
A feature representation learning method
for temporal datasets

Ward van Breda1, Mark Hoogendoorn1, A.E. Eiben1, Gerhard Andersson2, Heleen Riper3,
Jeroen Ruwaard3, and Kristofer Vernmark2, 4

1VU University Amsterdam, Dept. of Computer Science
De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
Email: {w.r.j.van.breda, m.hoogendoorn, a.e.eiben}@vu.nl
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Abstract—Predictive modeling of future health states can
greatly contribute to more effective health care. Healthcare
professionals can for example act in a more proactive way or
predictions can drive more automated ways of therapy. However,
the task is very challenging. Future developments likely depend
on observations in the (recent) past, but how can we capture
this history in features to generate accurate predictive models?
And what length of history should we consider? We propose
a framework that is able to generate patient tailored features
from observations of the recent history that maximize predictive
performance. For a case study in the domain of depression we
find that using this method new data representations can be
generated that increase the predictive performance significantly.

I. INTRODUCTION

E-health is a domain where health care and advancements
in electronics, computer science and communication science
meet (for more info, see e.g. [6]). Due to the developments in
sensor hardware, sensor analytics, and (mobile) applications
that measure health related aspects over time seamlessly a
wealth of data is becoming available. This data, often of a
temporal nature, has potential value for the development of
intelligent e-health solutions for physical and mental health.
One aspect that can drive these intelligent solutions involves
predictive modeling: if we can predict a future state we might
be able to intervene before the onset of certain undesired
behavior or diseases.

Predictive modeling with this highly temporal data is a
difficult task. Approaches exist that are able to take advantage
of developments over time. These are however either not
powerful enough to represent complex patterns (e.g. ARIMA,
see [10], or do not result in insightful models (e.g. recurrent
neural networks). Insightful approaches obviously exist in
machine learning domain, but these simply look at the data at
a certain time point in isolation. Of course this is not optimal.

It is very likely that not only the current or previous time point
influences a future health state, but also data from a couple
of time points ago. For instance, think of being tired, this is
most likely the result of an accumulation of several days with
too little sleep.

Unfortunately few papers exist focus on the temporal
dimension and derivation of useful features to drive more
accurate predictions. Interesting work has been reported in
our application domain e-mental health (see e.g. [1], [2],
[15]) but these show that making accurate predictions is very
difficult. Possibly, more extensive exploitation of the temporal
domain can be beneficial to improve the predictive scores.
Some generic approaches to handle temporal data have been
proposed in the domain of temporal data mining (see e.g.
[9]) and granularity computing (e.g. [16]). Studying ways to
optimize the temporal features that are extracted has not been
done in a very rigorous way: how should we aggregate the
historical values (e.g. should we use the mean, a trend, etc.),
and what history is considered important? When thinking of
the e-health case with datasets originating from widely varying
patients different choices might be required per patient to
optimize temporal features and thus predictive performance.

In this paper we present a feature learning method that
enables the automated identification of suitable temporal fea-
tures for individual patients. It does so by generating a series
of aggregated values from a variable historical window of
measurements and it optimizes the window of history used
per patient. The optimization criterion is the predictive perfor-
mance of a model generated based on the identified features.
We evaluate the method by applying it on a dataset originating
from the EU project E-Compared [5], specifically related
to depression. We hypothesize that by the proposed feature
identification method described, the predictive performance of



a dataset can be increased. We use a case study where we
predict the mood of a number of depressed individuals based
on information from their past.

This paper is organized as follows. In Section II we will
put this work in the broader scientific context. Then, in
Section III we describe the method itself. In section IV we
shortly describe the case study in which we apply the method.
We describe the experimental setup in section V and the results
are presented in Section VI. We conclude with a discussion in
section VII.

II. RELATED RESEARCH

There are three fields which include research relevant to
this paper, namely feature learning, temporal data mining, and
granular computing.

The field of feature learning, or representation learning,
is occupied with the goal of finding optimal representations
of data (see e.g. [3] for an overview). Such representations
increase the explanatory power of the data and subsequently
increase the performance of the machine learning techniques
that use this data. The two main techniques, or paradigms
if you will, used in this field are probabilistic models and
deep learning. Generally, two types of learning can be applied,
namely supervised learning, where data representations are
evaluated using labeled data, such as neural networks, and un-
supervised learning where no targets are available. The method
described in this paper is evidently a supervised learning
method. Although the goal of our research is completely in
line with that of representation learning, we focus more on the
temporal aspect of the data and a range of known aggregation
functions and optimize parameters settings within that search
space.

