
Fuzzy Cell Genetic Algorithm Approach for
Flexible Flow-Line Scheduling Model

Arash Nasrolahi Shirazi∗, Meghan Steinhaus†, Matthew Agostinelli∗, Manbir Sodhi∗
∗ Department of Mechanical, Industrial, and Systems Engineering

University of Rhode Island
Kingston, RI 02881
arashshirazi@uri.edu

†Department of Mathematics, US Coast Guard Academy,
New London, CT 06320

Abstract—This paper focuses on makespan minimization for
the flow line scheduling problem using a Fuzzy Cell Genetic
Algorithm (FCGA). Real world applications of this problem
are commonly found in printing and electronic circuit board
manufacturing industries. A generalized integer programming
(IP) model for this problem is proposed. The Fuzzy Cell Genetic
Algorithm (FCGA) is proposed to solve the IP model, which has
been proven to be NP-hard. Sample problems are generated with
known good solutions to evaluate the effectiveness of the FCGA
approach. The FCGA matches the performance of the IP model
for small sized problem instances and it is proven to be effective
for larger problem instances.

I. INTRODUCTION

The flow line sequencing problem is defined by a set of
jobs, and each job follows the same route from one machine
to another throughout a manufacturing system. The sequence
problem is determine the position of each job relative to other
jobs for processing. The general form considered here has
been derived from traditional manufacturing systems where
each stage is comprised of one machine that all jobs must
pass through. The expanded version of flow line sequencing
is this flexible flow line sequencing problem, where each stage
consists of more than one machine in parallel for all stages
of operation to allow for concurrent processing in each stage.
The flexible flow line is synonymous with a hybrid flow shop
except that only one stage needs to feature parallel machines
in a hybrid flow shop where the flexible flow shop considers
parallel machines in all stages. Additionally, hybrid flow shops
allow jobs to skip stages where flexible flow shops require jobs
to visit all stages in order[1, 2].

Flexible flow lines have been used to model many real world
environments including the production of circuit boards, auto-
mobiles, paper, textiles, and concrete[3–8]. Formally, flexible
flow line systems can be defined by a set of n jobs to be
processed in m stages with p number of parallel machines
in each stage. Generally, flexible flow line problems have the
following features in common:

1) The number of stages to perform the jobs must be greater
than one.

2) The total number of stages must be less than the total
number of machines.

3) All jobs must be processed in every stage but it is
optional which machine processes the job in that stage.

4) Each job has a processing time represented by Ptt,s
where t is the index of job to process and s is the sth

stage
In the general form of the flexible flow line problem, all

machines in each stage are ready to perform the jobs at time
zero, the parallel machines in each stage are identical, each
machine can perform just one job at a time, and any job can
be processed by any machine in a given stage. Setup time is
negligible in the general form and buffers are infinite between
stages. Figure 1 provides a simplified graphical form of the
flexible flow line. The jobs are indexed by t, the stages notated
by s and each machine notated by k in each work center to
process the jobs.

Fig. 1. Graphical representation of the problem design which j, s and p are
index representative of jobs, stages and machines respectively.

Generally, the objective of flexible flow line optimization
is to minimize the makespan as a scheduling criteria. The
makespan is defined as the time between the start of the
first job in the system and the completion of the last job.
Minimizing the makespan reduces the maximum completion
time where all jobs are considered. This means each job has
a completion time in the last stage and the maximum of all
completion times is the makespan for the system. Traditionally,
makespan minimization has been the focus of flexible flow

line literature. However, some researchers have used maximum
capacity volume and total flow time as objectives [9].

Several approaches have been taken to solve the traditional
flow shop, parallel process shops, and hybrid flow shop
problems. These include exact methods, heuristics, and meta-
heuristics. However, there has been limited studies focusing
specifically on the flexible flow line.

