGs:

weightedFG =

∑M
m=1

∑Fm

f=1W(f,FG)∑M
m=1

∑Fm

f=1

∑G
g W(f, g)

, with

W(f,FG) =

{
wm,f , if f is a feature of FG

0, otherwise

wm,f : weight of feature f in model m,
G : number of feature groups.

Especially MVs turned out to be very helpful in the model
creation process; they have not been used in prior work [10].
The surprisingly low impact of DTCs can be explained by the
complex set of conditions by which they are triggered: Often,
multiple (even timed) conditions are joined by different logical
operators (OR, AND, XOR, etc.) to flag a DTC. Despite this
wealth of information that is needed to flag a DTC, the way
back from a DTC to the conditions upon which it was triggered
is surjective and not bijective - different sets of conditions can
cause the same DTC.



TABLE VIII
PERFORMANCE OF THE PIPELINE ON THE golub DATA SET.

ε AUC F1 nFAF nFAW NPR WA TFA

2.000 1.000 1.000 25 5 1 KNN 0
2.000 1.000 1.000 25 5 1 LR 0
2.000 1.000 1.000 25 5 1 RF 1
2.000 1.000 1.000 50 15 1 KNN 0
2.000 1.000 1.000 50 15 1 RF 1

1.395 0.844 0.551 200 15 3 LR 1
1.501 0.842 0.659 200 10 3 LR 1
1.384 0.802 0.582 200 5 10 LR 0
1.395 0.728 0.667 500 5 1 LR 0
1.327 0.721 0.607 500 5 5 LR 0

TABLE IX
PERFORMANCE OF THE PIPELINE ON THE secom DATA SET.

ε AUC F1 nFAF nFAW NPR WA TFA

1.718 0.873 0.845 50 5 1 KNN 0
1.778 0.892 0.886 50 10 1 KNN 0
1.736 0.893 0.843 50 15 1 KNN 0
1.726 0.872 0.854 100 5 1 KNN 0
1.723 0.872 0.852 200 5 1 KNN 0

0.500 0.500 0.000 100 10 10 LR 0
0.499 0.499 0.000 200 5 10 KNN 0
0.483 0.483 0.000 500 10 5 KNN 0
0.445 0.445 0.000 500 5 3 LR 1
0.437 0.437 0.000 200 5 5 LR 1

E. Evaluation on publicly available data

For the golub data set, a multidimensional hyperplane
exists, separating the two classes without classification errors.
For certain parametrizations, the pipeline scores an averaged
AUC = 1, which has also been achieved by Guyon et al. [20].
Table VIII shows the top and last five pipeline parametriza-
tions, sorted by ε = AUC + F1. Keeping the original 833
features in mind, especially the first three rows represent a
major benefit in terms of computational complexity because
of an enormously reduced feature space. The optimum solution
is in terms of AUC is possible with other parametrizations as
well.

Generally, the KNN wrapper leads to higher performing
models on the golub data set (corr(KNN ,AUC ) = 0.271).
Also, a high NPR performs better (corr(NPR,F1 ) = 0.126).
Also beneficial is the TFA technique (corr(TFA,AUC ) =
0.138). The LR wrapper performs badly on the golub data set
(corr(LR,AUC ) = −0.272) in contrast to the results based
on the automotive data set.

The scores in terms of ε on the secom data set are promising
as well (again, the top and last five results regarding ε are
shown in Table IX) but lower compared to the F1 = 0.947
achieved by Arif et al. [21] with a higher manual effort. The
five highest ε scores have been achieved after reducing the 591
dimensional feature space to 25 and 50 features, respectively.
The RF wrapper was included in this evaluation and scored

εRF ,avg = 0.912 averaged over all parametrizations (σε,RF =
0.241). It is not displayed in the aforementioned table because
KNN and LR yielded higher results (εLR,avg = 0.983 and
εKNN ,avg = 0.961) with a higher standard deviation (σε,LR =
0.298 and σε,KNN = 0.356).

A high NPR decreased the classification performance in this
case (corr(NPR,F1 ) = −0.767) – which is also outlined by
Table IX, where the top 5 lines share low value of NPR = 1.
The performance was affected negatively by the TFA technique
(corr(TFA,AUC ) = −0.119) and the RF wrapper algorithm
(corr(RF ,AUC ) = −0.157).

VII. SUMMARY

The final scenario, including all averaged runtimes, is shown
in Table X. First, the feature space was prepared and features
with variance close to zero were filtered out. This already
reduced the multi-thousand dimensional feature space to 1325
features after preparation (nFAP ). These were processed and
ranked by the filter layer in 4.460s using all filter measures.

