
Genetic optimization of fuzzy membership functions
for cloud resource provisioning

Amjad Ullah, Jingpeng Li, Amir Hussain
Division of Computing Science and Mathematics

University of Stirling
Stirling FK9 4LA, UK

Email: {aul,jli,ahu}@cs.stir.ac.uk

Yindong Shen
School of Automation

Huazhong University of Science and Technology
Wuhan 430074, China

Email: yindong@hust.edu.cn

Abstract—The successful usage of fuzzy systems can be seen
in many application domains owing to their capabilities to
model complex systems by exploiting knowledge of domain
experts. Their accuracy and performance are, however, primarily
dependent on the design of its membership functions and control
rules. The commonly employed technique to design membership
functions is to exploit the knowledge of domain experts. However,
in certain application domains, the knowledge of domain experts
are limited and therefore, cannot be relied upon. Alternatively,
optimization techniques such as genetic algorithms are utilized
to optimize the various design parameters of fuzzy systems. In
this paper, we report a case study of optimizing the membership
functions of a fuzzy system using genetic algorithm, which is
an important part of our recently developed cloud elasticity
framework. This work aims to improve the overall performance
of the framework. Results obtained from this research work
demonstrate performance improvement in comparison with our
previous experimental settings.

Keywords–Fuzzy logic; cloud resource provisioning; cloud elas-
ticity; fuzzy membership functions parameters tuning; genetic
algorithms; adaptive population size.

I. INTRODUCTION

Cloud elasticity refers to the ability of a system to dy-
namically adjust the underlying computational resources in
response to changes in demands in a way that at each
time, the acquired resources closely match the demands, thus
satisfying performance goals while reducing system running
cost [1]. This definition indicates the following key purposes
of elasticity: avoidance of system performance degradation,
infrastructure capacity adjustments, minimizing running cost
and energy consumption [2]. In order to make use of Cloud
elasticity, an efficient elastic policy is needed to maintain
system performance at a desired level whilst minimizing the
running cost as well by adjusting the underlying computational
resources.

In this regard, we have recently proposed a new methodol-
ogy [3], [4] to handle cloud elasticity. The proposed method
utilizes multiple feedback controllers simultaneously, where
the selection of a suitable controller is realized through a
Fuzzy Rule Based System (FRBS) at runtime. The results in
[3], [4] demonstrate that our methodology has higher potential
to improve system performance and reduce running cost in
comparison to related state of the art elasticity approaches. The
FRBS is the important part of the framework and therefore,

this paper aims to find near optimal parameter settings for the
design of the used membership functions with an objective to
obtain more improved results, i.e. better system performance
by minimizing the Service Level Objective (SLO) violations
(explained in IV-B) and reduced system running cost.

An FRBS consists of two ingredients: (i) a Rule Base (RB)
which is a collection of IF-Then rules, and (ii) a Data Base
(DB) which contains the definitions and semantics for the
linguistic terms of fuzzy sets. The commonly used approach
of designing an FRBS is to acquire knowledge from domain
experts and represent it using a DB and an RB [5]. How-
ever, in certain application areas, the knowledge of domain
experts is limited and cannot be relied upon to implement an
FRBS. Therefore, to overcome this issue, various optimization
techniques have been used to determine the DB and RB of
an FRBS. The use of such techniques are mostly for the
following purposes: (i) to improve the accuracy by tuning the
definition of existing membership functions, (ii) to enhance the
interpretability by reducing the size of rule base, and/or (iii) to
obtain an FRBS with a better trade-off between accuracy and
interpretability [6], [7]. The scope of this paper is limited to
tuning the already available membership functions to improve
the accuracy of fuzzy system for the overall improvement
of our previously proposed methodology and ultimately the
system performance.

The commonly employed optimization techniques include
evolutionary approaches [6]–[8], where the tuning of fuzzy
membership functions is considered as a search problem. Evo-
lutionary approaches are best known for their ability to identify
near optimal parameter settings from a large search space
even in the absence of a precise description of the underlying
problem [6]. The evolutionary approaches based on the idea of
natural biological evolution, where the survival of the fittest
can be assured through natural processes such as randomly
created population followed by reproduction and mutation
[9]. The use of such techniques has successfully proven
their suitability and has the potential to solve optimization
problems from a wide range of domains. More specifically,
there has been an extended use of genetic algorithms for the
optimization of fuzzy systems, such as tuning membership
functions for regression problems [7], [10], inference engine
[11], [12], simultaneous learning of DB and RB [13] etc.