For exact methods, branch and bound algorithms have
proven to be the preferred technique for solving flow line
sequencing problems to optimality. The majority of branch
and bound techniques have focused on solving scheduling
problems with parallel machines [10–20] and hybrid flow
shops [21–25]. In 1993, Sawik [26] first proposed a math-
ematical model for solving small-sized scheduling problems
in a flexible flow line with limited buffers. Jungwattanakita
et al. [27] proposed a mixed integer programming model for
minimizing the makespan and the number of tardy jobs for a
flexible flow line. In Jungwattanakita et al. [27] model, they
considered job sequence and machine-dependent set up times.

The NP-hardness of the flexible flow line problem under-
scores the need and motivation to consider heuristic and meta-
heuristic approaches [28]. Brah and Loo [29] evaluated the
effectiveness of various heuristic methods that had not been ap-
plied to flow shops with multiple processors. There is limited
literature that applies heuristic and meta-heuristic algorithms
to flexible flow line problems. The proposed random keys
genetic algorithm of Kurz and Askin [30] was applied to a
flexible flow line model. They minimized makespan for a
system with sequence dependent setup times. Akrami et al.
[31] proposed GA and Tabu search meta-heuristic methods
for solving a specific flexible flow line sequencing model
with limited intermediate buffers and compared results with an
optimal enumeration method (OEM) on randomly generated
problems. In Akrami et al. [31] flexible flow line model,
sequencing, lot size, and product specific scheduling decisions
are considered. They minimize total costs made up of the
sum of setup costs, work-in-process inventory holding costs,
and finished products inventory holding costs. Computational
results from generated problems illustrated the promising
performance of GA and Tabu search in comparison with OEM
on large-size problems. Jenabi et al.[32] proposed a Hybrid
Genetic Algorithm (HGA) and Simulated Annealing (SA)
to solve flexible flow line problems with unrelated parallel
processors on finite planning horizons. The main objective
is to minimize the total setup and inventory holding costs
per unit time without any stock-out. Final results proved the
outperformance of HGA on generated problems compared
with SA without considering the computation times. Quadt and
Kuhn [33] proposed a nested genetic algorithm to minimize
setup costs and the mean flow time in batch scheduling flexible
flow lines. The nested GA consists of two parts. First, an
outer GA determines a target number of setups from which
batch sizes are derived. Secondly, the inner GA determines
a schedule for all production stages based on the outer GA
parameters. The proposed GA focused exclusively on batch
scheduling in a flexible flow line. Tavakkoli-Moghaddam et al.
[34] proposed a mimetic algorithm (MA) with a novel local
search engine for solving a flexible flow line with process

blocking. Computational results from the proposed MA on
large-sized problems were found to be more effective when
compared to classic GA.

In this paper, the flexible flow line with an objective of
minimizing the makespan will be explained and formulated
as an integer programming (IP) model. Due to the difficulty
of obtaining the optimal solutions for medium and large-
size problems, we use the Fuzzy Cell Genetic Algorithm
for solving such problems. To the authors knowledge, no
specific work relating to the general form of the flexible flow
line scheduling problem using GA optimization or any other
optimization method is published in literature to compare to
the performance of the proposed method. Also, this benchmark
is the first time a clear explanation is offered for generating
problems with known solutions.

II. FLEXIBLE FLOW LINE SCHEDULING PROBLEM
DESCRIPTION

The mathematical formulation for the two-stage flexible
flow shop with the objective of minimizing the makespan
was presented by Guirchoun et.al [35]. Kurz and Askin [9]
proposed the mathematical model for the flexible flow line
that also considers sequence-dependent setup times.