According to this ranking, the top ranked features after the
filter layer (nFAF ) were passed to the wrapper. The wrapper
training time increases when more features are being passed by
the filter. The wrapper layer is usually computationally more
expensive (see Figure 5) when processing the same amount of
features. The model training time is given in the last row.

Together with nFAW this spans up a matrix with AUC
scores. For each column of nFAW the corresponding model
training time is given – which also increases when more
features are processed.

To adapt the pipeline to other applications, the following
recommendations may be helpful: Which wrapper to choose
may be strongly dependent on the data set. In case of the
automotive data set, the LR wrapper yielded a high AUC
and F1 while requiring a minimum of computational power.
In contrast, LR yielded low results as wrapper for the golub
dataset. Also, our wrapper evaluation may be biased towards
the LR wrapper, since we used the same algorithm for mod-
eling. Using the same algorithm as wrapper and for final
modeling may be beneficial. In this case, combining wrapper
and model layer might be possible.

TFA is a useful technique, if the number of features passed
to the wrapper has to be very low (e.g. 5). In most cases,
the available computing power allows to process 200 or more
features. This featurespace will very likely be a superset of
the featurespace selected by TFA.

After evaluating all filter measures introduced in Section
V-B, we recommend using a subset of filter measures that
is tailored to the needs of the application. If too many filter
measures are used at the same time, the filter layer can be
computationally more expensive than “cheap” wrapper layers,
e.g., wrappers using LR. In case of an LR wrapper, the
necessity of using a filter layer at all, must be evaluated on a
case-by-case basis.

Averaging the pipeline performance in terms of AUC across
all trained models, the highest performance was achieved with
nFAF = 100 and 200, respectively. Further increasing nFAF



TABLE X
OVERVIEW OF PIPELINE PERFORMANCE AND RUNTIME USING AN RF WRAPPER AND AUC.

nFAP filterall nFAF wrapper training time [s] 5 10 15 25 50 500 nFAW

1325 4.460s

25 12.127 0.908 0.926 0.936 0.944 - -
50 18.703 0.908 0.929 0.936 0.944 0.953 -

100 31.631 0.907 0.929 0.938 0.944 0.953 -
200 70.710 0.906 0.929 0.937 0.945 0.953 -
500 184.763 0.901 0.926 0.934 0.943 0.952 0.951

model training time [s] 0.105 0.143 0.166 0.177 0.159 0.255

did not yield higher results, but only leads to a higher wrapper
training time.

There may be scenarios where the wrapper or filter layer is
computationally more expensive than the model layer (such
as in that case where we used an LR model). In case an
increased number of features does not affect the generalization
of the final model negatively, the wrapper and / or filter layer
may be unnecessary. As described above using nFAF = 200,
nFAW = 50 represents a good compromise between a high
model performance, a low training time, and a low feature
selection time. This results, e.g., in a total averaged time for
the complete feature selection process ttotal :

ttotal,avg,RF = tfilter + twrapper + tmodel

= 4.460s+ 70.710s+ 0.159s = 75.329s

Or 0.957s+ 0.360s+ 0.159s = 1.476s using the proposed
subset of filter measures filter sub and an LR wrapper.

Although the optimization of the pipeline took more than
2 weeks on a 32 core, 96GB workstation, the pipeline can be
considered absolutely scalable once the hyperparameters are
set. Even based on ttotal,avg,RF , approximately 1100 models
can be built in R per day on a single core machine.

VIII. CONCLUSION AND OUTLOOK

In this article we evaluated a variety of different algorithms
and chained them in the most efficient way to create an
automotive feature selection pipeline. The proposed pipeline
involves multiple layers of different computational complexity,
ensures maximum autonomy, and low computational cost. The
pipeline already yielded promising models, awaiting their use
to diagnose cars in the workshop.

Future work will examine the suitability of different ma-
chine learning models (e.g., neural networks, support vector
machines, and random forests) for the given context. Further-
more, we will evaluate options how to increase throughput and
scalability of the pipeline (e.g., using massive parallelization
in a cluster) in order to be able to process data resulting from
even more cars and engines.

ACKNOWLEDGMENT

This work was supported by the BMW AG and sheer driving
pleasure.

REFERENCES

[1] BMW AG. (2015) Geschäftsbericht. Munich. [Online]. Available:
https://goo.gl/z3cyM3 (August 2016)

[2] R. O. Duda, P. E. Hart, and D. G. Stork, Pattern classification, 2nd ed.
New York: Wiley, 2001.

