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Abstract— In recent years, the demand for developing low
computational cost methods to deal with uncertainty in fore-
casting has been increased. Interval forecasting is a category of
forecasting in which the method provides intervals as outputs
of its forecasting. The initial aim of this paper is therefore
proposing a new interval forecasting method based on a low
cost and accurate forecasting method, namely first order Fuzzy
Time Series. In this study, the results of the proposed method
are compared with actual data and regular point forecasts using
Fuzzy Time Series. The evaluation of the results shows the
accuracy and promising performance of the proposed method.

Index Terms— Fuzzy Time Series, Uncertainty, Interval Fore-
casting

I. INTRODUCTION

In many practical forecasting problems, such as financial
and environmental time series, one can find challenging
behaviors and patterns inside the data which can turn its
analysis and prediction into a very hard task. In addition to
that, the volume of data is another significant challenge when
accurate, reliable, and fast forecasting methods are sought
for. This scenario motivated, in recent years, the development
of new methods of forecasting allying predictive performance
and low processing cost. One of these methods is Fuzzy
Time Series [1], which has been drawing some attention
and getting more relevance in recent years due to many
studies reporting its good accuracy compared with other
models [2]. Although these FTS methods have received some
criticism from the literature, see for instance [3], due to
methodological problems, many of these issues have been
approached in more recent papers [4].

Nevertheless, all forecasting problems are subject to dif-
ferent types of uncertainties, either related to imprecision in
the data due to measurement errors, sensor calibration and
other unknown factors, or related to the forecasting activity
itself, since not all characteristics of the underlying process
that generated the data might be modeled perfectly, leading
to errors in the forecast.

This fact led to the development of methods for Prob-
abilistic Forecasting [5] and Interval Forecasting [6], to
deal with forecasting uncertainty by estimating distributions
of possible values instead of a unique point forecast. In
wide sense, the Interval Forecasting can be viewed as a
particular case of the Probabilistic Forecasting, if we consider
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an uniform distribution between the bounds of the interval
forecast.

FTS models extend time series with the concept of fuzzy
sets, identifying patterns and relationships between these
fuzzy sets in the in-sample data. However, most papers
on FTS typically produce a point forecast defuzzyfying
the forecast value. In the literature of FTS, the methods
to produce interval forecasts are usually based on Type 2
Fuzzy Sets, as in [7] and [8]. The main drawback of these
techniques is the high computational cost demanded by the
Type 2 Fuzzy Sets.

The present study proposes a new approach for Interval
forecasting by extending FTS point forecast. The proposed
Interval Fuzzy Time Series ([I]FTS) is introduced to produce
not only the point forecast based on the midpoints of the
fuzzy sets but also an interval forecast based on the support
of those fuzzy sets in the fuzzy logical relationship groups
(FLRG) and using interval algebra. The proposed method is
simple and computationally cheap. To explain the details, the
paper is organized as follows: section II presents the related
literature, section III introduces the proposed Interval Fuzzy
Time Series model as an alternative method for forecasting
under uncertainty, section IV provides some experiments to
validate the proposed method and compare its performance
with that of other methods, and finally, section V concludes
the paper.

II. LITERATURE REVIEW

A. Fuzzy Time Series Models

Fuzzy Time Series (FTS) are non parametric models intro-
duced by Song and Chissom [1] based on Fuzzy Set theory
[9]. These methods are easy to implement and very flexible,
affording ways to deal with numeric and non-numeric data.
Some of FTS methods produce compact and human readable
models of the time series behavior using fuzzy rules which
can be used by business experts and researchers.

There are several categories of FTS methods, varying
mainly by its order and time-variance. The order indicates
how many time-delays (lags) are used in modeling the time
series. Given the time series data F , the First Order models
use F (t−1) data to predict F (t) and the High Order models
use F (t − 1), F (t − 2), ..., F (t − k) data to predict F (t).
Time varying models require updates of the current model
with time to produce new forecasts.

Song and Chissom [1] proposed the main steps of all FTS
methods but its computation demands many matrix opera-
tions for each forecasting making the process computationaly
expensive. Chen [10] simplified Song and Chissom’s algo-
rithm by creating the Fuzzy Logical Rule Groups (FLRG),



making the forecasting process cheaper by avoiding the use
of matrix manipulations. The FLRG represent the rule base
of the model and are human readable and easy to interpret.
Both methods are known as Conventional FTS models.