The integer programming model formulation which ad-
dresses the problem in this paper will be shown here. Let
t be the number of tasks to be schedule and k the number of
parallel machines at station s. N, W and P represent sets of
jobs, stages and parallel machines respectively. The problem
definition is presented as:

Indices
t index of job to be scheduled (t = 1, 2, . . . , n)
s index of stations (s = 1, 2, . . . ,m)
k index of machine (k = 1, 2, . . . , p)
mn last station
Parameters
Ptt,s processing time of job s in station t
Cts,k completion time of all jobs in station s and

machine k
Ctmn,k completion time of all jobs in the last station

mn and machine k
Ftt,s,k finishing time of task t in machine k in station

s
Decision Variables
x0,t,k 1 if job t performs as a first job in parallel

machine k and 0 otherwise
xnt,k 1 if job t performs as a last job in parallel

machine k and 0 otherwise
xi,j,k 1 if job i performs before job j in parallel

machine k and 0 otherwise

minimize z (1)

s.t.
∑
t∈N

x0,t,k = 1,∀k ∈ P (2)∑
k∈P

x0,t,p +
∑
k∈P

∑
j∈N

xt,j,k = 1,

{∀t, j ∈ N |t 6= j}
(3)

x0,t,k +
∑
i∈N

xi,t,k = xn,t,k +
∑
j∈N

xt,j,k,

∀k ∈ P, {∀i, j, t ∈ N |i, j 6= t}
(4)

Cts,k − Ftt,s,k ≥ 0,∀s ∈W, ∀k ∈ P,∀t ∈ N (5)

Ftt,1,k −
∑
t∈N

Ptt,1x0,t,k ≥ 0,∀k ∈ P (6)

Ftt,s,k − Ftt,s−1,k −
∑
t∈N

Ptt,1x0,t,k ≥ 0,

{∀s ∈W |s > 1},∀k ∈ P,∀t ∈ N

(7)

Ftj,1,k − Fti,s,k ≥ Ptj,1xi,j,k − Pti,1xj,i,k

−(M − Ptj,s)(1− xi,j,k − xj,i,k), {∀i, j ∈ N |i 6= j}
(8)

Ftj,s,k − Fti,s,k ≥ Ptj,sxi,j,k − Pti,sxj,i,k

−(M − Ptj,s)(1− xi,j,k − xj,i,k), {∀i, j ∈ N |i 6= j}
(9)

Ftj,s,k − Fti,s−1,k ≥ Ptj,sxi,j,k, {∀i, j ∈ N |i 6= j},
{∀s ∈W |s > 1}

(10)

z ≥ Ctmn,k,∀k ∈ P (11)

xi,j,k = 0, ∀k ∈ P, {∀i, j ∈ N |i 6= j} (12)

x0,t,k ∈ {0, 1}, ∀k ∈ P, t ∈ N (13)

xL,t,k ∈ {0, 1}, ∀k ∈ P, t ∈ N (14)

xi,j,k = 0, ∀k ∈ P, {∀i, j ∈ N |i 6= j} (15)

We assume each task in each station has the same processing
time in each parallel machine within a station. Also, each task
must complete processing in a station before moving to the
next station. The sequence of the jobs is the same from the first
station to the last station. There is a restriction in this model
that every stage must be visited by at least as many jobs as
there are machines in that stage. Eq.(1)represents the objective
function which is to minimize the makespan z. Eq.(2) defines
the constraint to assign at least one job as a starting job to each
machine in parallel for each station. Constraint (3) ensures
that job t is either the first job or should be done immediately
after job j in machine k. Eq.(4) represents all the eligibility
of each job in each machine. Constraint set (5) ensures that
the completion time of all the jobs in machine k and station s
should be greater than or equal to the finishing time of each
individual task in the same machine and station. In Eq.(6),
finishing time of the first job assigned to machine k at the
first station should be greater than or equal to the processing
time of the first job at the same machine. Constraint set (7)
enforces job t sequencing through each station after another.
Eq.(8) calculates the accumulation of processing time for the
set of tasks in each machine at the first station. Constraint set
(9) and (10) calculate the finishing time of job t according to
the equations (16) and (17).