In temporal data mining many methods try to deal with
representing temporal data. In [13] a part has been devoted
to time-domain continuous representations. It is suggested to
leave the data in its original form, ordered by their instant
of occurrence. Another possibility suggested is to use so-
called change-point detection, where only data is considered
where significant change in behavior occurred. There are also
possibilities related to transformation based representations,
where the original data is transformed into a new domain,
where points in this domain are used to represent the orig-
inal data. For example transforming time-series data into a
frequency domain. Other methods are mentioned, such as
discretization based methods, which transform time-series data
into discretized sequences, and probabilistic generators, which
can identify sub sequences in larger sequences. For more
information about these examples, see [13]. Such methods can
be very interesting, but do not solve the problem of what is
the optimal granularity of features in temporal data.

Another field relevant to our work is called granularity
computing, which has its roots in the field of fuzzy logic.
Granularity computing uses so-called information granules for
the purpose of problem solving (see e.g. [16]). The information
granules can be groups, classes or clusters of a universe
that are derived from a data representation source. In [11]

a classification framework of granular time series is described
that assumes a representation of a time series called feature
space in the data. They build features called granular feature
spaces which are representations of the original feature space
in terms of varying granularity. Next, a granular classifier
that uses the granular feature spaces for the purpose of
classification is applied. Using such a method it is possible to
uncover new explanatory power that was not explicitly present
in the original representation of the data. When considering
the domain of granularity computing (cf. [11]) the area is still
open to rigorous investigation. The current study is an example
of such an investigation, which includes a novel method, and
is applied in the domain of mental health.

III. METHOD

In this section we explain how the algorithm generates
alternative feature representations and how to apply it in
a representation learning setting. For the purpose of clarity
we distinguish between two types of features, namely basic
features, which are the original attributes, and aggregated
features, which are new transformed attributes (e.g. the mean
value over a certain interval).

A. Feature generation algorithm

The aim of the algorithm is to generate alternative dataset
representations by varying the aggregation intervals of each
basic feature in the dataset. Subsequently the activity within
the interval of each basic feature is represented in four different
ways and therefore lead to new aggregated features. The goal
of the process is to find aggregated feature representations
that have increased explanatory power compared to the basic
features.

Given dataset δ, and target feature τ , for any attribute a,
time point t, and window size interval k, we can define an
aggregated interval I(a, t, k) ∈ N, where I(a, t, k) = t−k, t−
(k − 1), . . . , (t− 1).

In Figure 1 an example is displayed, where e.g. for attribute
a2 a window size interval is set of k = 3. Given current
timepoint t = 5, the aggregated interval of a2 is based on the
information over time points [2, 3, 4].

We assume that the basic features of time point t are used
for prediction of the target feature of time point t+ 1, which
is often the case in temporal modeling tasks. The aggregated
features therefore shift one time step to the left compared to
the target feature.

For any aggregated interval I(a, t, k) we can define the
following aggregated features:

M(a, t, k) = mean{v ∈ I(a, t, k)}
Sd(a, t, k) = stde{v ∈ I(a, t, k)}
S(a, t, k) = sum{v ∈ I(a, t, k)}
C(a, t, k) = coef{v ∈ I(a, t, k)}

M(a, t, k) expresses the average value within the aggregated
interval; Sd(a, t, k) expresses the average deviation from the
mean within the aggregated interval; S(a, t, k) expresses the



Fig. 1: Example of the process of selecting basic features given
a set of aggregation intervals to produce aggregated features.
Note that for attribute 2 and 4 the aggregated intervals are
specified for exemplary purposes.

total of activity within the aggregated interval; and C(a, t, k)
expresses the trend of the activity within the aggregated
interval by taking the slope of a linear fit. Note that there
are other representations that can be interesting to use, such
as with min and max. For now we will use the aforementioned,
but we might add others in future research.

