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Abstract—This paper proposes a new multi-agent system to
solve very short-term solar forecasting problems. The system
organizes the training data into clusters using Part and Select
Algorithm. These clusters are used to generate different forecast-
ing models, where each one is performed by a different agent.
Finally, another agent is responsible for deciding which model
will be applied at each forecasting situation. Results present
improvements in forecasting accuracy and training performance
if compared to other forecasting methods. A discussion of how
to use this architecture for the implementation of a more
comprehensive model is also addressed.

I. Introduction
During the past two decades, renewable energy such as

solar photovoltaics (PV) or wind has become relevant as a
source of electricity generation in power grids worldwide.
In the last fifteen years, PV energy reached a compound
annual growth rate of circa 40% [1]. The installed capacity
in OECD countries has already reached 60 GW. In some
European countries, PV production reaches 30% of overall
power production during clear summer days. This scenario
encourages the incorporation of PV energy into electrical
power grids that operate with other energy sources, such as
fossil.

One of the challenges related to this incorporation and
operation of solar PV is dealing with the variable aspect of
this source of energy, which can alternate during the day due
to weather conditions, such as cloud motion, and also has no
production during night time. These characteristics highlight
the importance of applying a forecasting method to a PV
system [2]. It is useful to distinguish forecasting techniques
according to the temporal scales we are interested in. Very
short-term forecasting deals with time horizons from minutes
to hours, while short-term forecasting deals with time horizons
from hours to a few days ahead. This work focuses on very
short-term forecasting (for time horizons such as 15-min and
30-min), investigating data collected from a station of a PV
system located in a tropical region, specifically in Singapore.

In general, electrical load forecasting models suffer from
similar needs of techniques with good capability of dealing

with complex relations between input and output, which
encourages the adoption of Artificial Intelligence (AI) models
[3]. Specifically in solar forecasting, Mellit and Pavan [4] and
Pedro and Coimbra [5] applied Artificial Neural Networks
(ANN) to solve this problem.

As discussed in [3], seasonality is a recurrent problem in
load forecasting models. Different seasons present different
patterns of weather variables, which directly affect the solar
irradiance curves along the days. Some works deal with
seasonality by designing multi-agent systems responsible for
organizing data and generating distinct and more accurate fore-
casting models. For instance, Yap and Yap [6] and Hernandez
et al. [7] consider load or demand profiles associated with
specific days of the year to divide the forecasting problem
into smaller problems.

Another factor that can influence the solar forecasting is
the spatial location of grid stations. Even in limited areas,
distributed stations can be affected by different weather con-
ditions. This implies that a good forecasting system for a
distributed electricity grid should be based on the development
of customized models for the different conditions to which its
components are subject. The models should be designed to
solve local problems, but must behave as a unit to provide
useful information.

Solar forecasting provides extremely useful information for
tasks such as management of electricity grids and solar energy
trading. In a very short term forecasting context, it means that
fast turnaround of results is also an important feature to the
model, where the time for decision making is reduced and the
amount of data to be processed is usually higher. Hence, in
addition to good accuracy, good performance is a desirable
goal for a very short term forecasting model.

Coordination and control of these new emerging grid com-
ponents remains a great challenge [8]. Advanced networking,
as well as Information and Communication Technologies, have
been motivating the integration of the conventional power grid
in smarter ways [9], inspiring the use of distributed Multi-
Agent Systems (MAS). Autonomous control of these systems



allows placing additional stations without reengineering the
whole system, and using it in the peer-to-peer model eliminates
the requirement of a complex central controller and associated
telecommunication facilities [10]. Logenthiran et al. [11] un-
derscored that MAS is one of the fastest growing domains
in agent oriented technology which deals with autonomous
decision modeling. Moreover, it has been showing to be crucial
in Smart Grid (SG) operations [12]. MAS has spread to diverse
SG applications in the field of power systems restoration, se-
curity and protection, control, monitoring, energy storage and
maintenance scheduling, and electric power market simulation
[13].

In this paper, the proposed model combines Extreme Learn-
ing Machines (ELM) [14, 15] with a clustering technique
named Part and Select Algorithm (PSA) [16] to compose a
MAS responsible for performing the solar forecasting of a dis-
tributed energy grid. The main motivation for this model is to
deal with the seasonality in an indirect way, by grouping days
with similar irradiance patterns so that each group can generate
a different specialized ELM model. Additionally, we aim at
elaborating a multi-agent model with better performance for
very short term forecasting. The technique is compared to
some popular forecasting techniques as well as to a simple
ELM model in order to asses its accuracy and performance.