In this paper, we optimize the design of membership
functions of a fuzzy system, which is an important part of
our recently developed elasticity framework [3], [4]. For this
purpose, we exploit a Multi-Objective Evolutionary Algorithm
in combination with adaptive settings of population size and
crossover probability. The rest of the paper is organized as
follows. Section II provides a detailed overview of our existing
framework. Section III explains the problem in hand and the
parameters to be optimized, whereas Section IV describes
the details of the employed genetic algorithm. Section V
demonstrates the results obtained and Section VI concludes
the paper.

II. A MULTI-CONTROLLER BASED APPROACH FOR CLOUD
ELASTICITY

In our earlier work [3], [4], we proposed a new methodology
of cloud elasticity. This exploits the capability of multiple
elastic feedback controllers at a time whilst considering the
time-varying workload nature of web applications. The design
of individual controllers are realized using the distribution
of workload intensity into various categories namely low,
medium and high. Whereas, the selection of a suitable con-
troller amongst multiple controllers is realized at run time us-
ing an intelligent switching mechanism, which is implemented
using a fuzzy system. The block diagram of the framework is
provided in Figure 1 and the following sub sections explain
the various aspects of the framework.

A. Control Policy

In the proposed control methodology, the three employed
controllers are named as Lazy, Moderate and Aggressive. The
well known integral control law [14] is used for each one. The
performance metric used by our control methodology is the av-
erage CPU utilization, whereas the underlying computational
resources (i.e. virtual machines) are used as control input. The
methodology adjusts virtual machines to maintain the CPU
utilization at a desired reference point. The following equation
represent the applied integral control law in the context of our
methodology:

ut+1 = ut +Ki ∗ (yref − yt) (1)

ut+1 represents new number of virtual machines at each
iteration, while ut denotes the number of virtual machines at

Fig. 1: Resource provisioning framework using multi-
controller with fuzzy switching

that point of time. Ki is the integral gain parameter, which can
be obtained off-line using any standard procedure [14]. yref
and yt represent the desired and measured CPU utilization.

B. System Monitoring

This component exploit the cloud provided Application
Programming Interfaces (APIs) to obtain the up-to-dated status
of system metrics (such as current CPU utilization). The latest
information of the metrics represent the status of the system
and is therefore required to make informed decision.

C. Switching Mechanism

The switching mechanism is responsible for the selection of
a suitable controller at run time based on the current system
behaviour. This mechanism is a fuzzy system that obtain the
necessary information from system monitoring component and
enables the output of one controller. Any fuzzy system can
be constructed using the following three standard steps: (1)
specifying domain knowledge into fuzzy sets, (2) defining
membership functions, and (3) designing fuzzy rules. The brief
description of each step in the context of switching mechanism
is provided below.

• Domain knowledge: The design of the fuzzy system con-
sists of three inputs (Workload, ResponseTime, ControlEr-
ror) and one output (Controller). The Workload measure
in percentage represents the incoming traffic in a partic-
ular time period, ResponseTime indicates performance of
the system measured in terms of percentage Service Level
Objective (SLO) violations (explained in IV-B) occurred
in particular time period, and ControlError represents the
percentage difference between desired and measured CPU
utilization. Every input parameter is divided into three
linguistic terms. Whereas, the output parameter is divided
into four linguistic terms using the approach applied in
[15], but no overlapping is considered for the output case.

• Membership functions: Each linguistic term of the fuzzy
set in the fuzzy system is represented using a membership
function. The membership functions for all the linguistic
terms of each fuzzy set can be seen in Figure 2.

• Fuzzy rules: The fuzzy rules describe the relationship
between system inputs and outputs. In our case, the fuzzy
rules decide whether a scaling action is required or not.
If the output comes as no scaling then there is no action
required. Alternatively, a scaling action will be performed
using the controller selected. The following is an example
of our switching rules, where scale down operation is
performed using the Lazy controller.