B. Feature testing strategy
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Fig. 2: Overview testing strategy.

As depicted in Figure 2, to evaluate a set of aggregated
features a model needs to be constructed using these features.
The performance of the model on unseen data can then be
used to represent the fitness of the transformed features.
Subsequently the challenge is how to find the optimal set of
aggregated intervals, which can be solved using well suited
technology such as genetic algorithms [8].

IV. CASE STUDY

A. Dataset Description

We use a dataset from the EU project E-Compared [5].
Specifically, the data consists of ecological momentary assess-
ment measures (EMA, for more information see [14]). For 70

days 49 participants were asked to enter their mood, worry
and self-esteem ratings two times a day, and rating related
to sleep, activities done, enjoyed activities and social contact
once a day on a Likert scale with an interval of [1,10], using an
application on their mobile phone. This was part of a trial on
blended cognitive behaviour therapy for depression in which
psychologist used an online treatment program (available on
both smartphone and computer) in conjunction with face-to-
face visits. An overview of the EMA measures and their
corresponding questions are shown in Table I. These are
measured on a regular basis during the therapy. The mood
feature is the target feature that needs to be predicted. The
EMA data features are expected to have predictive value for
describing the mood over time.

TABLE I: EMA measures that are present in the dataset.

Abbreviation EMA question
Mood How is your mood right now?
Worry How much do you worry about things at the

moment?
Self-Esteem How good do you feel about yourself right now?
Sleep How did you sleep tonight?
Activities done To what extent have you carried out enjoyable

activities today?
Enjoyed activities How much have you enjoyed the days activities?
Social contact How much have you been involved in social

interactions today?

B. Exploratory Data Analysis

Of the total of 13083 questions, 3368 were not answered,
and are therefore missing values (25.7%). In Table II an
overview is given of the amount of missing data per feature.
Mood has the highest number of missing values, but was also
one of the questions that was asked most frequently.

In Figure 3 the percentage of missing values over time is
depicted. Clearly the further participants came in the trials,
the more questions were left unanswered. Because the last 2
days in the dataset show a sharp increase in missing data we
decided to exclude this part for further use. In Figure 4 it can
be seen that some participants did not actively participate in
the trial. We decided not to include the 7 participants that have
missing data higher than 60%, resulting in a dataset containing
42 participants with data over 68 days. The missing data that
was left in the data was filled by taking the average of the
last available data point earlier in time and the first available
data point later in time. If only one of these data points was
available we used that data point to fill the missing data.

Note that we are considering depressed patients, that show
a huge variance in their rating, making the task interesting
and challenging. To exemplify this variance, an example of
the mood over time of participant 1 is depicted in Figure 5.

V. EXPERIMENTAL SETUP

In this section, we describe the setup to evaluate our
proposed approach using the dataset described above.



TABLE II: Missing data per feature in the dataset.

Feature % of Missing Data
Mood 31%
Worry 36%
Self-Esteem 36%
Sleep 32%
Activities done 38%
Enjoyed activities 39%
Social contact 39%

Fig. 3: Percentage of missing data over time.

Fig. 4: Percentage of missing data per participant.

A. General setup

We aim to predict the mood rating at the next time point,
and all historical ratings are available to identify features. We

Fig. 5: Mood level of participant 1 over time.

identify two conditions, namely our algorithm, referred to as
the experimental condition (EC) and a control condition (CC).
In the EC we optimize the aggregation intervals per partic-
ipant, while in the CC we have fixed aggregation intervals
over all participants. To be able to compare the results from
the CC and the EC we use the following data strategy. For
each participant we divide the data into three datasets, namely
a training set, a validation set and a test set. We decided to
split up the 68 days of data for each participant in 40 days
for the training set, 14 days for the validation set and 14 days
for the test set. The training set is used by both the CC and
the EC to generate models for prediction, where the EC uses
the validation set to evaluate the suitability of the aggregated
features as part of its optimization algorithm. The test set is put
completely aside and is only used to compare the performance
of the resulting models in each condition after the optimization
has been finished.