This article is organized as follows. Section II presents
some classical techniques applied to forecasting, which are
evaluated in this work. Section III describes the data used for
forecasting as well as the preprocessing steps taken. Section
IV describes the proposed multi-agent model. Section V shows
the experiments and results. Section VI concludes the paper
discussing the results and suggesting some future work.

II. Classical ForecastingMethods

The forecasting problem discussed in this work has been
widely studied by several approaches. This section presents
the methods chosen for a comparison with the new proposed
model.

A. Persistence

The Clear Sky model represents the values for solar ir-
radiance if sky conditions would be neglected. Under this
model, solar irradiance forecasting could be calculated with
good accuracy using a deterministic model. However, in
actual situations the sky conditions also provide a stochastic
component that strongly affects the forecasting result.

Persistence is a very common forecasting method. Usually
serves as a benchmark against other proposed methods. Per-
sistence assumes that the forecast value has equal conditions
to the current one. In solar irradiance forecasting, equal
conditions are related to cloud cover conditions, which are
assumed to stay the same for the next time step. The equation
applied for persistence uses solar irradiance observations and
values from the Clear Sky model, described as follows:

Ît+1 =

Ics,t+1 if Ics,t = 0
Ics,t+1

Ics,t
× It otherwise

(1)

Whereas persistence is considered a simple method, good
results can be obtained from its application, specially in re-
gions where weather patterns change very little or the features
on the weather maps move very slowly. As could be observed
in the experiments of this work, this method can have a
performance comparable to more advanced techniques in some
specific conditions, which implies that it can be considered
more than a naive forecasting alternative.

B. Autoregressive integrated moving average

Autoregressive Integrated Moving Average (ARIMA) mod-
els are popular time series models in forecasting tools for non-
stationary time series [17]. The model combines an autoregres-
sive component to a moving average component, elaborated
from a generalization of the ARMA model. Its representation
ARIMA(p, d, q) refers, respectively, to autoregression, integra-
tion and moving average degrees, i.e., p is the autoregressive
order, d is the differencing degree, q is the moving average
model order.

The ARIMA model for the time series xt can be written as:

yt = (1 − L)d xt (2)
φ(L)yt = θ(L)εt (3)

where yt is the predicted value at time t, xt are the time series
values, and:

φ(L) =

1 − p∑
i=1

φiLi

 (4)

θ(L) =

1 − q∑
j=1

θ jL j

 (5)

The parameters φi and θ j are associated with the autore-
gressive part and the moving average part, respectively, while
εt represent the error terms. In addition, Li is the backshift or
lag operator, i.e., given xt, we have Lk xt = xt−k.

Evaluating the correlation between the values of the time
series can improve the elaboration of an ARIMA model with
proper parameters. The autocorrelation plot for 30-min lag
observations of the evaluated stochastic component depicted
in Figure 1 presents positive values for a high number of
lags, which suggests an ARIMA model with some degree of
differencing. The partial autocorrelation plot presents a cutoff

at the first lags, which points to a lower order of autoregressive
and moving average components.

The seasonal ARIMA model can be written as
S ARIMA(p, d, q)(P,D,Q)s, with additional parameters
such that P is the seasonal autoregressive terms, D is the
number of seasonal differences, Q is the seasonal moving
average order. The model is given by:

yt = (1 − L)d(1 − Ls)Dxt (6)
φ(L)Φ(Ls)yt = θ(L)Θ(Ls)εt (7)
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Fig. 1. Autocorrelation plot for the stochastic component.
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Fig. 2. Partial correlation plot for the stochastic component.

where

Φ(Ls) =

1 − P∑
i=1

ΦiLsi

 (8)

Θ(Ls) =

1 − Q∑
j=1

Θ jLs j

 (9)

Based on the 30-min lags used in this work, an entire day
can represent a seasonality period for this model. Since there
are 48 daily observations, this value was evaluated as the
seasonality parameter. However the best results were obtained
with no seasonal component and an entire day of lags as input.
The chosen parameters for this work were p = 1, d = 1 and
q = 1.