The initial step of training an FTS model is the partitioning
of the Universe of Discourse U , that is, the data range
covered by the training data that must be transformed into
fuzzy sets. This is certainly one of the most crucial steps
on fuzzy time series methods due to their influence on
forecasting accuracy. The number of intervals, the length
of these intervals and their midpoints are all parameters
that should be chosen carefully or indeed optimized. The
partitioning scheme initially proposed in Conventional FTS
is just the division of the data range in k equal length
intervals, the same method adopted hereafter in this work
just for simplicity. However, more accurate methods have
been proposed in the literature, we refer to [11] and [12] for
further details.

The generation of FLRG from the fuzzyfied data in
FTS model has, at least, two drawbacks: the lost of rule’s
recurrence and their chronological order. Thus at the fore-
casting process a very recurrent pattern of data has the same
importance of a unique occurrence pattern. Moreover, newer
and older patterns also have the same weight in the forecast.

To fix these drawbacks Yu [13] proposed the Weighted
Fuzzy Time Series (WFTS) model by including weights on
FLRG’s. These weights are monotonically increasing and
have a smoothing effect, giving more importance to the most
recent data on forecasting process.

The works of [14] and [15] present the Improved Weighted
Fuzzy Time Series (IWFTS) model and change the way
in which the weights are assigned to the RHS rules on
Yu’s model. The main difference is that the weights are
calculated by the recurrence of each rule, discarding the
chronological order. The Exponentialy Weighted Fuzzy Time
Series (EWFTS) method, proposed by Sadaei [16] and [17],
replaces the linear weight growth of WFTS model by an
exponential growth.

There are hybrid FTS techniques such as Askari and
Montazerin [18] that proposes a high-order multi-variable
FTS algorithm based on fuzzy clustering, Sadaei et al. [4]
combines statistical ARFIMA models with FTS for forecast-
ing of long-memory time series.

All these models have some common drawbacks. First, in
the forecasting step just one FLRG is choosen for computing
the result, based on the maximum membership between
the input value and all the FLRG’s. This causes the lost
of ”smoothing” effect of fuzzy methods, which demands
mixing many sets according to their fuzzy memberships .
Secondly, these models are point-based forecasters and give
no uncertainty measures about their results.

B. Interval Forecasting

Interval Forecasts generalize point forecasts to represent
and incorporate uncertainty [19], usually by estimating an
inter quantile range.

Parametric approaches include Chatfield [6], Gardner and
Everette [20]. These methods use strong statistical assump-
tions about data that can make it less useful where data is
not conforming.

Some non parametric approaches were developed to by-
pass the normality assumptions, for instance in Koenker [21],
Steinwart and Christmann [22] and Takeuchi [23]. However
these methods usually involve loss functions optimizations
or iterative approaches such as Markov Chain Monte Carlo
or Expectation-Maximization.

Quantile and Interval Forecasts have been used in a variety
of fields of forecasting including Wind Electrical Generation
[24], Supermarket Sales [25] and Power Load [26], [27],
[28].

Beyond the probabilistic uncertainty represented by these
quantile intervals other kind of uncertainty needs to be
represented, the fuzzy uncertainty. Intervals can be seen as
fuzzy sets projections on real line and common arithmetic
operations can be applied to them. These topological and
algebraic properties of intervals are discussed in [29], which
also discusses their relationships with fuzzy sets.

In the next section a new method of interval forecasting is
proposed. This method represents the fuzzy uncertainty by
extending the point-based FTS methods to incorporate the
fuzzy bounds on prediction.

III. THE INTERVAL FUZZY TIME SERIES - [I]FTS

Here a simple, fast and effective method is proposed to
deal with uncertainty, combining the flexibility of the FTS
models with the properties of Interval Forecasts without the
need to resort to parametric methods or optimization tech-
niques as in quantile estimation methods. The importance
of this is, for example, when the method is used in a high
sized data or on a fast streaming with concept drifts, which
demands the model to be frequently updated.