If t is the first job in parallel k at station s:

Ftt,s,k = Ftt,s−1,k + Ptt,s,{∀s ∈W |s > 1},
∀k ∈ P,∀t ∈ T

(16)

Else if t is the successor of the task j in parallel l at station
s:

Ftt,s,k = max(Ftt,s−1,k, F tt,s−1,k) + Ptt,s,

{∀t, j ∈ T |t 6= j}, {∀s ∈W |s > 1},∀k ∈ P
(17)

Constraint set (11) links the decision variable z and Ctmn,1

to minimize the completion time of the maximum machine
in parallel at the last station mn. The last sets of equations
(12),(13), (14), and (15) are defining the binary decision
variables for the predecessor and successor job relations, first
job, last job and zero for the case when the predecessor and
successor have the same syntax in the problem.

III. FUZZY CELL GENETIC ALGORITHM (FCGA)
The Fuzzy Cell Genetic Algorithm (FCGA) mimics the

main concepts of Meiosis and Mitosis found in human cell
division. During the mitosis process, a cell with 2n number
of chromosomes begins by growing (replicating) and the
individual chromosomes start to align. Then, chromatids (one
of two identical chromosomal strands) move toward the left or
right side of the cell without any physical connection. Finally,
the content of the cell is divided into two new daughter cells,
and the chromosomes in each are replicated to two sister
chromatids. The final product of mitosis is two new cells,
containing 2n chromosomes.

In a different manner, Meiosis consists of two sub-steps in
the process namely meiosis I and meiosis II. The final product
of this process with four cells where each one containing
two distinct chromatids. Crossover happens during Meiosis
I. The final step in meiosis occurs when four cells with each
one contains two distinct chromatids. Mitosis and meiosis are
two distinct processes in cell division for making sexual and
asexual chromosomes. All these procedures are replicated the
process in human cells.

The FCGA starts with random populations (Population1 and
Population2) of job sequences and the order in which they
will process in each stage. Chromosomes in each population
are divided into two sub-populations for the mitosis and
meiosis procedures using the fuzzy logic controller. Fuzzy
logic intelligently controls the number of Asexual and Sexual
chromosomes contained in Subpopulation1 and Subpopula-
tion2. Individuals sent to the meiosis sub-population are going
through the crossover and mutation procedures while the
chromosomes sent to mitosis are going through duplication
and have a smaller probability of mutation. New chromosomes
in each subpopulation will be evaluated using a fitness function
which calculates the makespan corresponding to that particular
job sequence.

There are three metrics to assess FCGA performance that
are used for controlling and prevent it from premature con-
vergence. Faverage defines the mean fitness distribution of the
population and Fbest (best fitness) measures the best individual
(lowest fitness value for minimization problems). The worst
fitness (Fworst) is defined as the worst individual fitness value
in the population. To obtain the changing rate (Fchange) in a
population, Fworst − Fbest is calculated in each iteration. It
should be mentioned that the fitness value is the makespan

for each sequence inside the chromosome. The three metrics
are used as inputs for the fuzzy controller. The controller
module monitors the performance of the meiosis process.
If the diversity rate inside the populations decreases, the
controller will start to increase the size of Subpopulation1 for
mitosis. This increases solution diversity and moves away from
premature convergence. However, the increased changing rate
will decrease the size of mitosis candidates in Subpopulation2
to protect form diverging away from the optimal solution.
Figure 2 shows the flow chart for FCGA.

Previously, FCGA was tested on continuous benchmark
functions and generated superior results when compared with
other meta-heuristic methods in Shirazi et. al. [36]. Also,
FCGA has shown outstanding potential for scheduling flow
lines in comparison with other heuristic and meta-heuristic
approaches on well-known benchmark functions [37].

Fig. 2. flowchart: considers the proposed GA and fuzzy logic controller for
adjusting the procedures in mitosis and meiosis.

IV. GENERATING PROBLEM SETS

It is important to assess the performance of the FCGA on
complex flexible flow line problems which IP models cannot

solve in an efficient period of time. Kurz and Askin [9]
proposed data generation for flexible flow shop problems while
also considering setup times. However, they did not clearly
explain their method for generating data sets fitting this type
of flow shop.

The following section will detail how problem sets are
generated. In addition, a sample of generated problem data will
be examined to more closely detail how the problem generator
operates.