IF

Possible values: high, middle or low︷ ︸︸ ︷
arrivalRate IS high AND

Possible values: fast, medium or low︷ ︸︸ ︷
responseT ime IS fast

AND error IS positive︸ ︷︷ ︸
Possible values: Positive, Negative or Normal

THEN controller IS lazy︸ ︷︷ ︸
Possible values: Aggressive, Moderate or Lazy

There are 13 rules in total, which are available in [4]. Note
that the focus of this paper is not to optimize these rules
but the membership functions only. To sum up, the switching
mechanism works as following at each iteration: the latest

µ

0

1

α1 α2 α3 α4

10 20 30 40 50 60 70 80 90 100

low middle high

Workload (Arrivalrate)

µ

0

1

β1 β2 β3 β4
5 10 15 20 100

fast medium slow

Response time

µ

0

1

θ1n θ2 θ3 θ1p
-100 -10 -5 0 5 10 100

negative normal positive

Control error

µ

0

1

σ2 σ1 σ4 σ3 σ6 σ5
4 8 12 16 20 24 28 32

no-scaling lazy moderate aggressive

Controller

Fig. 2: Membership functions

information regarding inputs are obtained from the System
Monitoring component and then fuzzified using the member-
ship functions as shown in Figure 2. The inference engine
then evaluates the rules to determine the output, i.e. no-scaling
or Controller. If the output is no-scaling then no action is
required, otherwise, the Switch component only enables the
output of selected controller.

III. DEFINITION OF PROBLEM AND PARAMETERS

The overall performance of our framework (described in
Section II) is primarily dependent on the design of switching
mechanism. In the current settings, the membership functions
used (i.e. Figure 2) are partially derived from the related
work [16] and others using trial and error approach. In this
research, we have focused on the possibility to improve the
overall performance of the framework by fine tuning the
design of the existing membership functions using a multi-
objective evolutionary algorithm. This section describes all the
necessary details in this regard including problem definition
and an overview of the parameters to be optimized and their
corresponding design ranges.

The role of a membership function in a fuzzy system is
to describe the information contained by fuzzy sets, which
helps in converting to/from, crisp and fuzzy values. The
membership function defines the degree of crisp value in the
range 0 to 1 in accordance to a given linguistic variable.
The membership functions can be of different types (e.g.
Triangular, Trapezoidal, Gaussian, Sigmoidal, etc.) and their
choice of selection is application dependent [17]. We have only
used triangular and trapezoidal because they are comparatively
simpler and efficient [18]. Irrespective of the type, every
membership function contains three key ingredients referred
as Support, Boundary and Core/Prototype [19]. They can be
seen from the triangular and trapezoidal functions in Figure
3 as examples for a typical fuzzy sets, whereas their brief
definitions summarized from [19] are given below:

• Support - The X refers the universe of a given fuzzy
variable. Thus for a given fuzzy set A, support refers to

µ(x)

0

1
Core

Support

Boundary Boundary

x

Trapezoid

µ(x)

0

1

Support

Boundary

Prototype

x

Triangular

Fig. 3: Ingredients of Membership functions

that region of the universe X , where all elements x ∈ X
are characterized by µA(x) > 0.

• Core/Prototype - For a given fuzzy set A, core refers to
that region of the universe X , where all elements x ∈ X
are characterized by complete membership of set A, i.e
µA(x) = 1. The prototype is characterized by the same
definition as core but with an exception that there is only
one such element where µA(x) = 1.

• boundary - Analogously, the boundary refers to that
region of the universe X , where all elements x ∈ X
are characterized by 0 < µA(x) < 1.

In light of the above definitions and the underlying tuning
problem, we are interested in finding out the near optimal
values of the above ingredients for each membership function
presented in Figure 2. The figure is marked with unique labels
in the format of αn, βn, θn and σn to represent a different
point over the universe. Each point is an independent parame-
ter, and its collection in a specific order defines the ingredients
of the membership function, e.g. the length from α1 to α4

identifing the support region for middle membership function
of the Workload variable. Similarly, the core and boundaries
will be calculated from these parameters automatically. For
example, the length from α1 to α2 defines boundary for low
and middle membership function, whereas the length from 0
to the value of α1 identifies the core for low membership
function. In total, 18 parameters can be seen in Figure 2.
However, we consider parameters (θ1n and θ1p) collectively as
one parameter, i.e. with the same value but different +/- sign.
Each parameter is assigned with a range of values, which are
given in Table I.

Fuzzy Variable Linguistic Terms
Start range — End range

Controller σ1 σ2 σ3 σ4 σ5 σ6
4 – 12 4 – 12 12 – 20 12 – 20 20 – 28 20 – 28

Workload α1 α2 α3 α4

15 – 35 30 – 50 50 – 70 60 – 80

Response Time β1 β2 β3 β4
2 – 10 6 – 10 10 – 16 16 – 20

Control error θ1n θ2 θ3 θ1p
-35 – -10 -20 – 0 0 – 20 10 – 35

TABLE I: The design range of each parameter

Apart from the above mentioned parameters, we also con-
sider the possibility of identifying the suitable defuzzification
operator from the list of commonly used operators, thus
increasing the total number of parameters to 18. The defuzzifi-
cation parameter is nominal and we have considered 4 different
standard defuzzification procedures.