C. k-Nearest-Neighbors

k-Nearest-Neighbors (kNN) [18] is a technique widely used
in pattern recognition and classification. Basically, the method
compares patterns, finding the most similar ones, which are
the nearest neighbors. Applied to this forecasting problem, the
method evaluates input patterns from the training dataset. For
example, consider a pattern from the training dataset with the
format < Pt,Ot > where:

Pt = (Ist,t, Ist,t−1, Ist,t−2, . . . , Ist,t−n) (10)
Ot = Ist,t+1

Given a current input pattern Qt, the method compares its
values to all the Pt patterns in the training dataset using the
following equation:

Dist(s) =

√√ n∑
i=1

(Ps,i − Qt,i)2 (11)

The forecast result is the value Os, which is the output for
the pattern Ps with the lowest value for Dist. If more than
one pattern have the minimal distance, an average from their
output values is taken.

III. Data Processing

A. Source of data

The data used in this work was obtained in a solar energy
station located in Singapore. The station is part of a ground-
based meteorological network deployed by SERIS - Solar
Energy Research Institute of Singapore - along the island as
part of a research project [19]. In order to obtain the ground
measurement readings at a good spatial resolution, 25 stations
of the project were distributed across Singapore using a 5x5
km grid as reference. Figure 3 shows this distribution.

Fig. 3. Singapore map of SERIS ground-based stations.

All the monitoring systems record the solar irradiance
values as one minute averages, with a sampling rate of 1 Hz.
Similarly, the 30-min values used in this work correspond to
averages of one minute groups. It is expected that, due to



material specifications, loggers utilized in this work present
errors in the order of ±0.2%.

Since the focus of this work is presenting the training
and forecasting characteristics of this model only a central
station was chosen. It is referenced in the map of Figure 3
as number 402. The entire multi-agent system, proposed to
cover the whole network, is composed by the same set of
agents described here, applied to each station.

B. Preprocessing data

As previously discussed, the observed solar irradiance val-
ues can be seen as time series with trend and seasonal
components. In this case, better results in forecasting can
be obtained if these components are eliminated or mitigated
[20], specially when working with neural network models.
Detrending and seasonal adjustment are common steps in order
to improve time series analysis.

In this work, the applied detrending method was smoothing
the time series using the moving average filter. It means
that, considering a time series y, its smoothed ỹ values are
calculated with:

ỹ(1) = y(1) (12)
ỹ(2) = (y(1) + y(2) + y(3))/3
ỹ(3) = (y(1) + y(2) + y(3) + y(4) + y(5))/5
ỹ(4) = (y(2) + y(3) + y(4) + y(5) + y(6))/5

...

ỹ(n) = (y(n − 2) + y(n − 1) + y(n) + y(n + 1) + y(n + 2))/5
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Fig. 4. Solar irradiance observations from April 01, 2013 to April 05, 2013
and their smoothed values.

Figure 4 shows an example of smoothed values obtained
from the application of a moving average filter with a span of
5 to a period of observations.

Thus, the detrending process consists of removing the
smoothed values It from the original time series I, leaving
only the residual detrended data Idt.

I = Idt + It (13)

Since preliminary results pointed that the detrending process
improved the average forecasting accuracy, all the evaluated
methods in this work operate with the detrended data Idt.

Seasonal adjustment is a more complicated task for this kind
of time series, since sky conditions are affected by different
factors along the year, which provide different daily solar
irradiance curves. This leads to a scenario where inferring a
proper additive or multiplicative model for seasonality can be
a complex task. Seasonal adjustment is not performed during
the preprocessing step in a traditional way, but left for each
forecasting method, if applied.

IV. Multi-agent forecasting system

The proposed Multi-agent system is basically composed
by agents responsible for different steps of the forecasting
process. The forecasting itself is performed by a combina-
tion of Extreme Learning Machines and the Part and Select
Algorithm. The following subsections describe the agents and
also the methods that were combined in order to create the
forecasting methods.

A. Extreme Learning Machines

Extreme learning machines (ELM) [14] have an architecture
similar to a single hidden layer feedforward network, but the
distinct feature lies in its learning algorithm. The algorithm
is based on empirical risk minimization theory and requires
only a single iteration. Considering n samples (xi, yi) ∈ X × Y ,
i = 1, . . . ,N, where xi = [xi1, xi2, ..., xin] with X ⊂ Rn and yi =

[yi1, yi2, ..., yim] with Y ⊂ Rm. The training process basically
consists of two steps:

1) Find an intermediate mapping

H = f (XZ) (14)

The intermediate mapping H is a result of an activation
function f applied to a projection made with the input X
and a set of weights Z, where a weight zi, j connects an
input node i to a node j that belongs to the hidden layer.
The values of Z are chosen randomly. The objective is to
convert the original input to a linearly solvable problem.

