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Răzvan Andonie
Computer Science Department
Central Washington University

Ellensburg, USA
and

Electronics and Computers Department
Transilvania University, Braşov, Romania
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Abstract—The quality of wines can be assessed both from
chemical/biological tests and sensory tests (which rely mainly
on human experts). Determining which is the subset of tests to
be used is a difficult problem. Each test has its own contribution
for predicting the quality of wines and, in addition, its own cost.
We use our own database, consisting of 32 wine characteristics
applied to 180 wine samples. In addition we use wine quality
labels assigned by a wine expert. To the extent of our knowledge,
this is the first study of this kind on wines from Washington
State, and also the first wine study in general to include cost
minimization of the measurements as a goal. Our approach is
based on two stages. First, we identify reasonably good classifiers
(from a given set of classifiers). Next, we search for the optimal
subset of features to maximize the performance of the best
classifier and also minimize the overall cost of the measurements.
As a result, through our method we can answer queries like “the
best performing subset of tests for a given threshold cost”.

I. INTRODUCTION

Home to Microsoft, Boeing, Starbucks, Costco, Expedia,
and Amazon, Washington State is also a premium wine
producing region that is (after California) the second largest
producer in the USA, with more than 50,000 acres (20,234
hectares) of vines and more than 850 wineries (Washington
State Wine Commission1, 2016). The wine industry has be-
come a respected and influential $4.4 billion-plus business
within Washington State. Washington wine is available in
50 states and more than 40 countries globally. Washington
State has a diversity of landscapes, from evergreen coasts and
snow-capped mountains to a sagebrush desert, consisting of 13

1http://www.washingtonwine.org/

unique growing regions. More than 40 grape varieties are cul-
tivated, including Riesling, Chardonnay, Cabernet Sauvignon,
Merlot and Syrah.

Cabernet Sauvignon is a variety grown around the world
in diverse soils and climates, each of which produces very
different styles of wine. This varietal is characterized by thick
skin, moderate to high acidity, full body, strong tannins and
an affinity for oak aging. Flavor characteristics include black
and red fruits, blackberry, black currant, plum, black cherries,
mint, and tobacco among many others.

Wine certification and quality assessment are key elements
within the wine industry. Quality evaluation is often part of
the certification process and can be used to improve wine
making by identifying the most influential factors. The quality
of wines can be assessed both from chemical/biological tests
(determination of alcohols, acidity, reduced sulfur, bacteria,
etc.) and sensory tests (which rely mainly on human experts).
However, since taste is the least understood of the human
senses [1] and no clear relationship exists with biochemical
markers [2], sensory testing remains difficult to formalize.
Here, we attempt to finding the most cost efficient set of
biochemical markers that allow for optimal characterization
of wine quality as determined by an expert.

Finding which is the subset of tests to be used is a difficult
problem. Each test has its own contribution for predicting the
quality of wines and, in addition, its own cost. Therefore,
choosing the optimal subset of tests from a set of biochemical
tests is a multi-criterial hard optimization problem. Mean-
while, using wine experts to assess the quality of wines
has its own drawbacks: subjective judgments, expensive, lack



of experts, etc. It would be highly beneficial to the wine
producers to create a set of tests to automatically predict the
quality of wines.

Smaller wineries often lack access to biochemical testing
and analysis technology for detection of faults. This may
result in entire lots of wine affected by one or more faults,
creating a lower quality wine. In some cases, the quality is
so severely impacted that the wine cannot be sold. This can
clearly impact the financial state of the individual winery, but
will also have an impact on its contribution to the local, state,
and national economy. It is therefore important to understand
the nature of wine faults and to be able to classify efficiently
wines according to their quality, in particular when faults are
imminent at the low quality end.

In real-world applications, we have a large variety of wines,
chemical/biological tests, and machine learning tools. At some
point, each wine producer chooses the right combination of
these in order to optimize the decision process. Almost all
previous data mining studies on wines were performed on
relatively small datasets (both in terms of number of wines
and number of features) because obtaining such datasets is
expensive, a dataset cannot be re-used for “similar” wines,
and labeling the wines by human experts is also costly.