The genetic algorithm in hand (explained in Section IV)
operates to explore the possibility to find out the near optimal
combinations of the above parameters that result in improved
performance of the proposed framework. However, during this
process, each combination of the parameters shall satisfy the
following constraints:

i α1 ≤ α2, α3 ≤ α4 and
ii β1 ≤ β2, β3 ≤ β4 and

iii θ1n ≤ θ2, θ3 ≤ θ1p and
iv σ1 ≥ σ2, σ3 ≥ σ4 and σ5 ≥ σ6.

The above constraints ensure that every developing fuzzy par-
tition should be either adjacent or overlapped with neighbour
partition. Thus confirming that every point x over the universe
must exist in at-least one of the support region. In light of these
constraints, if any generated solution does not satisfy the above
constraints during the evolution process, the solution will be
ignored without evaluation and will be replaced with another
valid solution that satisfies the above constraints.

IV. THE DESIGN OF FUZZY MEMBERSHIP FUNCTIONS
USING GENETIC ALGORITHM

The Genetic Algorithms (GAs) [9] are search mechanisms
based on the idea of genetics and natural selection. They are
iterative procedures, where they work on the population of
individuals (also referred to as chromosomes or solutions). The

algorithm usually starts with a randomly generated population
of solutions and aims to evolve towards better solutions by ap-
plying different genetic operations including natural selection,
recombination and mutation. Such algorithms are considered
very useful for problems that demands efficient search in the
largely available problem space [20]. Moreover, GAs have the
ability to identify near optimal parameter settings from a large
search space even in the absence of a precise description of the
underlying problem [6]. The following sub sections explains
the various details in the context of underlying problem.

A. Chromosome Encoding

The first stage of employing a GA for a problem is to
represent the chromosome in a way that is suitable to be
modified by the genetic operations. We have used the binary
encoding and represented the chromosome in a fixed size (64)
bits long binary string. Each parameter can be represented
using a fixed (L) number of bits, which are then concatenated
to form the binary string as following:

α1︷ ︸︸ ︷
b1..bL

α4︷ ︸︸ ︷
b1..bL︸ ︷︷ ︸

Workload(16)

β1︷ ︸︸ ︷
b1..bL

β4︷ ︸︸ ︷
b1..bL︸ ︷︷ ︸

ResponseT ime(12)

θ1︷ ︸︸ ︷
b1..bL

θ3︷ ︸︸ ︷
b1..bL︸ ︷︷ ︸

Error(16)

σ1︷ ︸︸ ︷
b1..bL

σ6︷ ︸︸ ︷
b1..bL︸ ︷︷ ︸

Controller(18)

DO︷︸︸︷
b1b2

The Workload, Response Time, Error and Controller are the
fuzzy variables, where DO is the defuzzification operator. The
length of each parameter in the binary string is relative to
the fuzzy variable. Thus, while during the decoding process,
the binary string is decomposed into five parts and then each
parameter except DO is decoded to get its corresponding value
using the following equation adapted from [19],

Ci = Cmini +
b

2L − 1
(Cmaxi − Cmini), (2)

where Ci represents parameter i, Cmini and Cmaxi represent
the minimum and maximum range for parameter i, b is
the corresponding decimal value of the binary bits, and L
represents the number of bits length for parameter i.

B. The Multi-Objective Fitness Criteria

The fitness function quantifies the quality of an individual
of a given population. The efficiency of a cloud resource
provisioning strategy can be measured in terms of performance
achievement. However, it is also necessary to take into account
the corresponding running cost of that strategy as we can al-
ways achieve better performance by acquiring more resources
than required. Therefore, a good strategy is to utilize the
resources as efficiently as possible, aiming to improve system
performance whilst reducing running cost.

Considering the multi-criterion nature of the underlying
problem, we employed a multi-objective genetic algorithm
with two objectives to obtain a set of Pareto optimal solutions
rather than one best solution. A brief description of the
objectives considered is given below:

i SLO violation: SLO stands for Service Level Objectives.
The SLO is measurable element of Service Level Agree-
ment (SLA), which defines the entire agreement between

a service provider and consumer specifying the details of
the contract between two parties. SLO is one particular
measurable unit of the SLA such as quality of service,
response time, throughput, etc. For the problem in hand,
we measure response time as a criterion to measure the
performance of the underlying system with a given elastic
policy. We consider that each service request must be
completed in a predefined desired time unit. An SLO
violation will be considered, if the execution time of a
service request takes more than the predefined desired time
unit.

ii Running cost: It refers to the cost of the computational
resources (Virtual machines), which are acquired to pro-
vide execution services to the job requests. Each acquired
resource is associated with a cost per time unit. Thus,
during the operation of an experiment, the execution time
of all acquired virtual machines are recorded and the cost
are calculated for the entire experiment.