The requirement for generating data is n (number of jobs),
s (number of stages), m(number of machines in parallel in
each stage), the range of processing time for every ith job in
each jth stage defined by Pti,j and Tj ,k is the sets of job in
jth stage and kth parallel machine. It assumes the numbers of
machines in each stage are the same and has to be more than
one. The main purpose is to provide the sequence of jobs with
no gap between the processes. The pseudocode of the problem
generator is shown in TableI.

TABLE I
PSEUDOCODE OF THE PROBLEM GENERATOR FOR FLEXIBLE FLOW LINE

DATA SETS

Steps Description
1 Initialization
2 Input n, s, m, L, U
3 Makespan = 0
4 Generate sets with n number of jobs :T = T1,1, T1,2, , Tj,k

5 For each machine in parallel; k = 1, 2, , l
6 Calculate the first order job i ∈ Tj,k ; Pt1,j ← random[L,U]
7 Makespank ← Pt1,j
8 For each job in stage s ; j ∈ Tj,k|i > 1
9 Calculate the process time for job i in machine j
10 Pti,j ← random[L,U]
11 Makespankk ←Makespank + Pti,j
12 Pti−1,j+1 ← Pti,j
13 End For
14 End For
15 Set Makespan← argmaxk∈1,2,...,l{Makespank}
16 Save ProcessT ime← [Pti,j]n×m, Makespan
17 End

Figure 3 shows an example of 4 jobs, 2 stages and 2
machines in each stage. As it shown in the example, the final

output for the problem generator is PT4×2 =

4 6
7 6
6 4
8 4

 with a

solution of 18 sec.
The problem generator provides solutions with no gap

between jobs in each stage and at every machine. It should
be mentioned that the generated solution is not an optimal
solution. However, the solution provided is sufficient to com-
pare with other procedures solutions. While algorithms have
difficulty solving larger problems, the problem generator can
easily generate solutions for any size problem.

The processing time for each job is randomly generated as
an integer in the range of [1, 10]. There are 3 problem sets
generated. The first set considers the number of jobs(n) =
5, 8, 10, 20, 30, 40, 50, 70, 100 and the number of stages(s) =
2, 5, 15 by assuming two machines in each stage. Secondly, a
set of jobs (n) and a set of stages (s) = 20, 30, 40, 50, 100 are
selected with 5 machines in each stage. Lastly, the number
of jobs(n) = 20, 40, 100 and the number of stages(s) =

Fig. 3. An example of problem generator to provide a known solution (18sec)
for 4 jobs 2 stages and 2 machines.

10, 20, 40, 60, 100 with 10 machines in each stage. Table II
represents the parameters for the data sets.

TABLE II
PROBLEM SETS CONSIDERED

Machine 2 Machine 5 Machine 10
#Jobs 5,8,10,20,30,40,50,70,100 20,30,40,50,100 20,40,100
#Stage 2,5,15 20,30,40,50,100 10,20,40,60,100
Processing
time

Random[1,10] Random[1,10] Random[1,10]

#Operation
(n× s)

10-300 40-10000 40-10000

#Instance
per set

10 10 10

#Instance
total

100 50 60

V. RESULTS AND DISCUSSION

The IP models have been solved using Cplex 12 on an Intel
Xeon E5−26650, RAM 64 GB of memory. The first stopping
criterion is to reach to 0.05 for the relative optimality criteria
(Optcr), where Optcr defines as:

|Obj− Cbest|
(1.0− 10 + |Cbest|)

< Optcr (18)

In formulation (18) Obj is the current objective function
value and Cbest is the best proposed integer solution. The
second stopping criterion is runtime, where CPU time is
limited to 24 hours.

The IP model could only solve the following problem con-
figurations [m(jobs)×s(stages)] : [5×2], [8×5], and[10×5],
each featuring 2 machines in parallel at each stage. FCGA also
found optimal solutions for this subset of problems, excluding
two variants of [10×5] which have been solved by GAMS[38].
Figure 4 illustrates the results of FCGA and the IP model
across the aforementioned subset of problems.