The Inverval Fuzy Time Series Model ([I]FTS) aims to
produce a prediction interval based of fuzzy bounds but with-
out probabilistic meaning. The method is described below in
two separated procedures: the model building procedure and
the forecasting procedure. The model training procedure is
based on [1] and [10] and aims to construct the FLRG rule
base:

Model building procedure:
1) Define the universe of discourse U from data D as

U = [Dmin −D1, Dmax +D2];
2) Partition the universe of discourse in k even intervals

ui of size (Dmax+D2)−(Dmin−D1)
k , where D1 and D2

are just numbers used to round Dmax and Dmin to
next integer multiple of 10 ;

3) Define the fuzzy sets Ai on the universe U . Each
fuzzy set will be related to an interval ui, will have a
midpoint mAi

and will be associated with a triangular
fuzzy membership function µAi

(x). The vector µAi
=

[µAi
(u1), .., µAi

(uk)] represents the membership val-
ues of fuzzy set Ai with the midpoints of all the ui
intervals;



4) Fuzzify historical data D, generating a new dataset
Df . Each datapoint di ∈ D will be replaced by the
fuzzy set Ak which has maximum membership value
µAk

(di);
5) From Df establish all the Fuzzy Logical Relationship

- FLR between two following sets in the format Aj →
Aj where Ai is a fuzzyfied value in time t and Aj is
the fuzzyfied value in time t + 1. After all the FLR’s
are generated, eliminate the duplicate rules;

Ai → Aj Ai → Ak Ai → Al

Aj → Aj Aj → Al Ai → Al

Ai → Aj Aj → Al Aj → Aj

(1)

6 Generate the FLRG - Fuzzy Logic Relationship Groups
by grouping the FLR’ by the left hand side (LHS) of
each rule and the right hand side (RHS) sets of each
rule will be grouped to form the right hand side of the
FLRG. For example, the group of FLR’s on Equation
1 will generate the FLRG on Equation 2.

Ai → Aj , Ak, Al

Aj → Aj , Al
(2)

The FLRG make up the rule base of the model and are
human readable and easy to interpret. An FLRG has the
form LHS → RHS where LHS always has one fuzzy set,
representing F (t−1) and the RHS has all the fuzzy sets that
followed LHS in the FLR’s, representing all possible F (t)
coming from F (t−1). The number and format of the FLRG
rule base is closely related with the variance and stationarity
of the dataset.

The forecasting procedure uses the generated model to
build prediction intervals based on the mean interval of the
RHS fuzzy sets on each FLRG weighted by their fuzzy
membership in relation to input value:

Forecasting procedure:
1) For a given input value F (t), find the membership

value µi for all Ai fuzzy sets;
2) Choose all FLRGs which LHS µi > 0;
3) Each choosen FLRG will generate a interval Ii =

[Iimin, Iimax] where Iimin is the minimum lower bound
of all RHS fuzzy sets of FLRG i and Iimax is the
maximum upper bound of RHS fuzzy sets of FLRG
i;

Iimin = min(A1, ..., Ak)
Iimax = max(A1, ..., Ak)

(3)

4) The final forecast interval If is calculated as the sum
of the FLRGs intervals weighted by the membership
value of each FLRG, as showed in Equation 4

If =

∑
i∈A µiIi∑
i∈A µi

=

∑
i∈A[µiIimin, µiIimax]∑

i∈A µi
(4)

The generated interval If is bounded by a composition
of the fuzzy sets bounds on the FLRG’s which have some
membership with the input value F (t) and is expected to
contain the true value F (t+1). In next sections we present a
demonstration of the method and propose a discussion about
its main characteristics.

A. Application example

For clarification of the method, let us take the University
of Alabama Enrollments dataset, retrieved from [30]. Using
a partitioning scheme with 6 equal-length intervals and
triangular membership functions we get the fuzzy sets listed
on table I, and the generated FLRG’s are listed in Equation
5.