We are interested in maximizing the system performance and
in the meantime minimizing the cost. Therefore, the lower the
values of SLO violation and cost, the better the quality of a
solution.

C. Employing Multi-Objective GA with Adaptive Attributes

The standard nondominated sorting algorithm-II (NSGA-II)
[21] is utilized to tackle the underlying problem. The NSGA-
II is a generic and commonly used standard algorithm to
solve multi-objective problems. The NSGA-II starts as other
evolutionary approaches with a population of competing solu-
tions. It then sorts and ranks every solution of the population
with respect to non-domination level followed by applying
genetic operations (selection, crossover and mutation) to create
offspring populations. The NSGA-II then takes the union
of parent and offspring populations followed by partitioning
of union in fronts. After this step, the NSGA-II applies a
mechanism called crowding distance to enhance the spread and
diversity of individuals followed by the step of elitism, where
the population for the next generation is selected from the non-
dominated individuals thus improving the convergence [22]. In
addition to NSGA-II, the following methods are employed:

i Adaptive population size: The benefits of employing adap-
tive population size approach are evident in optimization
literature (e.g. increase in speed [23], escape in stagnation
and diversity [24], etc.). Considering such benefits of
adaptive population size, we adopt the approach.
The lines from 6 to 12 in Algorithm 1 represent the method
of [23]. This method suggests that the population size will
be increased in two cases: (i) When fitness of offspring
population improves. This will make the algorithm biased
towards exploration of the population. (ii) When fitness of
the offspring population does not improve for a longer pe-
riod. This will help the algorithm to get out of stagnation.
If both of the above conditions are not fulfilled then the
population size will be reduced. The growth(41 and 42)
and shrink rate (5) can be adjusted as per the needs. We
use constant proportionate rates of 10% for 41, 15% for

Algorithm 1 The approach with adaptive population size [23]

1: Generate and initialize population
2: Evaluate every individual of the population
3: while not stopping criteria do
4: Selection, Recombine and Mutate
5: Evaluate every individual of the offspring
6: if best fitness improved then
7: Grow population size by rate 41

8: else if no improvement for long period then
9: Grow population size by rate 42

10: else
11: Shrink population size by rate 5
12: end if
13: Evaluate new individuals
14: end while

42) and 5% for 5. With reference to the bi-objectives
nature of the problem, we consider the condition of best
fitness improved, if the offspring individual is improved in
either objective.

ii Adaptive crossover probability: We also employ the ap-
proach of [27], which computes the probabilities of genetic
operations (crossover and mutation) on runtime in accor-
dance to the fitness values of the current population. This
technique helps to maintain population diversity as well
as strengthen converge capacity. According to the method,
the probabilities are increased when the GA ceases in
local optimum, whereas they are decreased, when the
individuals are well dispersed in the solution space. The
following equation from [27] derives the value of crossover
probability:

pc =

{
k1(fmax − f

′
)/(fmax − f̄), f

′ ≥ f̄
k2, f

′
< f̄

(3)

fmax represents the best fitness of the population, f̄ the
average fitness, and f

′
the best fitness among the parents,

which have to be recombined during crossover operation.
The value of k1 and k2 can be between 0 and 1. We use the
value 1 for both k1 and k2 as per the recommendations of
[27]. These values ensure that all those solution, for which
the fitness is below or equal to the average fitness must go
through crossover operation. The probability of crossover
decreases for solutions when their fitness values are better
than the average fitness, and tends to zero as the fitness
value reaching to the value of best fitness solution.

V. COMPUTATIONAL RESULTS

A. Experimental Set-up

We have previously set-up an experimental environment
that includes a prototypical implementation of our elasticity
framework. This includes the integration of a well known
Java based cloud simulator termed as CloudSim [28] and a
Java library named JFuzzylogic [29] to deal with FRBS. In
this paper, we have extended the experimental environment

10

20

30

40

50

60

00 01 02 03 04
Time (Hours)

R
e
q

s
 P

e
r

M
in

 (

1
 *

 1
0
0
0
)

(a) Worldcup [25]

20

30

40

00 01 02 03 04
Time (Hours)

R
e
q

s
 P

e
r

M
in

 (

1
 *

 1
0
0
0
)

(b) Nasa [26]

10

20

30

40

50

00 01 02 03
Time (Hours)

R
e
q

s
 P

e
r

M
in

 (

1
 *

 1
0
0
0
)

(c) Dualphase

Fig. 4: Various workloads used for experimentation

by incorporated a well known Java based optimization library
called jMetal [30] to utilize NSGA-II.