The remaining 70 problems with two machines in parallel
that were unable to be solved by the IP model are plotted
separately in Figure 5. FCGA produced better solutions than
the problem generator in 59 of the 70 problem configurations.
In 2 of the other 11 instances, FCGA found the same solution

Fig. 4. Compare FCGA and problem generator solutions with IP results for
measuring the algorithm performance on problems [5× 2], [8× 2], [10× 5]
with 2 machines in each stage.

provided by the problem generator. The FCGA has shown
outstanding search performance in a solution space for small
size problems. However, the problem generator hasnt shown
great performance for problem sets when compared to the
IP model. Therefore, the problem generator solutions do not
provide a robust reference for FCGA on larger problem
instances.

Fig. 5. Compare FCGA and problem generator solutions with IP results for
measuring the algorithm performance on problems [20×5], [20×15], [30×5],
[40× 5], [50× 5], [70× 5], [100× 5] with 2 machines in each stage.

In the second problem set featuring 5 machines in parallel,
FCGA outperformed the problem generator in 16 of the 50
problem instances (Figure 6). FCGA solutions are measured
relative to the best known solution via a loss function where
loss is calculated as: (makespan − Cbest)/Cbest. Loss is
accumulated for each subset of problems to asses FCGA
performance.

Accumulated loss for problem instances [30×30], [40×40]
and [50×50] are 0.27, 0.52, and 0.42 respectively. The highest
total loss value for FCGA is 0.86 for [100 × 100] problem
instances. On a per problem basis this represents a small
amount of loss. The problem generator solutions have shown
to be an efficient reference point for large size problems.

The last part is concentrated on more complex problems
featuring 10 machines in each stage which is typically larger

Fig. 6. Compare FCGA and problem generator solutions for measuring the
algorithm performance on problems [20 × 20], [30 × 30], [40 × 40], [50 ×
50], [100× 100] with 5 machines in each stage.

than problems found in the literature. As it shown in Figure 7,
FCGA performs much better for the problems with the size of
[20×20], [40×40], [100×10],[100×20] and the highest total
loss is less than 0.2% for all problems. However, the loss value
increased by 0.77 for the problem set with size of [100× 60].
For really large size problems [100× 100] the loss goes up to
0.77 which is still small value for the FCGA performance on
that complexity.

Fig. 7. Compare FCGA and problem generator solutions for measuring the
algorithm performance on problems [20× 20], [40× 40], [100× 10], [100×
20], [100× 60], [100× 100] with 10 machines in each stage.

The problem generator could provide the superior solutions
for the truly large size problem and provide robust references
to assess the FCGA performance.

VI. CONCLUSION

The flexible flow line problem is an important representation
of many real world applications. Because of the complexity of
this problem, not only it is difficult to find optimal solutions,
but benchmark problems are also sparse. In this research a
formulation and a FCGA procedure for solving this problem
has been presented and discussed. A process for generating
problem set is also developed. The performance of FCGA is
tested, and the results show that FCGA can be used for solving
real world size problem with satisfactory solutions.

REFERENCES

[1] J. Błażewicz, K. H. Ecker, G. Schmidt, and J. Weglarz,
Scheduling in computer and manufacturing systems.
Springer Science & Business Media, 2012.

[2] R. Tavakkoli-Moghaddam, N. Safaei, and F. Sassani, “A
memetic algorithm for the flexible flow line scheduling
problem with processor blocking,” Computers & Opera-
tions Research, vol. 36, no. 2, pp. 402–414, 2009.

[3] A. Agnetis, A. Pacifici, F. Rossi, M. Lucertini, S. Nico-
letti, F. Nicolo, G. Oriolo, D. Pacciarelli, and E. Pesaro,
“Scheduling of flexible flow lines in an automobile
assembly plant,” European Journal of Operational Re-
search, vol. 97, no. 2, pp. 348–362, 1997.