Each measurement is associated with a cost that can vary
widely from one test to another. This makes such comprehen-
sive testing prohibitively expensive for routine work. There-
fore, only small datasets exist that allow for a relationship
analyses between biochemical characteristics and quality of
wine.

We seek to tackle this issue with two layers of optimization
by finding a) the ”best” classifier from a family of models and
b) the optimal subset of features to maximize the performance
of this classifier, while minimizing the overall cost of analysis.

In our study, we use 60 randomly chosen Washington State
Cabernet Sauvignon wines for analysis and three bottles of
each wine are tested, resulting in a total of 180 wine samples.
A series of 30 biochemical tests are performed on each wine.
Two additional features (age and region) are added to the input
features. Each wine is labeled by a human expert into six
categories, according to its overall quality. Our strategy is to
train a statistical classifier - considering supervised training,
to predict the wine quality for unseen wines.

To the extent of our knowledge, this is the first study
of this kind on wines from this region and also the first
wine study in general to include cost minimization as a goal.
Compared to similar studies, our dataset is large (more wines
and more biochemical tests). We use several classifiers and
feature selection tools and try to find an optimal subset of
tests which could be used to simultaneously maximize the
prediction performance of wine quality and minimize the
overall cost of the measurements.

The remaining part of the paper is structured as follows.
Section II presents similar approaches reported in the liter-
ature. Section III describes the dataset and the attributes of
the 180 wine samples. Section IV introduces the wine quality
prediction method. Section V presents experimental results

with their interpretation. Section VI concludes with some final
remarks.

II. RELATED WORK

In wine technology, machine learning can be used for
classification of wines according to origin, producers, type,
and for optimization of wine blending and electronic nose
for sensory analyses. Neural classifiers and discriminant tech-
niques have been used to classify, verify the wine origin, or
predict properties of: Chilean wines [3], Slovak wines [4], [5],
Montelpuciano d’Abruzzo Italian wines [6], Canary Islands’
wines [7], Romanian wines [8], Spanish wines [9], [10], [11],
Portuguese wines [11], and Italian wines from Atripalda [12].
Neural-network-assisted optimization of wine blending was
proposed in [13], [14].

A. Methods

An overview of neural network applications in wine technol-
ogy can be found in [15]. A variety of machine learning meth-
ods have been used: multilayer perceptron (MLP) using quick-
propagation and quasi-Newton propagation training [4], [8],
MLP using backpropagation [11], [12], [14], time delay neural
networks trained with the MLP Levenberg-Marquadt method
[16], linear discriminant analysis [6], neuro-fuzzy models
[12], MLP trained with the Broyden-Fletcher-Goldfarb-Shano
learning rule [13], stepwise linear discriminant analysis and
neural networks [9], decision trees [17], [18], principal com-
ponent analysis (PCA) and cluster analysis (k-means) [19],
probabilistic neural networks [8], least-squares support vector
machines (SVMs) [20], [21], Kohonen self-organizing maps
[7], etc.

From a machine learning perspective, a complex study can
be found in [10]. The objective of that study was to find
a classification model able to precisely differentiate between
existing grape varieties (i.e., assuring the authenticity), and to
assess the discriminatory power of different family compounds
over the following classifiers: SVMs, random forests, MLPs,
k-neighrest neighborks, and naı̈ve Bayes. Given the fact that
PCA was not able to accurately separate all the wine varieties,
the best classification accuracy was obtained by the random
forest algorithm. Although the random forest algorithm was
able to perfectly classify all the grape origins, this was only
possible when using all input features. The MLP classifier
was the most accurate algorithm when dealing with less
information.

B. Datasets

Machine learning depends largely on the datasets used
for training. The well-known Wine dataset from the UCI
repository2 which contains 178 examples, with measurements
of 13 chemical constituents, is less relevant in our case since
it is very easy to discriminate and has been mainly used as a
benchmark for new classifiers. Collecting data from wine sam-
ples is generally a tremendous logistic problem and financial
burden is associated with the analytical measurements. This

2https://archive.ics.uci.edu/ml/datasets/Wine



explains why existing published datasets are generally small
(with the exception of the dataset introduced in [22]):

• Urtubia et al. [19] performed the chemical analysis of
29 compounds taken around-the-clock, which produced
around 22,000 measurement data.