The choice for the machine learning algorithm to generate
models (given a set of aggregated features) is extremely
important. Because we divide the already limited amount
of data in three separate parts problems like overfitting are
probable to occur. Also, because of the amount of missing data
we expect noise in the data, which effect the behaviour and
performance of the different conditions, i.e. variance is present.
To counter overfitting problems we decided to use a bagging
approach (for more info, see e.g. [4]). More specifically, 20
models are fitted using a linear regression approach on 20
random samples of 30 days from the training set. To represent
the model fit on the training set an average mean squared error
(MSE) over all samples is used. As the bagging approach
is stochastic, we ran the bagging approach 10 times. This
setup therefore generates 10 averaged MSE’s on the training
set during the fitting process, and, either 10 related averaged



TABLE III: General setup of conditions per participant.

Condition Model Sample Size Nr Bags Nr Rounds Optimized
CC1 LR 30 of 40 20 10 no
CC2 LR 30 of 40 20 10 no
CC3 LR 30 of 40 20 10 no
CC4 LR 30 of 40 20 10 no
EC1 LR 30 of 40 20 10 yes
EC2 LR 30 of 40 20 10 yes

TABLE IV: Conditions specific setup per participant.

Condition Aggregation Intervals Solutions per Participant
CC1 < 1, 1, 1, 1, 1, 1, 1 > Fixed
CC2 < 2, 2, 2, 2, 2, 2, 2 > Fixed
CC3 < 3, 3, 3, 3, 3, 3, 3 > Fixed
CC4 < 4, 4, 4, 4, 4, 4, 4 > Fixed
EC1 Random Sampling Best of 300
EC2 Genetic Algorithm Best of 300

(10 gen * 30 pop)

MSE’s on the validation set, or 10 related averaged MSE’s on
the test set, during the prediction process. An overview of this
setup is displayed in Table III.

We decide to have seven aggregation intervals correspond-
ing to the seven features that can be varied in the experimental
conditions. This means that per set of aggregated features types
(the mean, the standard deviation, the sum and the slope)
there is one aggregation interval. We assume that this level
of flexibility should be enough to make a difference between
the experimental conditions and control conditions.

For comparing the different conditions we compare each
participant’s 10 MSE’s on the training, validation and test
sets. Note that the validation set is not used by the control
conditions, but their scores on the validation set might still
provide insight, which we will describe in Section VI.

For the CC with fixed aggregation intervals, we select differ-
ent settings for the intervals. The options are displayed in Table
IV. For each CC subsequent we increase the fixed aggregation
interval by one day over all features. This way we can also
get a general impression about how these transformations
influence (or deteriorate) the predictive performance.

B. Experimental conditions per participant

As displayed in Table IV, we select two ECs which use
an optimization method to find high potential aggregation
intervals. For EC1 we use a random sampling method, by gen-
erating 300 random solutions per participant. The bandwidth of
the random solutions is [1,2,3,4]. We purposely chose to keep
the scale small to decrease the chance of overfitting. For EC2
we run a genetic algorithm (see e.g. [8]) using the R package
GA [12] for 10 generations with a population size of 30, with
a crossover probability of 0.8 and a mutation probability of
0.3. We use a binary representation for the aggregation vectors
of length 4. This means that the aggregation interval also has
a bandwidth of [1,2,3,4]. For each EC and each participant we
select the aggregation interval vector that generates the lowest

TABLE V: The MSE and SD scores of the control conditions
and the experimental conditions on the training set, validation
set and test set. The prediction scores displayed here are the
averaged over the 10 rounds per participant and averaged over
participants.

Condition Training Set Validation Set Test Set
MSE SD MSE SD MSE SD

CC1 1.30 0.05 6.09 0.73 8.18 1.09
CC2 0.91 0.05 7.25 1.29 9.82 1.87
CC3 0.85 0.04 8.98 1.17 9.75 1.80
CC4 0.78 0.04 10.17 1.36 10.79 2.07
EC1 0.94 0.05 2.22 0.32 6.68 1.40
EC2 0.93 0.05 2.15 0.31 7.60 1.38

MSE on the validation set, after which it is used to predict the
mood on the test set.

VI. RESULTS

In this section we describe the results given the experimental
setup described. First, we will study the control and experi-
mental conditions separately, followed a comparison between
the two.

A. Within control conditions

As described in Section V we have four control conditions
for each participant, namely CC1 to CC4 with four setups
of fixed aggregation intervals over all participants. As can be
seen in the top four rows of Table V the MSE on the test set
generally gets worse as the window size increases. The same
trend can be seen for the MSE of the CC on the validation
set. On the training set the opposite seems to hold: increasing
window sizes are better, apparently the lengthier windows tend
to overfit the training data more.