Fuzzy Set Lower bound Midpoint Upper bound
A1 10612 12008 13404
A2 12008 13404 14800
A3 13404 14800 16196
A4 14800 16196 17592
A5 16196 17592 18988
A6 17592 18988 20384

TABLE I
PARTITION SCHEME FOR UNIVERSITY OF ALABAMA ENROLLMENTS

DATASET

A1 → A1

A2 → A2, A3

A3 → A3, A4

A4 → A3, A4, A5

A5 → A4, A6

A6 → A6

(5)

Given an input value F (t−1) = 16, 894, the membership
values for fuzzy sets will be zero except for µA4

= 0.5
and µA5

= 0.5. Picking the FLRG’s A4 → A3, A4, A5 and
A5 → A4, A6 we need to find the intervals I1 and I2 from
first and second FLRGs. Following the values of the fuzzy
sets the intervals will be I1 = [13404, 18988] and I2 =
[14800, 20384]. Now we can calculate the final interval If
as showed in Equation 6 and the same process is illustrated
in Figure 1. In figure 2 it is possible to check the interval
forecast along the time series.

If = [0.5·13404+0.5·14800 , 0.5·18988+0.5·20384]
0.5+0.5

= [14102, 19686]
(6)

B. Method Discussion

This model has three major improvements from the models
cited on section II-A: a) use of more than one FLRG on
forecasting process; b) weighting the forecast output by the
membership values of the input value; c) the interval forecast.
The last characteristic put this model at a different category
in time-invariant first-order fuzzy time series models. Other
non-interval FTS methods can be compared with the [I]FTS
by comparing their point forecasts with the midpoint of the
interval If .

The prediction interval has a different meaning from
intervals generated by parametric models and quantile based
methods cited on section II-B. The interval produced by this
model covers up the uncertainty of future values F (t + 1)
by their historical fuzzyfied values. First because the learned
model, represented by the FLRG’s, is a fuzzy description of



Fig. 1. Interval calculus from two FLRG’s

Fig. 2. Interval prediction over the University of Alabama Enrollments
dataset

past behaviors of data set assuming time invariance. Each
FLRG represents all possibilities of change from the actual
value F (t) (the LHS fuzzy set) to future value F (t+1) (one
or more of the RHS fuzzy sets). Then, forecasting F (t+ 1)
for this model is to find the lower and upper bounds of
the fuzzy uncertainty represented in the RHS fuzzy sets of
all FLRG’s related with F (t). The meaning of forecasted
interval If is the value range which contains the real value
given the fuzzyness of data.

There is no need to know the population’s statistical
parameters but the Universe of Discourse partitioning scheme
affects the precision of the model by changing the length of
forecast intervals. In Figure 3 and Table II, using same data
set as the previous section, the effects of partitioning scheme
on the intervals can be seen. It shows that the accuracy of the
intervals is adjustable by changing the partitioning scheme
of the model. This is indeed the unique required parameter
for this method.

In next sections we compare the effectiveness of this
proposed model with common FTS point forecasts methods
and study the properties of the forecast intervals.

Fig. 3. Effect of partition length on prediction interval length

Partitions Partition Length Interval Length
4 4711.5 6608.797
6 2792.0 4860.562

10 1507.7 2475.775

TABLE II
EFFECT OF PARTITION LENGTH ON PREDICTION INTERVAL LENGTH

IV. BENCHMARKS

Comparing point forecasts with interval forecasts is just
possible if we consider the midpoint of the interval, which
is the transformation of the interval forecast to a point
forecast. This is clearly not a good way to evaluate interval
forecasts but it makes possible to compare these two different
approaches. Further ahead in this section we describe the
properties of the proposed method results using interval
metrics as coverage, calibration and sharpness.

To measure the performance of the proposed model, two
well known financial time series data (the TAIEX and
NASDAQ data sets) were selected, where a cross-validation
method was applied for training and forecasting on test
data. The results were then compared with the methods of
Conventional FTS from Chen [10], Weighted FTS of Yu
[13], Improved Weighted FTS of Ismail and Efendi [14] and
Exponentialy Weighted FTS of Sadaei [3] models, all of them
trained with the same methods and data.