• Chandra et al. [17] used 178 wine samples with 13
chemical descriptors (features).

• Kruzlikova et al. [4] used 36 samples characterized by 19
attributes. They selected the most relevant seven features
for their classifier.

• Chichelli et al. obtained their data from the chemical
analysis of 116 wine samples [6].

• Aires-De Sousa et al. [11] analyzed 21 samples on the
basis of 15 anthocyanin3 contents.

• Magarino et al. measured 19 features in 70 wines [9]. The
effect of each input feature on the wine classification was
evaluated in the form of the causal index, calculated from
the trained neural networks.

• Bednarova et al. [5] conducted analyses for 739 wine
samples to determine 11 enological measurements used
as input features for their neural classifier.

• Gomez et al. [10] identified and quantified 41 volatile
compounds of a total of only 42 wine samples.

• Hosu et al. [8] analyzed 81 wine samples using six
analytically measured characteristics.

• In [21], Yu et al. used spectral measurements from 147
bottles to predict three categories of rice wine age.

• Yamazaki et al. generated their dataset automatically [16].
Sensors connected to a computer where exposed to the
samples. This explains why this database is in the order
of thousands.

The wine quality dataset, created by Cortez et al. and
available from the UCI repository4, is significantly larger
and has been used by several authors as a benchmark for
wine quality prediction methods [22], [18], [23]. It contains
4898 wine samples related to red and white variants of the
Portuguese vinho verde wine, each with 11 physico-chemical
attributes (fixed acidity, volatile acidity, citric acid, residual
sugar, chlorides, free sulfur dioxide, total sulfur dioxide,
density, pH, sulphates, alcohol) and one sensory data attribute
(a quality score).

Practically, each study uses a different set of measurements.
This is also because the contemporary global wine industry
is inherently geographical, the origins of the grapes being a
predominant factor in the promotion of the product. Typically,
researchers in the aforementioned studies pick the physico-
chemical tests to be performed and, in some cases, look
for the optimal subset of tests (feature selection), using the
performance of the classifier as a fitness function. In addition,
in some studies, optimal classifiers were sought for a particular
application, from a list of considered classifiers.

3Anthocyanins are water-soluble vacuolar pigments that may appear red,
purple, or blue depending on the pH.

4https://archive.ics.uci.edu/ml/datasets/Wine+Quality

C. Wine quality prediction

Wine quality can be assessed by biochemical measurements.
For instance, the Vis-NIR spectrometer system was suitable
for wine quality determination [24]. In contrast to this, we
focus here on wine quality assessed by human experts and we
attempt to predict human wine taste preference by relating it
to a wide range of biochemical analytical techniques. There
are only few reported results on this topic [22], [18], [23].

In [22], each wine from the wine quality dataset was
graded by experts, on a scale from 0 to 10. The authors
adopted a regression approach, which preserves the order of
the preferences: if the true grade is 3, then a model that
predicts 4 is better than one that predicts 7. The regression
model was trained in a supervised way to predict wine
quality. The SVM regression with Gaussian kernel proved to
provide the prediction best performance. Sensitivity analysis
(as a fitness criterion) combined with the backward selection
method were used for feature dimension reduction. The vari-
able and model selection is performed simultaneously: in each
backward iteration several SVM hyperparameters are searched,
with the one that presents the best generalization estimate
selected. The output of the SVM regression model is mapped
to the nearest class (wine quality grade). The overall precision
(positive predictive value) obtained was 62.4% for the red
wine, respectively 64.6% for the white wine.

Appalasamy et al. tried unsuccessfully to improve the
results from [22] using information gain attribute evaluation
for feature selection and two classifiers (ID3 and naı̈ve Bayes)
[18]. On the same dataset, Nachev et al. [23] tested four pre-
dictive models: SVMs, cascade-correlation neural networks,
general regression neural networks, and the MLP. The SVMs
with polynomial kernel outperformed the three neural network
models. They found that the best feature selection techniques
are Chi-squared attribute evaluation and symmetrical uncer-
tainty ranking.

III. ANALYSES PERFORMED ON WASHINGTON CABERNET
SAUVIGNONS

The dataset used in our investigation stems from a study
performed in 2009 to determine the most common faults in
Washington State Cabernet Sauvignon5 wines.