For the experimentation, we consider that elasticity frame-
work manages a cluster of virtual machines on behalf of a
web application. Each incoming web (http) request is therefore
considered as a job for the framework. Each job is associated
with a pre-defined service time, which arrives at a specific
time. The arrival time represents the actual arrival of that
http request obtained from real traffic workloads use for
the experimentations, whereas service time of each job is
randomly assigned between (10 to 500 millisecond). An SLO
violation will be considered, if the execution of a job takes
more than 1 second. The gain parameters used are the same
as in [3] (i.e. Lazy=-0.06, Moderate=-0.7 and Aggressive=-
1.1) to conduct the experimentation.

One experiment consists of full evaluation of a case sce-
nario, i.e. the execution of GA for a given test scenario with
different workload. In each iteration, every individual is the
design parameter settings of all membership functions, which
will be evaluated from the elasticity framework in terms of
number of SLO violations and cost.

Workload Cost SLO
Nasa 101.64 36436

Worldcup 105.97 402180
DualAuck 100.82 102321

TABLE II: Results obtained using existing membership func-
tions (Figure 2)

B. Results and Analysis

The various real workload traces utilized for the conducted
experiments are provided in Figure 4. Each workload trace
represents a different scenario. The result are recorded for
each individual in terms of the multi-objective criteria, i.e. the
number of SLO violation and the cost during all experiments.
The Pareto fronts obtained from each workload scenario can
be seen in Figure 5. Considering the trade-off between the
evaluation objectives, it is difficult to decide the best solution
in each scenario. However, in order to analyse the efficiency of
the applied optimization method, we compare some aspects of
the Pareto fronts with the results obtained using our existing
membership functions. The key reasons behind this com-
parison are twofold. Firstly, the unavailability of knowledge
regarding true optimum. Secondly, to answer whether applying
optimization method can enhance the design of membership
functions for the overall performance improvement of our
existing elasticity framework.

The results in Table II are obtained using our existing
settings, where Table III demonstrates results of some selected
solutions from Pareto fronts. Following the approach from
[20], [31], we calculate Relative Percentage Deviations (RPD)
using the following equations in order to assess the quality
of the selected Pareto fronts solution in comparison with the
quality of results in Table II.

RPDcost = (
GAcost − Existingcost

Existingcost
) ∗ 100 (4)

●

●

●

●
● ●

●

●

●

●

●

●

●

●
●

●

●
●

●●

●

●

●

●●

●●●●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

● ●

●

●
●

●

●

●

●

●

1e+05

2e+05

3e+05

4e+05

100 110 120 130
Cost ($)

S
L

O
 V

io
la

ti
o

n
s

(a) Worldcup

●●

●

● ●●

●
●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●●●

●

●●

●●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

1000

1500

2000

2500

3000

97.5 100.0 102.5 105.0
Cost ($)

S
L

O
 V

io
la

ti
o

n
s

(b) Nasa

●●

●

●

●

●

●

●

●

● ●●

●

●

●●

●

●● ● ●● ●

●

● ●● ●● ●●

●

●

●

●●

●

●● ●● ●●

●

●

●

●

●

●● ●● ●●

●

●

●0

20000

40000

60000

90 92 94
Cost ($)

S
L

O
 V

io
la

ti
o

n
s

(c) Dualphase

Fig. 5: The Pareto front of each workload scenario

Workloads Cost wise best SLO wise best Combined best
Cost RPDcost SLO RPDslo SLO RPDSLO Cost RPDcost Cost RPDcost SLO RPDslo RPDcost+slo

Nasa 97.21 -4.35 3184 -91.26 980 -97.31 106.55 4.83 98.75 -2.85 1916 -94.74 -97.59
Worldcup 98.90 -6.67 464228 15.43 47878 -88.10 130.31 22.97 101.63 -4.09 53391 -86.72 -90.82
DualPhase 89.06 -11.66 59599 -41.75 327 -99.68 95.29 -5.49 94.06 -6.71 344 -99.66 -106.37

TABLE III: Some selected (best) solutions from Pareto fronts

RPDslo = (
GAslo − Existingslo

Existingslo
) ∗ 100 (5)

The RPD value of each objective specifies the percentile
variation in comparison with the existing result. A positive
RPD value shows the percentage degradation of the quality in
comparison with the existing results, where a negative RPD
value represents the percentage improvement in the quality.
This implies that the lower the value of RPD, the better the
quality of results.