When considering the standard deviation (SD) of the MSE
scores shown in the same table, the variance in the predictions
is quite low, indicating the prediction quality is robust. The
bagging approach likely contributed substantially to the found
low variance.

In Figure 6 all MSE prediction scores for each of the CC
are displayed. For the purpose of comparison the results are
sorted by MSE. CC1 especially excels in generating improved
low error predictions. For the harder predictions CC1 does not
seem to generate better results compared to the other fixed
window settings.

B. Within experimental conditions

As described in Section V we have two experimental condi-
tions, namely EC1 where we use a random sampling optimizer,
and EC2 where we use a genetic algorithm optimizer to find
the best predictions on the validation set. In Table V EC1
on average performs better than EC2 on the test set. On
the training set and the validation set EC2 seems to have a
slightly lower MSE. Again, a low SD is seen. When we look
at Figure 7 we see that EC1 specifically performs better on
the prediction problems with higher errors, which explains the
relatively large difference in mean performance compared to
the EC2.



Fig. 6: The MSE prediction scores (42 participants, 10 rounds)
of the control conditions on the test set. The scores are sorted
by MSE.

Fig. 7: The MSE prediction scores (42 participants, 10 rounds)
of the experimental conditions EC1 and EC2 and the best
performing control condition CC1 on the test set. The scores
are sorted by MSE.

To see why random sampling performs better, let us con-
sider the evolution of the fitness value with the number of
generations shown in Figure 8. We do see that the algorithm
seems to converge very fast. Better parameter settings would
likely have resulted in better performance. Due to the required
computation time, and the fact that this is not the main
contribution of the paper, we decided not to optimize the
setting further.

In Figure 9 the average and standard deviation of optimal
aggregated intervals can be seen for each feature generated by

Fig. 8: The evolution of the population fitness for 10 gen-
erations within EC2. Example is taken for participant 30.
The fitness is expressed in -MSE, because this package only
maximises fitness.

each of the experimental conditions. The average of optimal
aggregated intervals that are found for the features seem to be
between two and three days for both conditions.

Fig. 9: The average and standard deviation of the optimal
aggregation intervals per feature that is found by EC1 (left)
and EC2 (right). The features are sleep, worry, self-esteem,
mood, enjoyed activities, social contact, and activities done,
respectively.

C. Control conditions versus experimental conditions

We want to know if better predictions are generated in the
EC compared to the CC given all predictions of all participants
(i.e. 42 participants times 10 repetitions). When we compare
the scores, the EC1 condition has the best accuracy on the



TABLE VI: The one-sample Kolmogorov-Smirnov Test com-
paring the condition test set performances using the whole set
of predictions of all rounds of all participants, i.e. comparing
420 MSE prediction scores per condition. Displayed is the
p-value between each condition, where p-values are rounded
if smaller than 1e-06. To have significant difference between
conditions we need to satisfy p− value < 0.05.

CC1 CC2 CC3 CC4
EC1 < 1e-06 < 1e-06 < 1e-06 < 1e-06
EC2 0.006486 < 1e-06 < 1e-06 < 1e-06

TABLE VII: The one-sample Kolmogorov-Smirnov Test com-
paring the condition test set performances per individual set
of predictions, i.e. comparing 10 MSE prediction scores for
42 participants. Displayed is the number of cases that for a
participant p− value < 0.05 between conditions.

CC1 CC2 CC3 CC4
EC1 17/42 24/42 24/42 25/42
EC2 19/42 23/42 18/42 24/42

test set, following by EC2. In Table VI the results of a one-
sample Kolmogorov-Smirnov test (see [7]) are displayed that
compare all predictions of all participants. The results indicate
that the differences between the EC and CC are significant.
This finding is interesting, but does not yet shed light on the
differences between EC and CC on a patient level.

In Table VII one-sample Kolmogorov-Smirnov tests are
conducted for each participant. The results show that in 17 to
19 of the 42 participants EC1 and EC2 generated significantly
better results than CC1 given an alpha of 0.05.