Three bottles of 60 randomly chosen wines were tested to
take into account bottle variation for a total of n = 180 bottles
(wine samples). Organoleptic (appearance, aroma, palate),
chemical and biological analyses were performed.

Each bottle was opened and the wine dispensed in a glove
box, under nitrogen (N2) atmosphere at 4◦C, into three sets
of sterile, amber glass vials. The vials were filled, leaving
minimal head space, and sealed while inside the anaero-
bic chamber. This protocol was developed to prevent both
chemical and photo-oxidation and to prevent loss of volatile
organic compounds prior to analysis. Vials one, two and three

5In the United States, law requires that the grape varietal stated on the wine
label constitute a minimum 85% of that varietal in the wine. The other 15%
can be made up of any varietals the winemaker chooses, and this information
does not have to be disclosed.



were analyzed organoleptically, chemically, and biologically,
respectively.

For the chemical analyses, vials were handled by the CWU
Chemistry Department, with most analyses outsourced to ETS
Laboratories located in St. Helena, California (marked with an
asterisk in Section A of Table I). Samples sent to ETS were
kept chilled and shipped overnight on the date they were dis-
pensed. At ETS they were analyzed within 7 days of dispens-
ing. Chemical analyses at ETS were performed with standard
techniques, including Fourier Transform Infrared Spectroscopy
(FTIR, for pH and titratable acidity), Gas Chromatography
with Flame Ionization Detection (GC-FID, for alcohols, ac-
etaldehyde, ethyl acetate), Sequential Analyzer with UV-Vis
Spectrophotometry (for volatile acidity), Aeration/Oxidation
followed by Titration (for all forms of sulfur dioxide), and Gas
Chromatography with Sulfur Chemiluminescence Detection
(GC-SCD, for reduced sulfur compounds) [25]. At Central
Washington University, in parallel, UV-Vis Spectrophotometry
was used to carry out the optical analyses of compounds
contributing to pigmentation (phenols, anthocyanins, etc) as
well as GC-FID for alcohols and a pH meter for pH [26],
[27], [25]. Section A of Table I shows number of observations
made for each feature that was above the detection limit of
the method (in parentheses). The following chemical features,
with observations for all wine samples below detection limit
(BDL) are considered as not relevant and will be not used:
Hydrogen Sulfide, Diethyl Sulfide (DES), Methyl Mercaptan,
thus leaving 25 chemical features that could be used for this
study.

For the biological testing of bacteria and yeasts known to
cause faults, two methods were used at CWU: (i) cultivation
and identification of viable organisms and (ii) detection of
DNA sequences of organisms from extracted DNA. For culti-
vation of organisms, portions of each wine sample were used
within an hour of dispensing to inoculate (in triplicate) selec-
tive cultivation media specific of lactic acid bacteria (LAB)
[28], acetic acid bacteria (AAB) [29], and Brettanomyces
bruxellensis [30]. The cultured wine was incubated at 22-25◦C
for a minimum of 3 days for LAB and AAB, and up to 3 weeks
for the Brettanomyces cultures. Following the appropriate
incubation period, the average number of cultured organisms
(reported as colony forming units, CFU) were determined for
each wine. For the DNA amplification, aliquots from each
wine were frozen immediately after dispensing and thawed just
prior to DNA extraction. DNA was extracted from each sample
using commercially available DNA extraction kits (MoBio
Laboratories, Inc., Carlsbad, CA) designed for microbial DNA
extraction from matrices containing organic material like hu-
mic acids, phenolics, and tannins. Extracted DNA was then
subject to analysis via real-time polymerase chain reaction
(PCR) [31], [32] to detect and quantify organisms. Section
B of Table I lists features and number of observations that
were above the detection limit of the method (in parentheses).
There are 5 biological features.

In summary, 30 chemical/biological features were measured
above the detection limit for at least some of the wines, with

two parameters, DDEDS and AAB, showing particularly low
frequency of occurrences of n = 4 and 9, respectively. These
30 chemical/biological features, each with an associated cost-
per-analysis, were used in the present study to analyze their
relationship to the overall organoleptic quality of the wine.
Table I shows also the cost-per-analysis for each feature.
In addition, wine age and wine region were included as
features as they deemed to have significant discriminative
power. Hence, we used 30+2 = 32 features for our generated
dataset.