[4] S. Piramuthu, N. Raman, and M. J. Shaw, “Learning-
based scheduling in a flexible manufacturing flow line,”
IEEE Transactions on Engineering Management, vol. 41,
no. 2, pp. 172–182, 1994.

[5] E.-H. Aghezzaf and H. Van Landeghem, “An integrated
model for inventory and production planning in a two-
stage hybrid production system,” International Journal
of Production Research, vol. 40, no. 17, pp. 4323–4339,
2002.

[6] J. Grabowski and J. Pempera, “Sequencing of jobs in
some production system,” European Journal of Opera-
tional Research, vol. 125, no. 3, pp. 535–550, 2000.

[7] Z. Jin, K. Ohno, T. Ito, and S. Elmaghraby, “Scheduling
hybrid flowshops in printed circuit board assembly lines,”
Production and Operations Management, vol. 11, no. 2,
pp. 216–230, 2002.

[8] H. D. SHERALI, S. C. SARIN, and M. S. KODIALAM,
“Models and algorithms for a two-stage production pro-
cess,” Production Planning & Control, vol. 1, no. 1, pp.
27–39, 1990.

[9] M. E. Kurz and R. G. Askin, “Comparing scheduling
rules for flexible flow lines,” International Journal of
Production Economics, vol. 85, no. 3, pp. 371–388, 2003.

[10] J. Schutten and R. Leussink, “Parallel machine schedul-
ing with release dates, due dates and family setup times,”
International journal of production economics, vol. 46,
pp. 119–125, 1996.

[11] T. Edwin Cheng and M. Y. Kovalyov, “Parallel machine
batching and scheduling with deadlines,” Journal of
Scheduling, vol. 3, no. 2, pp. 109–123, 2000.

[12] S. Webster and M. Azizoglu, “Dynamic programming
algorithms for scheduling parallel machines with family
setup times,” Computers & Operations Research, vol. 28,
no. 2, pp. 127–137, 2001.

[13] J. Blazewicz and M. Y. Kovalyov, “The complexity of
two group scheduling problems,” Journal of Scheduling,
vol. 5, no. 6, pp. 477–485, 2002.

[14] M. Azizoglu and S. Webster, “Scheduling parallel ma-
chines to minimize weighted flowtime with family set-
up times,” International Journal of Production Research,
vol. 41, no. 6, pp. 1199–1215, 2003.

[15] Z.-L. Chen and W. B. Powell, “Exact algorithms for
scheduling multiple families of jobs on parallel ma-
chines,” Naval Research Logistics (NRL), vol. 50, no. 7,

pp. 823–840, 2003.
[16] B. Lin and A. Jeng, “Parallel-machine batch scheduling

to minimize the maximum lateness and the number of
tardy jobs,” International Journal of Production Eco-
nomics, vol. 91, no. 2, pp. 121–134, 2004.

[17] S. Dunstall and A. Wirth, “A comparison of branch-
and-bound algorithms for a family scheduling problem
with identical parallel machines,” European Journal of
Operational Research, vol. 167, no. 2, pp. 283–296,
2005.

[18] R. Nessah, C. Chu, and F. Yalaoui, “An exact method for
problem,” Computers & Operations Research, vol. 34,
no. 9, pp. 2840–2848, 2007.

[19] S.-O. Shim and Y.-D. Kim, “A branch and bound al-
gorithm for an identical parallel machine scheduling
problem with a job splitting property,” Computers &
Operations Research, vol. 35, no. 3, pp. 863–875, 2008.

[20] E. Mehdizadeh, R. Tavakkoli-Moghaddam, and M. Yaz-
dani, “A vibration damping optimization algorithm for
a parallel machines scheduling problem with sequence-
independent family setup times,” Applied Mathematical
Modelling, vol. 39, no. 22, pp. 6845–6859, 2015.

[21] S. A. Brah and J. L. Hunsucker, “Branch and bound
algorithm for the flow shop with multiple processors,”
European journal of operational research, vol. 51, no. 1,
pp. 88–99, 1991.