2) Find a solution for the linear problem

Ŷ = HW (15)

where Ŷ is the labelled output and W is a weight matrix
that connects the hidden layer to the output layer. To solve
this problem, the values of W are obtained using the training
data Y and the Moore-Penrose pseudoinverse of the mapping
H† as follows:

W = YH† (16)



Since the W matrix is obtained, the ELM model is trained
and can be applied to test samples following similar steps.
Given an input data set Xtest:

Htest = h(XtestZ) (17)
Ytest = HtestW (18)

In this work, ELM only takes as input an excerpt from
a time series of solar irradiance concerning to recent past
observations. For example, given a current time t and a set of n
past observations, the model takes as input the solar irradiance
observations from t−n to t in order to forecast the value y for
time t + 1.

B. Part and Select Algorithm

Part and Select Algorithm [16] selects m well-spread points
from a set of n candidate solutions. Basically, the algorithm
has two steps:

1) Similar members are grouped in the same subset.
2) A diverse subset is formed by selecting one member from

each generated subset.
Aiming to divide a dataset into m subsets, PSA performs

m−1 divisions of one single set into two subsets. At each step,
the set with the greatest dissimilarity among its members is the
one that is divided. This is repeated until the desired stopping
criterion is met. In this work, a predefined number of subset
is applied as stopping criterion. The dissimilarity of a set A,
denoted by ∅A, is calculated as follows:

Let A = x1 = [x11, . . . , x1k], . . . , xn = [xn1, . . . , xnk] ∈ Rk, and
consider

a j = min
i=1,...,n

xi j (19)

b j = max
i=1,...,n

xi j

∆ j = b j − a j, j = 1, . . . , k
∅A = max

j=1,...,k
∆ j

As discussed in [16], ∅A can also be seen as the diameter
of the set A in the Chebyshev metric.

Once the dataset is divided into m subsets, another subset
A′ of size m is obtained. A′ contains the most representative
element of each subset. The criterion used in PSA is choosing
the closest element to the hyper-rectangle circumscribing Ai.
The distance is calculated using Euclidean metric.

The subset containing the most representative elements can
provide a very useful information for this work. It facilitates
the visualization and identification of different patterns of time
series, which can assist in making decisions about the more
appropriate method for each situation. Therefore, it is one of
the motivations for using PSA as clustering method.

C. Multi-agent Architecture

The proposed multi-agent forecasting system involves dele-
gating the various forecasting tasks to different modules. The

modules are described in detail as follows. Figure 5 depicts
the model.

Data Preprocessing Agent: The Data Preprocessing Agent
is responsible for receiving and processing the data collected
from the stations. The following tasks are performed by this
agent:

1) Detrending: The agent receives as input the raw training
data extracted from the monitoring system. In the first
step, the detrending process discussed in section IV is
executed to the training data.

2) Normalization: The stochastic component extracted from
the detrending process is normalized as suggested in [14].
The normalization range for this work was −1 to +1.

Training Agent: The training agent is responsible for all
the learning process of the forecasting model. The tasks below
are performed:

1) Data clustering: The agent uses the normalized stochastic
component generated by the Data Preprocessing agent.
The data clustering is performed using the PSA method.
According to the PSA method, each cluster has its most
representative element, which is elected in this step. Each
element contains all the observations of an entire day.
The model works with a fixed number of clusters. In this
work, this number was defined empirically using as a
criterion the balance between forecasting accuracy and
training performance.

2) ELM Training: Each cluster created by PSA serves as
input to train an ELM model. During the experiments,
the ELMs were trained sequentially.

Forecasting Agent: Forecasting agent is responsible for
returning the predicted value using the trained ELM models.
Two steps are taken to perform the forecasting:

1) ELM model selection: In order to decide the most suitable
ELM model for forecasting, among the ones created by
the Training Agent, the forecasting compares the distance
between the input data and the most representative ele-
ments of all the data clusters. This comparison is done by
calculating the Euclidean distance between two vectors,
which are the time series used as input data and the same
interval in the representative element. For example, given
an input data composed by observations from 8am and
11am, divided in 30 minute intervals, generating a vector
with 7 elements. Since each representative element con-
tains an entire day of observations, the same interval from
8am and 11am is extracted from the element generating a
vector with same to finally apply the Euclidean distance.
The ELM whose representative element returns the lower
distance is chosen.