For the organoleptic testing, wines were equilibrated to lab-
oratory temperature (21◦C) [33] to assure constancy through-
out the analysis process. Wines were tasted on the same day
of opening and standard tasting wine glasses were used. One
of the authors of this paper is an expert taster6 who rated
each of the 180 sample wines based on appearance, aroma and
taste on the following parameters: clarity, haziness, ropiness,
color, oxidation, volatile acidity, ethyl acetate, sulfur dioxide,
hydrogen sulfide, bacterial, maderization, oxidation. The scale
ranged from 1 to 6, with wines scoring 1 being the least faulty
in that particular parameter, and those scoring 6 as the most
faulty.

These data were then used to generate an overall numerical
score for each wine. The score spans from 1 to 6, 1 represents
the best quality, while 6 designates a lower quality in this
hierarchy. The score is used as a class label of the wine sample.

IV. EXPERIMENTAL SETUP

With 180 samples and 32 input features, our dataset is large,
both in terms of number of samples and biochemical markers
(features), in comparison to other previous research attempts
(see Section. II). The wine quality dataset in [22] is much
larger than ours, but it only uses 11 features.

A. Methodology

We look for an optimal classifier for wine quality prediction
which also minimizes cost. Our solution is based on two
stages of optimization. First, we search for reasonably good
classifiers (from a given set of classifiers). Next, we search for
the optimal subset of features to maximize the performance
of the best classifier and also minimize the overall cost of the
measurements.

The labels were assigned on a subjective basis, therefore
there is not an equidistant split among the different qualities.
Based on this fact, even though a regression can be applied
(as in [22]), such operation does not have a real meaning.
Hence, our focus is shifted toward statistical classifiers such as
decision trees, neural networks, nearest neighbor classifier, etc.
as we would like to classify the quality of wines completely
automatically, without involving a wine expert.

Considering the nature of our problem, we did not develop
our own classifier set, but rather considered the well-known

6Amy Mumma, Professional Wine Woman 2005-2006, award received in
Paris, 2007.



A. CHEMICAL ANALYSIS (25 FEATURES)
ACIDS, ALDEHYDES AND ALCOHOLS∗ (n = 180) SULFUR CONTAINING COMPOUNDS∗ (n = 180) COLORIMETRIC CHARACTERISTICS (n = 180)
pH, $10 Dymethyl Sulfide (DMS), $30 Pigmentation, Red (9 samples BDL), $2
Volatile Acidity, $26 Dymethyl Disulfide (DMDS) (80 samples BLD), $30 Pigmentation, Brown (9 samples BDL), $2
Titratable Acidity, $18 Diethyl Disulfide (DDEDS) (176 samples BDL), $30 Color Intensity (9 samples BLD), $2
Acetaldehyde, $110 Ethyl Mercaptan (107 samples BDL), $30 Copigmentation, $2
Ethyl Acetate, $110 Total Sulfur Dioxide (Total SO2), $20 Color Anthocyanins, $2
Methanol, $100 Free Sulfur Dioxide (Free SO2) (SO2+ H2O+HSO3), $20 Polymeric Anthocyanins $2
1-Propanol, $25 Molecular Sulfur Dioxide (Molecular SO2) (SO2+SO2+H2O), $36 Total Phenols, $2
Isobutanol, $25
2-Methylbutanol (Iso amyl alcohol), $25
3-Methylbutanol (Active amyl alcohol), $25
Ethanol, $25

B. BIOLOGICAL CHARACTERISTICS (5 FEATURES)
BACTERIA (BY CULTURE) (n = 180) BACTERIA (BY DNA DETECTION) (n = 180) FUNGI (BY CULTURE) (n = 180)
Lactic Acid Bacteria (11 samples BDL), $5 Lactobacillus sp. (42 samples BDL), $16 Brettanomyces bruxellenis (151 samples BDL), $5
Acetic Acid Bacteria (171 samples BDL), $5 Pediococcus sp. (52 samples BDL), $16

TABLE I
BIOCHEMICAL ANALYSES USED AS INPUT FEATURES. NUMBER OF TOTAL OBSERVATIONS PER FEATURE (n), NUMBER OF OBSERVATIONS BELOW

DETECTION LIMIT (BDL), AND APPROXIMATE PRICE-PER-ANALYSIS ARE NOTED. ∗ANALYSES PERFORMED AT ETS LABORATORIES, ST. HELENA, CA.