For CC2 to CC4 the number of significant differences gen-
erally increase. The fact that not more significant differences
are found is most likely due to the small sample size. Other
factors that play a role are the quality of the data and amount
of data available per individual.

Based on the results we can conclude that the sets of
aggregated features found by the EC have higher predictive
capabilities.

D. Individual example predictions

Next to the higher level comparisons between conditions, it
is interesting to look at the implications on a practical level.
For this purpose we compare CC1 and EC2 for participant 16
and participant 36. These are representative examples. The fit
on the training set, the prediction on the validation set and
the prediction on the test set for participant 16 are depicted in
Figure 10, and for participant 36 are depicted in Figure 11. The
examples show that the predictions for the independent test set
are quite reasonable for the EC2, especially considering the
fact that the problem we are facing in general is known to be
notoriously difficult. For the CC1 the models seem to describe
the trends less well. A comparison on the validation set is not
fair as the EC2 exploits the performance on the validation set
to optimize the fitness values.

Fig. 10: The fit on the training set, prediction on the validation
set, and the prediction on the test set (top to bottom) of
CC1 (left) and EC2 (right) for participant 16. Specifically the
models in the 6th round generated these fits and predictions.

VII. DISCUSSION

In this paper we proposed and tested a feature learning
method for temporal predictive models. We have evaluated the
approach using data from the domain of e-health, specifically
depression. Significant differences were found on the predic-
tion task between each of the CC and EC: the EC outperforms
the CC.

The feature learning method automates a part of the pre-
processing stage when using temporal data. In each prediction
task many decisions need to be made about how to prepare
the data that is fed to the predictive model. Among such
choices is the decision about the time window to consider
for temporal attributes. Often it is unclear what the right time
windows is. Data practitioners therefore go with their intuition.
Also, the emphasis is often on other parts of the prediction
process, such as which model is best suited. By automating
this preprocessing using the proposed method in combination
with an optimizer, better representations can be generated, that
increase the predictive accuracy.

The method is well suited to be employed in the e-health
domain, because new technologies are used that measure a
flurry of information in a temporal fashion, such as information
related to mental health, physical health, or geographic infor-



Fig. 11: The fit on the training set, prediction on the validation
set, and the prediction on the test set (top to bottom) of
CC1 (left) and EC2 (right) for participant 36. Specifically the
models in the 2th round generated these fits and predictions.

mation. Little research is done about how such features relate
to the target of the prediction. Also, such relations are often
highly personal and do not generalize well across patients.
Therefore, it is interesting to exploit the proposed method
which includes personalization of features.

Of course, the quality of the data and the amount of
missing values severely impact the eventual results in terms
of predictions. In this case we suffering from a lack of data
and ample missing values. This problem even became more
severe because we had to divide the data for each participant
into three datasets, namely a training-, validation and test set.
However, to obtain a proper and solid analysis we did consider
it needed. We sampled 30 of the 40 data points of the training
set to fit linear regression models on, which is very little for
this purpose. In our case, to counter the effects of overfitting,
i.e. fitting to noise, we chose to use a bagging approach. In
any case, for the purpose of validating the performance of the
proposed method, it would be interesting to apply it on more
data with higher quality.

Within our experimental conditions we have seen that the
genetic algorithm was not able to go through the search
space very effectively as random sampling worked better. On
forehand we expected the genetic algorithm to outperform the
random sampling method. We expect this to be caused either

by the lack of parameter optimization caused by the severe
computation cost, or by the shape of the fitness landscape.

For future work we would like to apply the method to
more data. More data will shed further insight in the added
value the method can generate. Also, we want to look more
at the aggregated feature types that are generated and how
they effect the performance. In this experiment we generated
the mean, standard deviation, sum and slope for each basic
feature. Possibly other types are interesting as well such as
minimum and maximum. Ultimately the aggregation types that
effect the predictive power the most, will vary depending on
the problem that needs to be solved. From that perspective
it might be best to add more aggregation types. Furthermore,
we want to increase the parameters, so that each aggregation
type has its own aggregation interval. Finally, we would
like to explore whether we can improve the optimization
algorithms beyond their current performance, and compare the
experimental conditions with control conditions that use more
training data, to explore if and when the additional training
data in the control conditions outperform the experimental
conditions.
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