2) Forecasting: Chosen the most suitable ELM model, the
forecasting is performed using the input data. In this work
the returned value corresponds to the solar irradiance one
step ahead (t + 1).

V. Experiments
The experiments were conducted to evaluate the perfor-

mance of all the described forecasting methods in terms of



Fig. 5. Multi-agent ELM model.

processing and accuracy. As mentioned earlier in section III,
the input data used was the detrended component Idt of solar
irradiance observations. However, the accuracy evaluation was
performed using the actual data, obtained by the equation
I = Idt + It.

The dataset used for training and testing was irradiance
observations registered on intervals of 30 minutes. As detailed
below, 12 months from 2013 to 2014 were applied for training
and the subsequent 12 months from 2014 to 2015 were used
for testing, which means that a dataset composed by 2 years
of observations was split in half.

1) Training data:
from April, 2013 to March, 2014

2) Testing data:
from April, 2014 to March, 2015

The purpose of taking an entire year for testing was to
evaluate forecasting performance over different profiles of
solar irradiance.

The input data for the methods was a time series repre-
senting 6 sequential observations of solar irradiance. In other
words, given a current observation t, the input data is collected
from t − 5 to t in order to predict the future value t + 1. This

input format is used in all the evaluated ELM models in this
work. Also, the number of nodes in the hidden layer is the
same for all the models. Each model is organized with 12
nodes.

Both the simple ELM and Multi-agent ELM (MA-ELM)
models have random components in their foundations. Since
this characteristic can affect the final results, each model was
run 30 times and the results reported correspond to an average
of all the independent runs. For these models, their standard
deviations are also presented.

For the multi-agent model, the training dataset was divided
into 4 subsets, as a result of the PSA method. Each element of
the dataset contains the irradiance observed during one day,
which means for a dataset with 30-min intervals 48 obser-
vations per element. Figure 6 shows the most representative
elements of each subset.

(a) Element 1 (b) Element 2

(c) Element 3 (d) Element 4

Fig. 6. Example of representative elements for each PSA cluster

The statistical metric Root Mean Square Error (RMSE) and
its normalized version (nRMSE) were applied to evaluate the
accuracy of the methods:

RMS E =

√√
1
n

n∑
t=1

(It − Ît)2 (20)

nRMS E =

√∑n
t=1(It − Ît)2∑n

t=1 Î2
t

(21)

Tables I and II show the results of forecasting in terms
of accuracy for the ARIMA model with seasonal component
(ARIMA), kNN, ELM and MA-ELM.

During the experiments, training and test times in seconds
were also observed. Tables III and IV present the results.



TABLE I
Forecasting error - RMSE.

RMSE
Persistence ARIMA kNN ELM MA-ELM

2014-04 84.7667 92.2204 80.6711 79.7529 ± 0.2564 81.8279 ± 0.5122
2014-05 80.1549 93.6016 79.1877 76.4931 ± 0.6512 77.2989 ± 0.4338
2014-06 66.0692 70.4749 64.2329 60.6537 ± 0.2723 61.7802 ± 0.2681
2014-07 74.7301 78.2315 72.4574 69.3097 ± 0.2850 70.9656 ± 0.3942
2014-08 81.9827 83.0472 78.5713 75.6961 ± 0.2094 76.1392 ± 0.3089
2014-09 64.5804 81.2112 67.1694 62.4151 ± 0.3093 63.1119 ± 0.4765
2014-10 73.1025 85.8366 70.2621 68.8848 ± 0.3145 72.0660 ± 1.0020
2014-11 88.9649 86.4535 78.1195 76.1150 ± 0.2844 79.1113 ± 0.7843
2014-12 78.2640 88.9237 76.4641 74.9684 ± 0.3761 79.3020 ± 0.6221
2015-01 80.3508 78.6993 76.0221 76.2232 ± 0.3073 77.0896 ± 0.3459
2015-02 71.8613 74.4020 69.3758 68.3714 ± 0.2315 69.8711 ± 0.3088
2015-03 82.9459 83.0699 80.4487 78.1325 ± 0.3205 78.5508 ± 0.3404
Average 77.3144 83.0143 74.4152 72.2513 ± 0.3182 73.9262 ± 0.4831