Table III presents the results in three aspects: (i) Cost wise
best highlighting the result, which is the best in terms of Cost
objective, (ii) SLO wise best showing the best results in terms
of SLO objective, and (iii) combined best presenting the best
results with respect to lowest RPD value after adding the
RPDcost and RPDslo together for each solution assuming
both objectives are equally important. It is evident from Table
III that results are improved in all aspects. More specifically,

i Considering the importance of any individual objectives
(i.e. either Cost or SLO), we can see that the results are
improved in every scenario (i.e. using various workloads).

ii Considering the scenario, where both objectives are
equally important, it is evident that the best solution in
every test scenarios is improved significantly.

This indicates that the existing membership functions have
the possibility to be improved, which can increase the overall
performance of our framework and by using multi-objective
GA, we can obtain better parameter settings for the underlying
membership functions.

VI. CONCLUSION

In this paper, a multi-objective genetic algorithm is ex-
ploited to address the issue of designing fuzzy membership
functions as an optimization problem. The problem is tackled
for a particular fuzzy system, which is an extension of cloud
elasticity framework developed recently. The multi-objective
genetic algorithm searches for better design parameters of
target membership functions that result in improved system
performance in comparison with the existing settings. The
results are evaluated using two objectives of conflicting nature
from cloud elasticity context, i.e. the number of SLO violations
and cost. The experimental results indicate that the system
performance can be improved significantly using the parameter
settings obtained from evolutionary algorithm in comparison
to our existing parameter settings.

ACKNOWLEDGMENT

The research described in this paper was funded by the
UK Engineering and Physical Sciences Research Council
(EPSRC), under grant EP/J017515/1. The work is also sup-
ported by Natural Science Foundation of China (under grants
71571076 and 71171087). A. Hussain was supported by the
EPSRC grant no. EP/M026981/1.

REFERENCES

[1] Nikolas Roman Herbst, Samuel Kounev, and Ralf Reussner. Elasticity
in cloud computing: what it is , and what it is not. In 10th International
Conference on Autonomic Computing, pages 23–27, 2013.

[2] Guilherme Galante and Luis Carlos E De Bona. A survey on cloud
computing elasticity. In Proceedings - 2012 IEEE/ACM 5th International
Conference on Utility and Cloud Computing, UCC 2012, pages 263–270,
2012.

[3] Amjad Ullah, Jingpeng Li, Amir Hussain, and Erfu Yang. Towards
a Biologically Inspired Soft Switching Approach for Cloud Resource
Provisioning. Cognitive Computation, pages 1–14, 2016.

[4] Amjad Ullah, Jingpeng Li, and Amir Hussain. Towards workload-aware
cloud resource provisioning using a multi-controller fuzzy switching
approach. International Journal of High Performance Computing and
Networking, 2016.

[5] Pietro Ducange and Francesco Marcelloni. Multi-objective Evolutionary
Fuzzy Systems. In WILF, pages 83–90. Springer, 2011.

[6] Michela Fazzolari, Rafael Alcala, Yusuke Nojima, Hisao Ishibuchi,
and Francisco Herrera. A review of the application of multiobjective
evolutionary fuzzy systems: Current status and further directions. Fuzzy
Systems, IEEE Transactions on, 21(1):45–65, 2013.

[7] Rafael Alcalá, Marı́a José Gacto, Francisco Herrera, and Jesús Alcalá-
Fdez. A multi-objective genetic algorithm for tuning and rule selection
to obtain accurate and compact linguistic fuzzy rule-based systems.
International Journal of Uncertainty, Fuzziness and Knowledge-Based
Systems, 15(05):539–557, 2007.

[8] Francisco Herrera. Genetic fuzzy systems: Taxonomy, current research
trends and prospects. Evolutionary Intelligence, 1(1):27–46, 2008.

[9] David E Goldberg. Genetic Algorithms in Search, Optimization, and
Machine Learning, volume Addison-We. 1989.

[10] Marı́a José Gacto, Rafael Alcalá, and Francisco Herrera. Integration of
an index to preserve the semantic interpretability in the multiobjective
evolutionary rule selection and tuning of linguistic fuzzy systems. IEEE
Transactions on Fuzzy Systems, 18(3):515–531, 2010.