Weka7 [34] framework, a collection of machine learning tools
for different data mining tasks.

Our main performance criterion is the accuracy (the per-
centage of correctly classified instances). We also use the
classification accuracy for individual classes. In all our ex-
periments with classifiers and feature ranking tools we use
10-fold crossvalidation.

B. Choosing the classifier

We only consider the classifiers in Weka, and this allows
us to use the Weka testing environment. Other classifiers
may be also considered, but (we believe) with small chances
to significantly improve the prediction accuracy. Using the
default hyperparameters for each method, the best performing
classifiers are listed in Table II. We have to note that the SVM
classifiers performed very poorly on our data (the polynomial
kernel SVM achieved only 40.00% accuracy), in contrast to
the results reported in [22] and [23]. This confirms once again
that there is no universal “best” classifier.

TABLE II
PERFORMANCES OF THE MOST ACCURATE WEKA CLASSIFIERS

Classifier Accuracy

Random Forest 74.44%
IBk (1-nearest neighbor) 70.00%
Multilayer Perceptron 62.22%
KStar 68.88%
Random Committee 66.66%

We further tried to optimize the parameters of these classi-
fiers, but we failed, meaning that the Weka implementations
already resulted in reasonable performance. This is in accor-
dance with the results of other authors [35].

As a result, we choose to use in the following the random
forest classifier with its default Weka parameters: unlimited
maxDepth, batchSize = 100, numDecimalPlaces = 2, numFea-
tures = 0, numTrees = 100, seed = 1 (see [36]).

7www.cs.waikato.ac.nz/ml/weka

C. Choosing the feature ranking method

We tested several feature ranking methods from Weka, in-
cluding: ChiSquaredAttributeEval, SymmetricalUncertAttribu-
teEval, ReliefAttributeEval, InfoGainAttributeEval, Correla-
tionAttributeEval. The methods based on information gain or
on correlation between input features and classes perform
best, among them ChiSquaredAttributeEval and InfoGainAt-
tributeEval. Using these two feature ranking methods and
the random forest classifier, we eliminated one-by-one the
least important feature, showing each time the accuracy of
the system with the reduced number of features. The results
are shown in Fig. 1. Is to be observed, that even if the
original 32 dimensional feature set is reduced by the 20 less
important features provides still a reasonable good accuracy,
which points us into the direction that the cost also can be
reduced and still keeping high the prediction performances.

Fig. 1. Accuracy (in percent) vs number of eliminated features

Since we observe a slightly better performance with the Chi-
squared feature ranking method [37], we choose to continue



with this method in combination with the random forest
classifier, using for both their Weka implementations.

D. Cost optimization

Beside the accuracy, which is the primary goal of this
research, we also consider the cost of each biochemical
measurement, which ranges between $2 to $110.

Standard feature selection methods do not cope with the
measurement cost issue. Cost-based feature selection was
considered by few authors [38], [39], [40], but in completely
different application areas than wine data mining. Including
the measurement cost into the feature selection process gen-
erates a multi-criterial optimization problem (accuracy and
cost) which is by its nature exponential, since all subgroups
of features should be considered.

We scale to [0, 1] the average ranks generated by
ChiSquaredAttributeEval (the smaller the rank value, the more
important the feature is). Let ri be the resulted value which
corresponds to feature i. We also scale to [0, 1] the costs
associated to the measurements (features). Let ci be the scaled
cost of feature i.

We define the new feature rank new ri = ri ∗ ci, for
i = 1, . . . , 32. This criterion favors cheap features with good
discriminative power. Such features will have small new ri
values. Other formulas may be also considered for computing
new r.