TABLE II
Forecasting error - nRMSE.

nRMSE (%)
Persistence ARIMA kNN ELM MA-ELM

2014-04 26.0970 28.3981 24.8361 24.5534 ± 0.0789 25.1922 ± 0.1577
2014-05 25.2920 29.5008 24.9868 24.1365 ± 0.2055 24.3908 ± 0.1369
2014-06 20.4130 21.9464 19.8457 18.7398 ± 0.0841 19.0879 ± 0.0828
2014-07 24.2044 25.6209 23.4683 22.4488 ± 0.0923 22.9851 ± 0.1277
2014-08 28.0606 28.5605 26.8930 25.9088 ± 0.0717 26.0605 ± 0.1057
2014-09 17.9420 22.8274 18.6613 17.3404 ± 0.0859 17.5340 ± 0.1324
2014-10 22.2266 26.0694 21.3630 20.9442 ± 0.0956 21.9114 ± 0.3046
2014-11 31.2467 30.0230 27.4375 26.7335 ± 0.0999 27.7859 ± 0.2755
2014-12 28.2985 31.9184 27.6477 27.1069 ± 0.1360 28.6738 ± 0.2250
2015-01 23.9825 23.2046 22.6905 22.7506 ± 0.0917 23.0091 ± 0.1032
2015-02 20.2438 21.1003 19.5436 19.2607 ± 0.0652 19.6831 ± 0.0870
2015-03 24.5532 24.7428 23.8140 23.1283 ± 0.0949 23.2522 ± 0.1008
Average 24.3801 26.1594 23.4323 22.7543 ± 0.1001 23.2972 ± 0.1533

For ARIMA, the training time corresponds to the parameter
estimation step. No training step is required for kNN.

TABLE III
Training time in seconds.

Train time
ARIMA kNN ELM MA-ELM
38.6510 - 8.2736 0.9367

TABLE IV
Average test time in seconds.

Test time
ARIMA kNN ELM MA-ELM
0.2410 0.1652 0.0113 0.0162

The results denote equivalent performances in accuracy for
ELM and MA-ELM, which suggest that they offer good re-
sponse for seasonal changes if compared to the other methods.
An important aspect of the MA-ELM model is that its training
time is much lower than the ELM. It means that the new
model can split the forecasting problem into a smaller and
simpler set of ELM with no substantial loss of accuracy.
This can be an important improvement for very short term
forecasting problems, where a usually higher amount of data
needs to be processed at a reduced time. Other aspect observed

in the experiments was that, while the MA-ELM takes an
additional step when forecasting is performed (deciding which
ELM model will be used), it has no substantial effect in
performance. The representative elements of each PSA cluster
show very different curves representing daily solar irradiance,
which suggest that along the year different groups of load
profiles occur, influenced by different weather characteristics.
Finding correlations between these profiles and other weather
variables can be a useful task to address seasonality problems.

VI. Conclusion and FutureWork
The multi-agent architecture provides comparable results to

classical forecasting methods, still taking the advantage of
being composed by a set o agents that can work autonomously
and asynchronously. This aspect encourages improvements in
the model in terms of readaptation. Since the training step for
the MA-ELM is not an expensive task, an additional agent,
responsible for retraining could be incorporated to the model.
Some variables could be monitored in order to decide when
the agent should trigger the retraining, such as the feedback of
forecasting. Other aspect to be carried out aiming at improving
the results is the relation between the diversity of the clusters
[16] and the training errors. This equation, if valid, could help
to automate some parts of the ELM modelling.

As discussed, this paper was focused on evaluating fore-
casting issues of the multi-agent model applied to one sta-
tion. Other aspects to be explored are related to the entire
system, composed by agents distributed along the network.
An important task corresponds to the communication between
these agent systems, which could provide useful information
to improve the forecasting system as a whole. For example,
situations when the model of a station had to be retrained (e.g.
due to higher forecasting errors) could be informed to neigh-
boring stations since this event might be caused by weather
changes that would affect other stations in the near future.
The communication between the multi-agent systems could
also respond to a central system, where all the informations
are gathered to help the electrical grid management.
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