Fig. 4. TAIEX dataset sample used on benchmarks

The Taiwan Stock Exchange Capitalization Weighted



Fig. 5. NASDAQ dataset sample used on benchmarks

Stock Index (TAIEX)1, a well known economic time series
data commonly used in FTS literature ( [13], [31], [7], [32],
[4], etc) was sampled on 2005 to 2013 time window, and
has the averaged daily index by business day, totalizing
2000 instances where 1400 were used in training and the
remaining 600 in validation. At Figure 4 the sample time
series is shown, and the vertical line separates training
and validation sets. The National Association of Securities
Dealers Automated Quotations - Composite Index (NASDAQ
ÎXIC)2 was sampled on 2001 to 2008 time window, and has
the averaged daily index by business day, also totalizing 2000
instances where 1400 were used in training and the remaining
600 in validation. At Figure 5 the sample data is shown with
its train and test sub samples..

The accuracy metrics used to evaluate models are the
Mean Average Percent Error (MAPE), described in Equa-
tion 7, and Root Mean Squared Error (RMSE), described
in Equation 8, where Y means the real data and Ŷ the
forecasted values. The universe of discourse was partitioned
in a grid scheme, where all partitions have the same length.
Each model was trained and tested for 15, 20, 25, 30, 35 and
40 partitions and the results are shown in Table III.

MAPE =
1

n

n∑
i=1

∣∣∣∣∣Yi − ŶiYi

∣∣∣∣∣ (7)

RMSE =

√∑n
i=1(Yi − Ŷi)2

n
(8)

The results make clear the strong impact that the number
of partition intervals has on the accuracy of point forecasts.
The proposed model has a bit lower performance when
compared with the other models, but it is necessary to remind
that this comparisons is made over the midpoint of the
interval which is not the focus of the interval forecast. When
comparing the results in Figures 6 and 8 with all test data,
and Figures 7 and 9 with a smaller sample, the desired effect
of the interval forecast becomes more visible. The produced
intervals were capable of encapsulating the predictions of

1http : //www.twse.com.tw/en/products/indices/IndexSeries.php.
Access in 23/05/2016

2http : //www.nasdaq.com/aspx/flashquotes.aspx?symbol =
IXIC&selected = IXIC. Access in 23/05/2016

all other models and delimiting the boundaries of models
uncertainty.

Model Partitions TAIEX NASDAQ
RMSE MAPE RMSE MAPE

Chen

15 122.819 0.0136 36.024 0.0133
20 121.830 0.0128 36.144 0.0125
25 86.919 0.0091 40.993 0.0134
30 81.442 0.0083 38.666 0.0127
35 85.403 0.0088 46.687 0.0151
40 62.913 0.0066 44.855 0.0152

Yu

15 122.078 0.0135 37.625 0.0137
20 93.133 0.0104 35.670 0.0124
25 72.081 0.0079 38.877 0.0126
30 57.412 0.0062 34.853 0.0118
35 51.746 0.0056 42.749 0.0131
40 46.009 0.0050 47.745 0.0151
15 123.844 0.0136 39.501 0.0144

Ismail 20 93.049 0.0104 35.085 0.0122
& 25 72.036 0.0079 36.833 0.0124

Efendi 30 56.935 0.0061 39.087 0.0125
35 50.714 0.0055 47.795 0.0146
40 45.794 0.0050 49.429 0.0155

Sadaei

15 143.802 0.0146 42.840 0.0150
20 110.091 0.0116 36.678 0.0124
25 77.507 0.0080 35.252 0.0120
30 70.400 0.0073 36.120 0.0120
35 63.462 0.0065 45.432 0.0144
40 52.064 0.0053 48.615 0.0156

[I]FTS

15 77.684 0.0072 7.722 0.000
20 99.734 0.0097 17.213 0.0035
25 86.351 0.0081 29.061 0.0087
30 93.559 0.0093 26.268 0.0071
35 97.293 0.0097 36.609 0.0104
40 84.125 0.0080 31.743 0.0107

TABLE III
MODEL ERROR COMPARISONS

Now three main properties for interval forecasts must be
evaluated: coverage rate, calibration and sharpness, as pro-
posed in [33] and [24]. The coverage refers to the statistical
consistency between the forecasts and the observations, and
measures which proportion of the observations are inside the
interval. This can be done by a Indicator Function, developed
by [34], as shown in Equation 9. Given a forecasting interval
I = [α, β] and the real value y, the indicator function I
verifies if y is covered by I or not.