V. RESULTS AND DISCUSSION

Based on the method described above, the ranking (from
most important feature to less important) is: co-pigmentation,
age, region, red color, total SO2, isobutanol, color inten-
sity, volatile acidity, polymeric anthocyanins, total phenols,
color anthocyanins, brown color, free SO2, brettanomyces,
acetic acid bacteria, pH, lactic acid bacteria, titratable acidity,
ethanol, active amyl alcohol, iso amyl alcohol, pedioccocus
sp., 1-propanol, lactobacillus sp., ethyl acetate, molecular SO2,
ethyl mercantile, dymethyl disulfide, dymethyl sulfide, diethyl
disulfide, methanol and acetaldehyde.

Using the computed feature ranks new ri, for i =
1, . . . , 32, we eliminate one-by-one the least important feature
(the feature with maximal new ri from the existing subset of
features). This backward stepwise selection is not guaranteed
to give us the best model containing a particular subset of
features, but this is the price we pay in order to reduce the
computational complexity from exponential to linear and also
to avoid possible overfitting. Just because the best subset has
a better model on the training data does not necessarily mean
that it is really going to be a better model overall in the context
of test data.

The result of this greedy optimization is shown in Fig. 2.
From these results, the user (the chemist) can extract data (see
Table III) like “the best performing subset of tests for a given
threshold cost”.

For instance, spending $198, we obtain an overall predic-
tion accuracy of 71.11% using the following 20 features (in
decreasing order of importance): co-pigmentation, age, region,

Fig. 2. Total cost vs accuracy (in percent)

red color, total SO2, isobutanol, color intensity, volatile acidity,
polymeric anthocyanins, total phenols, color anthocyanins,
brown color, free SO2, brettanomyces, acetic acid bacteria,
pH, lactic acid bacteria, titratable acidity, ethanol, active amyl
alcohol. Compared to the full panel of analyses, this represents
a substantial cost reduction of 381% at the expense of only
4.5% loss in overall prediction accuracy.

Most noteworthy is that when we consider only the five
most important features (i.e., co-pigmentation, age, region, red
color, total SO2), the accuracy drops by only 13.9% absolute
reduction to 60.6%, but at a minimal cost of $24, which is
only 3.2% of the $756 when all the features are considered.

A significant 10% overall increase in accuracy (66.7%) is
obtained when adding three more features (8 features in total),
but at the expense of a three fold increase in cost ($77) and
only 3% gain in accuracy of predicting the best wines.

To investigate wine category specific accuracies (see details
in Section III), category 6 wines (n = 8) - which stands for
the worst quality among the possible 6 categories investigated,
were merged with category 5 wines (n = 26) -which is also
a lower quality, resulting in 5 statistically more representative
wine quality categories that ranged in sample size between
n = 32 and 39. Interestingly, across all model runs with vary-
ing features, the best category specific prediction accuracies
were observed for the ”best” (category 1) and ”least favorable”
(merged categories 5 and 6) wines. For the example with 5
features, the respective numbers were 76.9% and 85.3%, which
are identical to the outcome when using 8 features.

VI. CONCLUSIONS

With a dataset consisting of 180 Washington State Cabernet
Sauvignon wine samples and 32 associated features, we have
created a complete cost-based wine quality prediction tool. The
model is optimal within a wide range of Weka implemented
classifiers and feature ranking methods.



TABLE III
OPTIMAL COST-ACCURACY ACHIEVED AND THE NUMBER OF FEATURES

SELECTED.

Total cost Accuracy # features

$ 24 60.55% 5
$ 77 66.66% 8
$105 66.66% 13
$148 70.00% 18
$198 71.11% 20
$456 73.33% 27
$756 74.44% 32

With respect to the number of features, our model is
generated in linear time. The greedy approach provides a
pseudo-optimal solution to an otherwise exponential time
multi-criterial optimization problem.

Cost optimization with the fewest features and significant
prediction accuracy in particular at the two end-members of
wine quality is achieved with 5 features. In order of impor-
tance, the first and fourth are easily measurable colorimetric
wine characteristics, the second and third are age and region
of wine production, and the last is total SO2 content, which
is an anti-oxidant and anti-microbial added to wines.

These results show that a relatively simple multi-criterial
optimization tool allows for an economical way to discriminate
between high and low quality wines, without the need for
an expert taster. Additional analyses and associated costs can
provide further resolution in the prediction of the quality of
mid-range wines.
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