[22] C. Rajendran and D. Chaudhuri, “An efficient heuristic
approach to the scheduling of jobs in a flowshop,” Eu-
ropean Journal of Operational Research, vol. 61, no. 3,
pp. 318–325, 1992.

[23] O. Moursli and Y. Pochet, “A branch-and-bound algo-
rithm for the hybrid flowshop,” International Journal of
Production Economics, vol. 64, no. 1, pp. 113–125, 2000.

[24] D. Santos, J. Hunsucker, and D. Deal, “Global lower
bounds for flow shops with multiple processors,” Euro-
pean Journal of Operational Research, vol. 80, no. 1, pp.
112–120, 1995.

[25] P. Fattahi, S. M. H. Hosseini, F. Jolai, and R. Tavakkoli-
Moghaddam, “A branch and bound algorithm for hy-
brid flow shop scheduling problem with setup time and
assembly operations,” Applied Mathematical Modelling,
vol. 38, no. 1, pp. 119–134, 2014.

[26] T. J. Sawik, “A scheduling algorithm for flexible flow
lines with limited intermediate buffers,” Applied stochas-
tic models and data analysis, vol. 9, no. 2, pp. 127–138,
1993.

[27] J. Jungwattanakit, M. Reodecha, P. Chaovalitwongse, and
F. Werner, “Algorithms for flexible flow shop problems
with unrelated parallel machines, setup times, and dual
criteria,” The International Journal of Advanced Man-
ufacturing Technology, vol. 37, no. 3-4, pp. 354–370,
2008.

[28] J. N. Gupta, “Two-stage, hybrid flowshop scheduling
problem,” Journal of the Operational Research Society,
vol. 39, no. 4, pp. 359–364, 1988.

[29] S. A. Brah and L. L. Loo, “Heuristics for scheduling in
a flow shop with multiple processors,” European Journal
of Operational Research, vol. 113, no. 1, pp. 113–122,

1999.
[30] M. E. Kurz and R. G. Askin, “Scheduling flexible flow

lines with sequence-dependent setup times,” European
Journal of Operational Research, vol. 159, no. 1, pp.
66–82, 2004.

[31] B. Akrami, B. Karimi, and S. M. Hosseini, “Two meta-
heuristic methods for the common cycle economic lot
sizing and scheduling in flexible flow shops with limited
intermediate buffers: The finite horizon case,” Applied
Mathematics and Computation, vol. 183, no. 1, pp. 634–
645, 2006.

[32] M. Jenabi, S. F. Ghomi, S. A. Torabi, and B. Karimi,
“Two hybrid meta-heuristics for the finite horizon elsp
in flexible flow lines with unrelated parallel machines,”
Applied Mathematics and Computation, vol. 186, no. 1,
pp. 230–245, 2007.

[33] D. Quadt and H. Kuhn, “Batch scheduling of jobs with
identical process times on flexible flow lines,” Interna-
tional Journal of Production Economics, vol. 105, no. 2,
pp. 385–401, 2007.

[34] R. Tavakkoli-Moghaddam, N. Safaei, and F. Sassani, “A
memetic algorithm for the flexible flow line scheduling
problem with processor blocking,” Computers & Opera-
tions Research, vol. 36, no. 2, pp. 402–414, 2009.

[35] S. Guirchoun, P. Martineau, and J.-C. Billaut, “Total
completion time minimization in a computer system
with a server and two parallel processors,” Computers &
Operations Research, vol. 32, no. 3, pp. 599–611, 2005.

[36] A. N. Shirazi, S. Manbir, and H. Alashwal, “Modified
genetic algorithm based on human cell mechanisms,” Soft
Computing, in prep.

[37] A. N. Shirazi, M. Steinhaus, and M. Sodhi, “Scheduling
flow line by fuzzy cell genetic algorithm,” International
Journal of Production Research, in prep.

[38] A. K. Brooke and A. D Meeraus, “Gams release 2.25; a
user’s guide,” GAMS Development Corporation, Wash-
ington, DC (EUA), Tech. Rep., 1996.