I(y, I) =

{
1 if y ∈ I
0 if y 3 I (9)

The coverage rate is the average value of indicator func-
tion between forecasted intervals and the real values, in
which the ideal value is 1. The coverage rate is shown at
Equation 10 where yi ∈ Y are the real values and Ii ∈ I
are the predicted intervals for these values.

C(Y, I) =

∑|Y |
i=1 I(yi, Ii)
|Y |

(10)

The property of sharpness and resolution refers to the
concentration of the predictive distribution, or how wide and
variable are the intervals and refers uniquely to the forecasts.
Sharpness, presented in Equation 11, is the average size of



Fig. 6. Forecasts for the whole TAIEX test data

Fig. 7. Forecasts for a small piece of TAIEX test data

Fig. 8. Forecasts for the whole NASDAQ test data

the intervals and resolution, presented in the equation 12, is
the variability of the intervals.

δ̄I =

∑|I|
i=1 δIi
|I|

=

∑|I|
i=1 βi − αi

|I|
(11)



Fig. 9. Forecastes for a small piece of NASDAQ test data

σI =

∑|I|
i=1 |δIi − δ̄I |
|I|

(12)

While small values of δ̄I are desirable, meaning a compact
interval, wide values of σI are best, meaning the capability
of the model to adapt the interval with the increase of un-
certainty. There’s no absolute reference values for sharpness
and resolution which depends on the statistical properties of
the data.

At Table IV it is possible to compare the coverage rate,
sharpness and resolution of the proposed model for each
number of partitions and each data set. This table shows that
in the worst case the real value is covered by the interval
in 94% of time even with thin intervals, by augmenting the
number of partitions. The effects of the number of partitions
in the length of intervals is also displayed at Figure 10 for
TAIEX data set. It is important to observe that the intervals
are not always evenly distributed around the real value, as
effect to the weighting of the fuzzy membership of input
value and the distribution of the intervals along the Universe
of Discourse, but will be inside the interval almost all time.

Partitions TAIEX NASDAQ
Cov. Sharp. Res. Cov. Sharp. Res.

15 1 1728.27 102.14 1 521.71 5.79
20 1 1333.61 88.97 1 385.84 20.39
25 1 1078.45 107.44 1 352.77 41.61
30 1 954.16 106.31 1 287.51 44.61
35 1 827.28 106.76 0.94 251.13 36.15
40 1 787.29 99.48 0.94 210.11 36.99

TABLE IV
COVERAGE, SHARPNESS AND RESOLUTION BY NUMBER OF PARTITIONS

These results show that the proposed method has similar
accuracy to the FTS methods with point forecasts and,
in reference of its interval properties, has good reliability
(or calibration) and adjustable sharpness according to the
number of the partitions on the Universe of Discourse.

Fig. 10. Forecasted intervals by number of intervals

V. CONCLUSION

Point forecasting methods has as its main general draw-
back the inability to measure the uncertainty of their results.
Depending on the field of application, knowing the uncer-
tainty associated with forecast is indispensable. A way to
introduce, and bound, the forecasting uncertainty is using
the Interval Forecasting methods such as Quantile Regres-
sion and Estimation. In the other hand, Fuzzy Time Series
methods have been gaining attention in recent years by their
simplicity and accuracy.

In this work a new method for interval forecasting is
proposed, using First Order Time Invariant Fuzzy Time
Series. This method extends classical model of [10] to
produce intervals and include two others innovations: new
weighting method based of membership value and the use
of multiple FLRG’s on the forecasting procedure.

The experiments with benchmarks, comparing some lit-
erature FTS models and the proposed method, shows its
effectiveness, with accuracy values near the point forecasters,
94% of coverage rate and adjustable sharpness.

A. Method Limitations

It has been observed on the benchmarks that this method
has a low resolution, therefore the forecasted intervals have
low variation independent of input. It is desirable that the



interval length has variations measuring the confidence of
that interval due to input value.

B. Future works

For the next works some improvements are planned:

1) Extending the proposed interval forecast to a proba-
bilistic forecast, producing a probability mass distribu-
tion as result;

2) Introducing a conditional probability distribution (or
Bayesian stochastic model) for calculating the transi-
tions of FLRG’s with time;

3) Weight the FLRG rules by their confidence of result
based on input values, thus correcting the resolution
issue.
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