[3] Y. Saeys, I. Inza, and P. Larranaga, “A review of feature selection
techniques in bioinformatics,” Bioinformatics, vol. 23, no. 19, pp. 2507–
2517, 2007.

[4] R. Prytz, S. Nowaczyk, T. Rögnvaldsson, and S. Byttner, “Predicting
the need for vehicle compressor repairs using maintenance records and
logged vehicle data,” Engineering Applications of Artificial Intelligence,
vol. 41, pp. 139–150, 2015.

[5] Z. Tian, “An artificial neural network method for remaining useful life
prediction of equipment subject to condition monitoring,” Journal of
Intelligent Manufacturing, pp. 227–237, 2012.

[6] R. Xu and D. Wunsch, “Survey of Clustering Algorithms,” IEEE Trans-
actions on Neural Networks, vol. 16, no. 3, pp. 645–678, 2005.

[7] R. Ahmed, M. E. Sayed, S. A. Gadsden, J. Tjong, and S. Habibi, “Au-
tomotive Internal-Combustion-Engine Fault Detection and Classification
Using Artificial Neural Network Techniques,” IEEE Transactions on
Vehicular Technology, vol. 64, no. 1, pp. 21–33, 2015.

[8] J.-H. Thomas and B. Dubuisson, “A Diagnostic Method using Wavelets
Networks: Appication to Engine Knock Detection,” IEEE International
Conference on Systems, Man, and Cybernetics, vol. 1, pp. 244–249,
1996.

[9] A. Azarian and A. Siadat, “A global modular framework for automotive
diagnosis,” Advanced Engineering Informatics, no. 26, pp. 131–144,
2012.

[10] T. C. Müller, O. Krieger, A. Breuer, K. Lange, and T. Form, “A Heuristic
Approach for Offboard-Diagnostics in Advanced Automotive Systems,”
SAE World Congress, vol. 2009-01-1027, pp. 344–351, 2009.

[11] T. Golub, D. Slonim, P. Tamayo, C. Huard, M. Gaasenbeek, J. Mesirov,
H. Coller, M. Loh, J. Downing, and M. Caligiuri, “Molecular classifica-
tion of cancer: class discovery and class prediction by gene expression
monitoring,” Science, vol. 286, no. 5439, pp. 531–537, 1999.

[12] M. Lichman. (2013) UCI Machine Learning Repository. [Online].
Available: http://archive.ics.uci.edu/ml/ (August 2016)

[13] I. Kononenko, “Estimating Attributes: Analysis and Extensions of RE-
LIEF,” Lecture Notes in Computer Science, vol. 784, pp. 171–182, 2005.

[14] V. Bolón-Canedo, N. Sánchez-Maronno, and A. Alonso-Betanzos, “A
review of feature selection methods on synthetic data,” Knowledge and
Information Systems, vol. 34, no. 3, 2005.

[15] S. Breker, A. Claudi, and B. Sick, “Capacity of Low-Voltage Grids for
Distributed Generation: Classification by Means of Stochastic Simula-
tions,” IEEE Transactions on Power Systems, vol. 30, no. 2, pp. 689–700,
2015.

[16] R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang, and C.-J. Lin,
“LIBLINEAR: A Library for Large Linear Classification,” Journal of
Machine Learning Research, vol. 9, pp. 1871–1874, 2008.

[17] J. Davis and M. Goadrich, “The relationship between Precision-Recall
and ROC curves,” ICML ’06 Proceedings of the 23rd international
conference on Machine learning, vol. 23, pp. 233–240, 2006.

[18] J. Huang and C. X. Ling, “Using AUC and Accuracy in Evaluating
Learning Algorithms,” IEEE Transactions on Knowledge and Data
Engineering, vol. 17, no. 3, pp. 299–310, 2005.

[19] C. E. Metz, “Basic Principles of ROC Analysis,” Seminars in Nuclear
Medicine, vol. 8, no. 4, pp. 283–298, 1978.

[20] I. Guyon, J. Weston, S. Barnhill, and V. Vapnik, “Gene Selection for
Cancer Classification using Support Vector Machines,” vol. 46, no. 1,
pp. 389–422, 2002.

[21] F. Arif, N. Suryana, and B. Hussin, “International Journal of Computer
Applications,” International Journal of Computer Applications, vol. 69,
no. 22, pp. 35–40, 2013.