[11] Antonio A Márquez, Francisco Alfredo Márquez, and Antonio Peregr’in.
Rule Base and Inference System Cooperative Learning of Mam-
dani Fuzzy Systems with Multiobjective Genetic Algorithms. In
IFSA/EUSFLAT Conf., pages 1045–1050, 2009.

[12] Antonio A Márquez, Francisco A Márquez, and Antonio Peregrı́n. A
multi-objective evolutionary algorithm with an interpretability improve-
ment mechanism for linguistic fuzzy systems with adaptive defuzzifica-
tion. In Fuzzy Systems (FUZZ), 2010 IEEE International Conference
on, pages 1–7. IEEE, 2010.

[13] Rafael Alcalá, Pietro Ducange, Francisco Herrera, Beatrice Lazzerini,
and Francesco Marcelloni. A multiobjective evolutionary approach to
concurrently learn rule and data bases of linguistic fuzzy-rule-based
systems. IEEE Transactions on Fuzzy Systems, 17(5):1106–1122, 2009.

[14] Joseph L Hellerstein, Yixin Diao, Sujay Parekh, and Dawn M Tilbury.
Feedback control of computing systems. John Wiley & Sons, 2004.

[15] Rudwan Abdullah, Amir Hussain, Kevin Warwick, and Ali Zayed.
Autonomous intelligent cruise control using a novel multiple-controller
framework incorporating fuzzy-logic-based switching and tuning. Neu-
rocomputing, 71(13):2727–2741, 2008.

[16] Pooyan Jamshidi, Aakash Ahmad, and Claus Pahl. Autonomic resource
provisioning for cloud-based software. In Proceedings of the 9th
International Symposium on Software Engineering for Adaptive and Self-
Managing Systems, pages 95–104. ACM, 2014.

[17] Chuen-Chien Lee. Fuzzy logic in control systems: fuzzy logic controller.
II. IEEE Transactions on systems, man, and cybernetics, 20(2):419–435,
1990.

[18] Kevin M Passino, Stephen Yurkovich, and Michael Reinfrank. Fuzzy
control, volume 42. Addison-wesley, Menlo Park, CA, 1998.

[19] Timothy J. (University of New Mexico) Ross. Fuzzy logic with
engineering applications. 2010.

[20] Jingpeng Li and Kwan Raymond. A fuzzy genetic algorithm for driver
scheduling. European Journal Of Operational Research, 147(2):334–
344, 2003.

[21] Kalyanmoy Deb, Amrit Pratap, Sameer Agarwal, and T. Meyarivan.
A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE
Transactions on Evolutionary Computation, 6(2):182–197, 2002.

[22] Carlos a Coello Coello, Gary B Lamont, and David a Van Veldhuizen.
Evolutionary Algorithms for Solving Multi-Objective Problems Second
Edition. 2007.

[23] Agoston Endre Eiben, Elena Marchiori, and V A Valkó. Evolutionary
Algorithms with On-the-Fly Population Size Adjustment. Parallel
Problem Solving from Nature, (PPSN VIII), 3242(8):41–50, 2004.

[24] Michael Affenzeller, Stefan Wagner, and Stephan Winkler. Self-adaptive
population size adjustment for genetic algorithms. Computer Aided
Systems Theory . . . , pages 820–828, 2007.

[25] Internet Traffic Archive. Worldcup 1998 Web trace, 2015.
[26] Network Traffic Archive. Nasa-HTTP, 2015.
[27] M. Srinivas and L. M. Patnaik. Adaptive Probabilities of Crossover and

Mutation in Genetic Algorithms. IEEE Transactions on Systems, Man
and Cybernetics, 24(4):656–667, 1994.

[28] Rodrigo N Calheiros, Rajiv Ranjan, Anton Beloglazov, César A F De
Rose, and Rajkumar Buyya. CloudSim: a toolkit for modeling and
simulation of cloud computing environments and evaluation of resource
provisioning algorithms. Software: Practice and Experience, 41(1):23–
50, 2011.

[29] Pablo Cingolani and Jesus Alcala-Fdez. jFuzzyLogic: a robust and
flexible fuzzy-Logic inference system language implementation. In
FUZZ-IEEE, pages 1–8. Citeseer, 2012.

[30] Juan J. Durillo and Antonio J. Nebro. JMetal: A Java framework
for multi-objective optimization. Advances in Engineering Software,
42(10):760–771, 2011.

[31] Jingpeng Li. Fuzzy Evolutionary Approaches for Bus and Rail Driver
Scheduling. PhD thesis, University of Leeds, 2002.

